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146 F+JURIER SERIES AND TRANSFORMS Co : /

Table 3-3 Fourier Transforms of Mathematical Operations

Operation x(1) X(w) X
Transformation 1) “- e ™ dr %. wr)e 1 dr
Inversio L ot

ersion ) - Xiw)e ™' dw X(w) X(NH
Superposition ap(t) + dxxs(t) aXw) t+ aXsw) aX)(f) + aXy(f)
Reversal x--1) X(-w) X(-f)
Symmetry X(1) 2w - w) x(—f)

Scaling at) ! P X ﬁmv P X M
Jal © \a jal © \a
=y e X (w) e X (f)
elx(r) X(w — @) X(f — 1o
Time " .

differentiation ﬂ un oy X(w) (2mfrX(f)
Frequency d" i \" "

" a4 J d

ditferentiation 1" . ur do" Xw) AMV k'%. X

) 1 1 1 |
Integration \_‘ ) dit o+ —\ — X -
X X)) dt , Yol?) dr o (w) 2nf XN
1
. 1
Integration _~ (1) dt — X(w)} + 7X(D)dw) l_llks + 3X(0)8(f)
L jw j2uf
Convolution UoE oy ‘ L, VA - A dA X ()X (w) Xy (HXAD)

*
27

()

‘ XX ~ &) d¢ _. CX(BXAf — O dE

This impulse response is shown in Fig. 3-37b. It is clear from the figure that this
i.» not a physically realizable system, because the output occurs prior to application
el the input. One way of approximating the ideal filter response is to employ a
system having a response similar in form to that of Fig. 3-37b but delayed in time.
The greater the delay, the more nearly the shape of Fig. 3-37b can be reproduced
t.y a physically realizable filter. The effect of the delay in the frequency domain
is to produce a phase shift that varies linearly with frequency.

Convolution in the frequency domain. It is shown in Sec. 3-10 that convo-
lution in the time domain corresponds to multiplication in the frequency domain.
I'rom the symmetry properties of the Fourier transform, it follows that convolution
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of two transforms in the frequency domain correspon
original functions in the time domain. The exact relatio
(" |

x(0x(t) & — X(E)Xfw — E)dE = -

27 J - 27

x(x(t) & X\(f) = X,(f)

These expressions can be verified formally by invertin
relationships given in (3-146) and (3-147) are particul
modulation processes when one of the time functions
of impulses. Examples of this will be considered in lat
A collection of the most frequently used Fouricr
given in Table 3-3. Table 3-4 lists a number of eleme
ditional transform pairs are given in Table 3-5 that rel
average power. These and other uscful tables are coll
A. More extensive tabulations of Fourier transforms ar
listed at the end of the chapter.
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The ordinary Fourier transform is limited to the trans
are absolutely integrable—that is. functions that obey

‘ [x(0)] dr << o=
!

A number of functions having greal usefulness do no
example, a sine wave or a step function does not.
nevertheless, be handled by allowing the Fourier trans:
in some cases, higher-order singularity functions. Thi
rigorous mathematical basis by means of the theory
however, it will be sufficient for our purposes to just
ering the impulse as a limiting form of a proper fu
correct results are obtained when this method is used.

Consider the function sgn(z). called signum 7. wh

-1 -0
sgn(t) = 0 t = (
+ 1 >4

TA. H. Zemanian. Distribution Theory and Transform Analysis. N
pany. Inc., 1965,



