Table 3-5 Fourier Transforms of Power Signals

	(1)x	χ(ω)	$ X,\omega $
Unit impulse	8(1)	_	
	8'(1)	oj	\rightarrow °
Unit step	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	\ \cdot \c
Signum function	$\frac{ b }{t} = t \text{ uds}$	2 je	 c
Constant	×	2πΚδίω)	
Cosine wave	tus 100,1	$\frac{\pi \{\delta(\omega + \omega_0) + \delta(\omega - \omega_0)\}}{\ \delta(\omega - \omega_0) \ }$	• • • • • • • • • • • • • • • • • • •
She wave	sin oo,t	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Periodic wave	$\sum_{n} A_{1}(n-nT)$	$\frac{2\pi}{T} \sum_{n} X_{1} \left(\frac{2\pi n}{T} \right)$ $\delta \left(\omega - \frac{2\pi n}{T} \right)$	
+ + + + + + + + + + + + + + + + + + +	NS(1 AT)	$\frac{2\pi}{T} \sum_{n} \left(o - \frac{2\pi n}{T} \right)$	3
Complex sinusoid	في إدريا في	2πδίω ω ₀)	÷ • • • • • • • • • • • • • • • • • • •
O O Unit ramp	in(t)	$I\pi\delta'(\omega) = \frac{1}{\omega^2}$	

Multiplication	Convolution	Integration	Integration	Frequency differentiation	Time differentiation	Delay Modulation	Scaling	Superposition Reversal Symmetry	Inversion	Transformation	Operation
$x_i(O)(0)$	$x_1 * x_2 = \int_{-\infty}^{\infty} x_1(\lambda) x_2(t-\lambda) d\lambda$	$\int_{t_{i}}^{t_{i}} x(t) dt$	$\int_0^t x_i(t) dt + \int_{-\infty}^t x_0(t) dt$	$I''\chi(I)$	$\frac{d^n}{dt^n}x(t)$	$x(t = I_0)$ $e^{J \exp i x}(t)$	x(at)	$a_1x_1(t) + a_2x_2(t)$ x(-t) X(t)	$\frac{1}{2\pi}\int_{-\epsilon}^{\epsilon}X(\omega)e^{j\omega t}d\omega$	x(t)	х(г)
$\frac{1}{2\pi}\int_{-\infty}^{\infty}X_1(\xi)X_2(\omega-\xi)\ d\xi$	$X_1(\omega)X_2(\omega)$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$	$\frac{1}{j\omega}X(\omega)$	$(j)^n \frac{d^n}{d\omega^n} X(\omega)$	$(j\omega)^n X(\omega)$	$e^{-j\omega_0\chi}(\omega)$ $\chi(\omega = \omega_0)$	$\frac{1}{ a } X \left(\frac{\omega}{a}\right)$	$a_1X_1(\omega) + a_2X_2(\omega)$ $X(-\omega)$ $2\pi x(-\omega)$	$X(\omega)$	$\int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$	Χ(ω)
$\int_{-\infty}^{\infty} X_1(\xi)X_2(f-\xi) d\xi$	$X_1(f)X_2(j)$	$\frac{1}{j2\pi f}X(f)+\frac{1}{2}X(0)\delta(f)$	$\frac{1}{j2\pi f}X(f)$	$\left(\frac{j}{2\pi}\right)^n\frac{d^n}{df^n}X(f)$	$(j2\pi f)^n X(f)$	$e^{-j2\pi f_{10}X(f)}$ $X(f-f_{0})$	$\frac{1}{ a } X \left(\frac{f}{a} \right)$	$a_1X_1(f) + a_2X_2(f)$ $X(-f)$ $x(-f)$	<i>X</i> (<i>f</i>)	$\int_{-\infty}^{\infty} x(t)e^{-j2\pi/t} dt$	<i>X</i> (<i>f</i>)

This impulse response is shown in Fig. 3-37b. It is clear from the figure that this is not a physically realizable system, because the output occurs prior to application of the input. One way of approximating the ideal filter response is to employ a system having a response similar in form to that of Fig. 3-37b but delayed in time. The greater the delay, the more nearly the shape of Fig. 3-37b can be reproduced by a physically realizable filter. The effect of the delay in the frequency domain is to produce a phase shift that varies linearly with frequency.

Convolution in the frequency domain. It is shown in Sec. 3-10 that convolution in the time domain corresponds to multiplication in the frequency domain. From the symmetry properties of the Fourier transform, it follows that convolution

of two transforms in the frequency domain correspond original functions in the time domain. The exact relation

$$x_1(t)x_2(t) \Leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\xi)X_2(\omega - \xi) d\xi =$$

 $x_1(t)x_2(t) \Leftrightarrow X_1(f) * X_2(f)$

These expressions can be verified fermally by inverting relationships given in (3-146) and (3-147) are particular modulation processes when one of the time functions of impulses. Examples of this will be considered in late of the most frequently used Fourier.

A collection of the most frequently used Fourier given in Table 3-3. Table 3-4 lists a number of elemeditional transform pairs are given in Table 3-5 that rel average power. These and other useful tables are colled. A. More extensive tabulations of Fourier transforms are listed at the end of the chapter.

3-14 FOURIER TRANSFORMS OF POWER SIGNALS

The ordinary Fourier transform is limited to the trans are absolutely integrable—that is, functions that obey

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

A number of functions having great usefulness do no example, a sine wave or a step function does not nevertheless, be handled by allowing the Fourier trans in some cases, higher-order singularity functions. This rigorous mathematical basis by means of the theory however, it will be sufficient for our purposes to just ering the impulse as a limiting form of a proper further translated and the function sgn(t), called signum t, where the function sgn(t) is described by the function sgn(t).

$$\operatorname{sgn}(t) = \begin{cases} -1 & t < 0 \\ 0 & t = 0 \end{cases}$$

¹A. H. Zemanian, Distribution Theory and Transform Analysis, N pany, Inc., 1968.