(17, (3), (4) simplify to a single block c(D)/R(R).

Figure P5.1

Figure P5.3

P5.4

13. For the system shown in Figure P5.13, find the poles of the closed-loop transfer function, T(s) = C(s)/R(s).

Figure P5.13

15. For the system shown in Figure P5.15, find K and α to yield a settling time of 0.5 second and a 40% overshoot.

Chapter 5 Problems

281

Figure P5.15

- 52. Assume that the motor whose transfer function is shown in Figure P5.36(a) is used as the forward path of a closed-loop, unity-feedback system.
 - a. Calculate the percent overshoot and settling time that could be expected.
 - b. You want to improve the response found in part (a). Since the motor and the motor constants cannot be changed, an amplifier and a tachometer (voltage generator) are inserted into the loop, as shown in Figure P5.36(b). Find the values of K_1 and K_2 to yield a 25% overshoot and a settling time of 0.2 second.

