Homework - Computations involving complex numbers

- 1. For each of the following complex numbers, draw the appropriate s plane diagram to describe the number geometrically, and express in equivalent exponential polar coordinates.
 - (a) 1+j2
 - (b) 2.7 + j3.1
 - (c) -6.4 + j6.4
 - (d) 3.1 j8.4
 - (e) -17.7 + j42.3
 - (f) -3.-j0.0
 - (g) 5.0 j5.0
- 2. Transform each of the following into rectangular coordinates.
 - (a) $18e^{j25^0}$
 - (b) $32e^{j270}$
 - (c) $8e^{j180}$
 - (d) $144e^{j350}$
 - (e) $9.7e^{j123}$
- 3. For each of the complex pairs listed below, form the quantities $s_1 s_2$ and s_1 / s_2 . Draw the resulting s plane vector diagrams.
 - (a) $s_1 = 2 + j3$, $s_2 = -4 + j8$
 - (b) $s_1 = 0.5 + j7.0$, $s_2 = 14e^{j45^\circ}$
 - (c) $s_1 = 126e^{j67^0}$, $s_2 = 11e^{j349^0}$
 - (d) $s_1 = 18 + j0$, $s_2 = 0 + j3$
 - (e) $s_1 = 4 j5$, $s_2 = -2 j7$
- 4. Compute the following distinct roots, and describe the results graphically.
 - (a) $\sqrt[3]{2}$
 - (b) $\sqrt{-1+j\sqrt{3}}$
 - (c) $\sqrt[3]{-1}$
 - (d) $\sqrt[5]{-1-j1}$
 - (e) $\sqrt[4]{()+j16}$
 - (f) $\sqrt[3]{e^{j40^0}}$