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Abstract—This paper describes an approach for exploiting 3D
information to improve synthetic aperture radar (SAR) automatic
target recognition (ATR) performance. Historically, SAR ATR is
performed using a single look, where an individual SAR image
formed over a particular azimuth dwell is used as input to a
classification algorithm. Recent data collection and processing
developments enable techniques which exploit information from
multiple looks simultaneously. Using more information from dis-
tinct geometries promises to improve both algorithm robustness
and overall classification performance. Our approach to using
this additional information is to adopt techniques for 3D image
recognition from the natural image literature and adapt them
to the SAR modality. We find SAR ATR performance can be
improved substantially using a multi-view network employing a
backbone architecture known to perform well on SAR ATR and
enhanced with SAR-specific preprocessing and augmentation.

Index Terms—Synthetic Aperture Radar, Automatic Target
Recognition, 3D, Classification, Identification, AI/ML techniques

I. INTRODUCTION

This paper describes an approach to using 3D information
to improve synthetic aperture radar (SAR) automatic target
recognition (ATR). Typically, SAR ATR is done using single-
look data, where a single 2D (range versus cross-range) image
is presented to an algorithm for a classification call. Modern
data collection systems have increasing ability to georegister
data, which means that it is straightforward to identify multiple
looks at a single unknown object on the ground and provide
an algorithm with far more than a single look at a target before
requiring classification. This ability promises to dramatically
improve classification performance – not only due to averaging
random instantiations, but also stemming from the fact that
different collection geometries will reveal different target
features.

There is a large body of related research in the natural image
domain (also referred to as the electro-optical, or EO domain)
which aims to exploit the 3D structure of objects for improved
classification. Qi [1] divides deep learning-based 3D ATR
methods into two categories: view-based and model-based.
View-based methods classify a 3D shape given a collection of
2D projections (“views” or “images”), whereas model-based
approaches use a direct 3D representation of the object such
as a point cloud [2], voxel grid [3], or mesh [4].

We find a view-based approach appealing for SAR ATR for
two reasons: first, the radar community has compiled large
datasets of collected and simulated 2D SAR images (e.g.,
MSTAR [5] and SAMPLE [6]); second, the EO literature
has found [7] that building classifiers of 3D objects from 2D

image projections provides superior generalization over direct
3D (voxel, points) representations, likely due to the maturity
of convolutional neural network (CNN) algorithms on the 2D
image classification problem.

The MVCNN (Multi-view CNN) algorithm [8] is a seminal
work describing a view-based CNN for multi-look classi-
fication. The method was originally demonstrated on the
ModelNet [9] dataset, a standard challenge problem in 3D
EO classification. MVCNN employs a backbone 2D image
classification network and partitions it into the first N1 layers,
which extract features from individual views, and the final N2

layers, which output a class prediction given the aggregated
features from the set of all views. The features extracted from
each view are aggregated by a view-pooling layer (i.e., max-
pooling over the view dimension) before being passed to the
final set of layers. One obvious approach to combining views
is to simply average the class scores predicted for each view by
a 2D CNN. MVCNN improves upon this naı̈ve method with
view-pooling and additional trainable weights after the view-
pooling layer, as these provide the ability to select features
from only the most informative views and learn from the
dependencies across a full set of views.

Other methods [10]–[12] are analogous to MVCNN in that
they utilize a backbone network and then later combine the
individually extracted features. They are distinguished from
MVCNN in that they typically group the individual view
features using more sophisticated methods than view-pooling.
In particular, view-GCN [13] represents multiple views using a
view graph defined by the look angle of each view. It combines
single-view features via local and non-local graph convolution
and selective view sampling, which explicitly consider the
spatial relationship between views and discriminability of
individual views.

SAR imagery collected from airborne platforms will typ-
ically be unevenly spaced in azimuth and elevation, includ-
ing gaps in coverage. While view-GCN’s view aggregation
carefully considers spatial relationships among views and can
therefore prevent some of the information loss possible with
MVCNN’s harsher max-pooling aggregation, view-GCN is
highly dependent on view order and geometric configuration
whereas MVCNN is totally flexible. Thus, we expect MVCNN
to perform better on multi-view SAR data with variable sensor
geometry and have chosen to use it here. We have elected to
use the AConvNets [14] model as our backbone due to its
robust performance on 2D SAR datasets, and as such refer to
our approach as MVAConvNets.



Fig. 1. The multi-view CNN approach to SAR ATR, adapted from [8]. The network operates as follows. First, the collection platform forms SAR imagery
of a target at multiple views. Next, features are extracted from each view using a backbone single-image CNN block. Finally, the single-view features are
pooled and passed through a multi-view CNN block to generate a classification call.

The rest of this paper proceeds as follows. First, Section
II describes our technical approach, which is to adopt the
MVCNN framework, combine it with a backbone architecture
shown to work well on SAR problems, and layer in SAR
domain-specific data preprocessing and data augmentations.
Next, Section III describes a set of experiments which train
on synthetic data and test on collected data. These experiments
illustrate the utility of multi-view SAR ATR as well as explore
the space of parameters that must be selected to instantiate
the algorithm. Finally, Section V summarizes results and
concludes the paper.

II. TECHNICAL APPROACH

This section describes our technical approach to combining
multiple SAR views into a single classifier. We start with the
MVCNN architecture, which we briefly outline in subsection
II-A. Subsection II-B lays out how we use the AconvNets [14]
model as our backbone network as it has been shown to work
well with single-view SAR ATR data. Finally, subsection II-C
describes the mechanisms we use for training the classifier
which respect the unique characteristics of SAR data.

A. Overview of MVCNN

The Multi-view Convolutional Neural Network (MVCNN)
algorithm [8] combines multiple 2D projections (“views”) of
an object using a two-stage process. The first stage operates
on single views, utilizing the first N1 layers of a backbone
network to extract features from individual images. In this
stage, the same CNN layer weights are applied to all views.
Individual view features are then combined with an element-
wise max pooling step across the views. Finally, the pooled
features are sent through the remaining CNN layers, which
produce an output classification call on the collection of
images. In our implementation, we use all but the last layer
of AConvNets for feature extraction, and the final layer for
classification after view-pooling. We also investigated the
effect of performing view-pooling at earlier layers, but we saw

empirically that performance was not very sensitive to where
view-pooling was done.

We train the algorithm using purely synthetic data and
test it using collected data. Training occurs in two stages.
First, all layers of the backbone network are trained using
a large collection of simulated single-image data using the
ordinary approach to training single-view CNNs. Next, a view-
pooling layer is inserted between the first N1 layers and
final N2 layers of the backbone network, and the training
process is resumed on groups of multiple views. We allow
all weights to be updated in the second stage of training.
Our nominal configuration is to use 12 views at a common
elevation spaced 30◦ apart, but we perform trade studies
varying these parameters later. We have also found it useful to
add noise to the azimuth angles used in each view (i.e., to use
azimuth angles that differ a bit from the nominal ones) and
to perform dropout on entire view feature vectors prior to the
view-pooling layer; we hypothesize that these augmentations
add robustness when collected datasets have uneven angular
spacing and missing views or views with poor discriminability.

At test time, the fully trained network operates on groups
of collected images. Figure 1 is an illustration, adapted from
[8], which graphically describes how set of images from
a collection is classified. First, N image views are formed
from the aperture flown by the sensor. Next, each image
view is passed through the single-image CNN block, and
those features are combined at the view-pooling step. Finally,
the multi-image CNN block uses these inputs to make a
classification call.

B. Backbone Network

Before combining views, the multi-view approach derives
features from a CNN for each view which is referred to as the
“backbone” network. In the EO multi-view literature some of
the backbone networks used include VGG [15] and ResNet
[16], [17]. These were selected because they perform well
on the single-image EO classification problem. We elected



to use the AConvNets architecture [14] for our models.
AConvNets has shown excellent performance on single-view
collected SAR data [14], [18], [19]. The network is trained
using the cross-entropy loss with softmax activation and the
ADADELTA optimizer.

C. SAR-Specific Data Treatment

Most multi-view (and even single-view) deep learning tech-
niques in the literature are applied to EO data. As such, the
large body of published deep learning algorithms typically
include preprocessing and data augmentation steps tailored
to EO. The SAR modality has a number of properties that
differentiate it from EO which must be addressed in the
algorithm design for a robust, high-performing network. These
factors are of particular importance when using synthetic
training data. We briefly review the factors and our approach
here.

Preprocessing: Preprocessing refers to a manipulation of
the input data which standardizes the input stream and changes
the scale to allow a network to more easily learn features from
the data.

As EO data is 3-channel (RGB) with features that are
meaningfully captured on a linear scale, EO networks pre-
process data with this in mind. Popular approaches to EO
preprocessing include linear scaling from 0 to 1 [20], zero-
centering and scaling between 0 and 255 [16], and scaling
between −1 and 1 [21].

In contrast, SAR data has a dramatically larger range
of pixel values, typically spanning four or five decades.
Therefore, learning algorithms using SAR data benefit from
preprocessing which prevents a small number of pixels from
dominating, while still maintaining the descriptive information
of all pixels. Researchers have applied a number of methods
in this aim, including binarization [22], quantization [23],
[24], keeping only the top N largest-magnitude pixels [25],
clipping [6], as well as approaches which employ sophisticated
morphological operations and speckle reduction [26].

We have elected to use a quantization approach [27], where
we keep the top 400 pixels and quantize the data into 6 levels.

Data Augmentation: Data augmentation is an approach
where training samples are randomly perturbed to produce
additional samples which reflect the variation expected at test
time. This is well-known to increase robustness in the learned
model.

EO data augmentation includes image translations, rota-
tions, and scaling to model the fact that similar images
at different angles and scale factors should be identically
classified. In addition, EO data can be augmented with noise
modeled to match what would be seen in the imaging plane.

One property of SAR that differentiates it from EO is
that it is not invariant under rotation. In contrast to optical
images, which can be rotated arbitrarily and produce realistic
images, SAR images must respect the illumination direction.
This stems from the fact that though EO data can be well-
modeled as diffuse scattering, meaning that the reflected
energy is roughly independent of the illumination direction

(from the sun or other light source), SAR data exhibits specular
scattering, meaning the reflected signal is strongly dependent
on the direction of the transmitted signal. Therefore, SAR
data cannot be simply rotated or stretched to produce realistic
additional samples. Furthermore, noise and clutter in the SAR
modality is best modeled as Rayleigh or Weibull, rather
than Gaussian. Finally, various timing and positioning errors
manifest themselves in phase errors which are best modeled
in complex-valued imagery.

With this as background, we perform the following SAR-
specific steps [28] in our data augmentation at training time:
we add random quadratic phase error of maximum magnitude
150◦, add Rayleigh noise to achieve a 0 dB target to clutter
ratio, randomly select 400 of the top 600 pixels to preprocess
and zero the rest, randomly swap adjacent pixels with proba-
bility 0.08, and randomly perturb the image azimuth by up to
one-tenth of the azimuth spacing between views.

III. RESULTS

This section describes a set of experiments with MVACon-
vNets to demonstrate improved performance by combining
multiple image views.

We performed experiments using two datasets: (i) the
Moving and Stationary Target Acquisition and Recognition
(MSTAR) [5] collected data coupled with a synthetic dataset
we generated using CAD models and ray-tracing software,
and (ii) the Synthetic and Measured Paired and Labeled Ex-
periment (SAMPLE) dataset [6], a set of paired collected and
synthetic data released by the Air Force Research Laboratory
(AFRL). We first describe the training and testing data, and
then move to the experiment and its results.

A. MSTAR Dataset

The MSTAR [5] dataset is a publicly available collected
SAR image dataset widely used in the ATR literature. It
contains 10 classes of military vehicles: the 2S1, BMP-2,
BRDM-2, BTR-60, BTR-70, T-62, T-72, Caterpillar D7, and
ZSU 23/4. All images are “chips” of target-centered data of
size 128× 128. It is common to partition the MSTAR dataset
into a set of chips collected at approximately 17◦ elevation
(“MSTAR-17”), and a set of chips collected at approximately
15◦ elevation (“MSTAR-15”); then, a classification algorithm
can be trained on the MSTAR-17 data and tested on the
MSTAR-15 data. We have found that the similarity of these
two datasets leads to an overly optimistic evaluation of per-
formance when training on one and testing on the other, so
in this work we have opted to use a synthetically generated
dataset for training instead. We evaluate the performance on
the 3203 collected chips from the MSTAR-15 dataset.

The synthetic SAR dataset we use for training was generated
using a 3D CAD model of each MSTAR target via asymptotic
ray-tracing methods. The data was generated at HH polariza-
tion, 15◦ elevation, and X-band with enough bandwidth to
achieve comparable resolution to the collected MSTAR data.
We synthesized data from all 360◦ of azimuth at 1◦ spacing.



B. SAMPLE Dataset

The Synthetic and Measured Paired and Labeled Experi-
ment (SAMPLE) dataset [6] is a related SAR dataset recently
released by the Air Force Research Laboratory (AFRL). SAM-
PLE includes a publicly available SAR dataset that consists of
10 target classes of collected data from the MSTAR flight test
[5] and a matching set of synthetic data created by AFRL. All
images are “chips” of target-centered data of size 128× 128.
The synthetic data is created using CAD models of the target
chips and a ray-tracing approach to provide a fully synthetic
set that matches the collected chips in azimuth, elevation, and
target mode.

We use the synthetic set as training chips and the collected
set as validation chips as is typically done in the literature
[29]. In addition, we have elected to divide the synthetic and
collected sets in accordance with [30], where the training
data comes from elevations 14◦ − 16◦ and the test data is at
17◦ elevation. The publicly released SAMPLE dataset restricts
azimuth to between approximately 10◦ and 80◦ azimuth. As
a result, there are far fewer test chips in the dataset, which
contains a total of 806 training chips and 539 test chips.

IV. EXPERIMENTS

We first show the results of an experiment using MVA-
ConvNets with the MSTAR dataset. We ran the first (i.e.,
single-view) stage of training for 25 epochs using individual
synthetic images. We determined empirically that this was
enough epochs for the training set accuracy to nearly reach
its peak without overfitting. At each epoch, we recorded the
performance of the trained model against the collected test set.
After the single-image network was fully trained, we trained
the second stage network, which combines Nviews images
together for classification, for an additional 25 epochs. The
network was evaluated on the test set using collections of
Nviews chips of the same target with adjacent views spaced
∆Az degrees apart. Since the test set is not perfectly spaced
in azimuth, we simply took the closest image to the desired
angle. Figure 2 shows the performance of the synthetically-
trained network against the collected data at each epoch in
each training stage. This is our baseline configuration with
Nviews = 12 and ∆Az = 30◦. We ran the experiment 50
times and show one standard deviation error bars around the
mean performance.

An important aspect of MVAConvNets’ performance is its
dependence on the number of views and the azimuth spacing
between each view. We expect multiple views to be helpful
for two reasons: (1) even in the limiting case where views
are nearly at the same angle, multiple views can help make
more accurate predictions by reducing variance in a statistical
sense; and (2) in the case where views are spaced far apart, the
geometric diversity of the view collection aids prediction by
providing additional information (though the effect of variance
reduction may be less pronounced as combining views is less
like averaging). Figures 3 and 4 show performance when the
azimuth spacing is reduced (Figure 3) and when both the
azimuth spacing and number of views is reduced (Figure 4).

Fig. 2. The performance of MVAConvNets on the MSTAR synthetic vs. real
experiment using baseline parameters (Nviews = 12,∆Az = 30◦). The
solid lines show mean performance, and the dashed lines show the standard
deviation. There are 50 trials. The first stage trains the single view algorithm. It
asymptotes to approximately 70% probability of correct classification (PCC).
The second stage aggregates over views, reaching more than 95% PCC.

Fig. 3. The performance of MVAConvNets on the MSTAR synthetic vs. real
experiment with 12 views as in the baseline but only using a 5◦ spacing of
the views (Nviews = 12,∆Az = 5◦). We find the multi-image performance
below 90%, approximately 6 points below the baseline.

Fig. 4. The performance of MVAConvNets on the MSTAR synthetic vs. real
experiment with 8 views, spaced 5◦ apart (Nviews = 8,∆Az = 5◦). The
multi-image performance is just over 80%.

Figure 5 shows a grid search study of the performance
of MVAConvNets versus the azimuth spacing and number of
views, again averaged over 50 trials. We find that performance
improves with more views and larger spacing between views.
While this is intuitive, the figure is mainly useful for perfor-
mance prediction, where an operator knows how many looks
were collected and the azimuth spacing and can then predict



Fig. 5. The multi-image performance versus number of views and the spacing
between views on the MSTAR synthetic vs. real experiment. The values in
each cell are the test set correct classification probability, averaged over the
final 25 training epochs. Broadly speaking, performance improves with more
views and larger spacing between views.

in advance the utility of the algorithm. It is worth noting
that even the view configuration with the least geometric
diversity (Nviews = 4,∆Az = 2◦) yields a performance
improvement over the baseline single-view CNN (see the
single-view training curves in Figures 2 through 4).

A natural question arises as to whether algorithm perfor-
mance simply depends on the azimuth span of the collected
data (i.e., Nviews · ∆Az). Figure 6 is a plot of classification
performance versus total azimuth span, with curves for dif-
ferent numbers of views. It shows that the dominant factor in
performance is in fact total azimuth span of the test set. A
secondary effect is that generally speaking for a fixed total
azimuth span, more looks are better.

Fig. 6. Mean performance (PCC) on the MSTAR synthetic vs. real experiment
over 50 Monte Carlo trials and the last 25 training epochs, versus total azimuth
span (i.e., Nviews ·∆Az). Each curve is for a different Nviews. In general,
performance improves as azimuth span increases, and as Nviews increases
for a fixed azimuth span.

It is important that our multi-view approach continues to
perform acceptably when the data is not collected at a regularly

spaced set of angles. Since we train on synthetic data, we
continue to assume the training set has data at every 1◦ in
azimuth as described in Section III-A. However, we now
assume the test data has no such regularity. We selected 36
collected chips from the MSTAR set randomly. This resulted
in chips with random azimuth gaps. On average, the spacing is
10◦, but in practice we find gaps as large as 30◦. We executed
our trained algorithm on this new randomly thinned dataset
and show the results in Figure 7. We find the performance
on this set with non-uniform angles is similar to the fully
populated dataset. There is a small performance reduction at
low azimuth span.

Fig. 7. Mean performance (PCC) on the MSTAR synthetic vs. real experiment
over 50 Monte Carlo trials and the last 25 training epochs, versus total azimuth
span (i.e., Nviews ·∆Az) with a test dataset that has random gaps in azimuth
spacing. The network performance is similar to the regularly spaced test data.

We performed a similar experiment using the SAMPLE
dataset. The results are shown in Figures 8 and 9. Broadly
speaking, we find similar behavior – performance improves
with total azimuth extent, and for a fixed total azimuth extent
more views are better. However, due to the limited azimuthal
extent (10◦ to 80◦) of the publicly released SAMPLE data and
uneven number of samples at each azimuth we do not find an
exactly monotonic relationship.

V. CONCLUSION

This paper described an approach to using 3D information
for improved Synthetic Aperture Radar (SAR) Automatic Tar-
get Recognition (ATR). Our approach is inspired by multi-look
networks developed for natural images, but also incorporates
some SAR domain-specific components to specialize to the
radar modality. We adopt a two-stage multi-view approach,
where first a backbone network is trained on single image
features, then these features are combined via view-pooling,
and the final layers use the multi-input features to perform
classification in the second stage. In experiments which use
synthetic training data and collected test data, we find a
substantial improvement in target classification performance
using the multi-view network.



Fig. 8. The multi-image performance versus number of views and the spacing
between views on the SAMPLE experiment. The values in each cell are the
test set correct classification probability, averaged over the final 25 training
epochs. Because of the limited azimuth extent (i.e., 10◦ to 80◦) in the
SAMPLE dataset, some (Nviews,∆Az) combinations could not be tested.

Fig. 9. Mean performance (PCC) of MVAConvNets over 50 Monte Carlo
trials and the last 25 training epochs, versus total azimuth span (i.e., Nviews ·
∆Az) of the views for the SAMPLE dataset.
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