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ABSTRACT  

Attempts to use synthetic data to augment measured data for improved synthetic aperture radar (SAR) automatic target 
recognition (ATR) performance have been hampered by domain mismatch between datasets. Past work which leveraged 
synthetic data in a transfer learning framework has been successful but was primarily focused on transferring generic SAR 
features. Recently SAMPLE, a paired synthetic and measured dataset was introduced to the SAR community, enabling 
demonstration of good ATR performance using 100% synthetic data. In this work, we examine how to leverage synthetic 
data and measured data to boost ATR using transfer learning. The synthetic dataset corresponds to the MSTAR 15୭ dataset. 
We demonstrate that high quality synthetic data can enhance ATR performance even when substantial measured data is 
available, and that synthetic data can reduce measured data requirements by over 50% while maintaining classification 
accuracy. 

Keywords: transfer learning, synthetic aperture radar, automatic target recognition, MSTAR dataset, SAMPLE dataset, 
deep learning  

1. INTRODUCTION 

Synthetic aperture radar (SAR) automatic target recognition (ATR) is often limited by the availability of labeled measured 
data. Off-the-shelf networks trained on measured electro-optical (EO) imagery fail to generalize straightforwardly to SAR 
due to the significant differences in imaging characteristics between domains, with SAR imagery having significantly 
higher sparsity and dynamic range. An alternative data source supplementing measured data is synthetically generated 
data. Synthetic data is attractive since SAR data is expensive to collect, and the significant performance gains allowed by 
ATR based on convolutional neural networks (CNN) require large training datasets [1]. 

Early SAR transfer learning (TL) experiments leveraged unlabeled data to improve ATR performance [2]. Later work 
demonstrated performance improvements combining synthetic data with the same classes as the measured data, but 
training with synthetic data alone yielded poor performance [3]. The SAMPLE dataset made high quality paired synthetic 
and measured data available [4], which enabled very good (>90%) ATR performance using 100% synthetic data [5]. This 
excellent performance on purely synthetic data motivates the present work, which investigates how transfer learning can 
be used to further improve SAR ATR performance when the simulated data fidelity is high. Prior transfer learning 
experiments used well matched classes of MSTAR targets [6] and SAMPLE targets [7], but did not demonstrate the 
effectiveness of transfer learning as a function of the quantity of measured data, or perform studies as to when transfer 
learning on these SAR datasets is most effective. In this work we demonstrate substantial performance gains of >10% 
absolute performance improvement when 10% of measured MSTAR data is available for training, using a synthetic dataset 
created to correspond to MSTAR. For comparison, we examine experiments where the synthetic dataset is not well-
matched to the validation set, and while we still observe performance improvements when transferring to limited measured 
data, they are less substantial than the well-matched synthetic data case, suggesting class specific features can be 
successfully transferred. 

This paper is organized as follows. First, Section 2 describes the experiments performed in this study. Section 3 describes 
the effect of freezing layers in a transfer learning experiment. In Section 4, we provide experiment results comparing 
classification performance of TL against the performance with a single training stage. Finally, Section 5 provides 
conclusions from this effort. 



 

 

 
 

  

 

2. SAR ATR EXPERIMENT APPROACH 

2.1 ATR Framework 

Our experiments use a SAR ATR test harness to evaluate ATR algorithms and transfer learning capabilities. The harness 
includes implementations of more than a dozen deep learning models from the literature (including AConvNets, DenseNet, 
ResNet, Inception, EfficientNet and their variants) [8]. Multiple data preprocessing approaches (such as scaling, 
quantization, and clipping) and data augmentation strategies are also available. The testbed interfaces with several standard 
and user-defined datasets, including the MSTAR [9] and SAMPLE [4] datasets. The testbed is configurable to allow any 
network architecture to be trained with any dataset using any combination of preprocessing and augmentation methods 
and validated against any other dataset. We have used this test setup to systematically evaluate the impact of each portion 
of the ATR algorithm on classification performance.  

We have found that SAR ATR performs well with the following settings which we use to obtain the results presented in 
this paper: 

 Data preprocessing: Select the top 𝑁 = 500 pixels in magnitude to form the image and normalize by the 
maximum value.  

 Data augmentation: A random image shift in each pixel dimension is applied to each image during training. This 
provides resilience to targets being off-center in the image. 

 Deep learning network: Network architecture is user defined. We used the AConvNets and DenseNet 
architectures in this paper. 

 Loss function: cross entropy loss. 

Classification performance is measured as the probability of correct classification (PCC) of validation dataset samples, 
which is a number between 0 (completely incorrect classification) and 1 (correct classification for all samples). Typically, 
we run multiple trials for each experiment to provide results showing average performance, reducing variation due to 
independently trained networks and the randomly chosen samples when subsetting the target stage training dataset. 
Classification performance for each experiment is typically reported as the average and standard deviation of the PCC for 
the last 10 epochs of 10 trials (100 performance results). 

 

2.2 SAR Image Datasets 

Our work uses the publicly available MSTAR [9] and SAMPLE [4] datasets. The MSTAR dataset contains 10 target 
classes (2S1, BMP-2, BRDM-2, BTR-60, BTR-70, T-62, T-72, Caterpillar D7, and a ZSU 23/4), and the SAMPLE dataset 
also contains 10 target classes (2S1, BMP-2, M548, M1, BTR-70, T-72, M2, M35, M60, ZSU 23/4). Five target classes 
are present in each dataset and the remaining five classes are unique to each dataset. The two datasets are obtained from 
the same data collection, with some chips of the shared 5 classes identically present in both the MSTAR and SAMPLE 
datasets. Figure 1 plots the azimuth and elevation imaging angles for each dataset, allowing the identical chips to be 
identified. 

The MSTAR dataset is typically binned into images formed at two different elevation angles. The MSTAR datasets are 
termed MSTAR17 for the data measured at elevation angles near 17 degrees, and MSTAR15 for data measured near 15 
degrees.  

Figure 1 shows there are various amounts of overlapping chips between MSTAR and SAMPLE. The SAMPLE dataset 
provides unique chips at elevation angles near 16 degrees but contains a mixture of identical and unique chips at elevation 
angles near 17 degrees depending on the class. Two target classes also contained chips at elevation angles near 15 degrees. 
In the following experiments we removed all chips from the SAMPLE set that were members of the MSTAR15 set. This 
allows us to use MSTAR15 for validation since the network will not be trained on these chips. The angular diversity of 
these publicly available SAR datasets allows evaluation of transfer learning utility to ATR performance improvement.  

Synthetic data was generated using asymptotic ray-tracing techniques from 3D CAD models of the MSTAR targets. The 
data was simulated at X-band, with bandwidth and aperture chosen to achieve 1 foot resolution. The image chips were 
then formed by backprojection of the synthetic data at 1 degree increments in azimuth at 15 degrees elevation for each of 
the 10 targets using HH, HV, VH, and VV polarizations, yielding 1440 synthetic chips per target class. 



 

 

 
 

  

 

 

2.3 Transfer Learning Methodology 

Transfer Learning is a method of transferring knowledge gained by training a network on an initial (“source”) dataset and 
applying it to a separate related problem (the “targeted” dataset) [10]. Knowledge transfer is performed by initializing 
network weights during the target dataset training stage with those learned from the source training.  

Our transfer learning studies have the general form of: (i) training on a large amount of synthetic data in the source stage 
and then (ii) using various amounts of measured training data to continue training the network parameters in the target 
stage. Classification performance of the network is validated with a separate measured dataset. Typically, the measured 
training and validation datasets contain the same target classes, but the source-stage synthetic training dataset may contain 
different target classes from the measured datasets. 

We used two architectures, AConvNets [11] and DenseNet [12], in our transfer learning studies. Transfer learning also 
allows “freezing” (preventing updates) some or all the learned weights before training with a second set of data. Different 
layers within the network can be frozen in the second training stage, we describe this approach using the AConvNets 
architecture shown Figure 2. As illustrated, there are five separate places where layer freezing may have utility in the 
AConvNets architecture. For each location, layers between the input image and the given location are frozen. 

 

 

Figure 2: The AConvNets network architecture and potential freeze locations. Figure adapted from [11]. 

 

Figure 1: Azimuth and elevation angles of target chips for the shared target classes in the MSTAR and SAMPLE datasets. 
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3. LAYER FREEZING DURING TRANSFER LEARNING 

In this section, we briefly study the effect that freezing network layers between training stages has on the overall transfer 
learning classification performance. When a layer is frozen, the network weights in the layer are not updated during the 
next training stage. This prevents these layers from learning during the subsequent training stage. Since different parts of 
the network learn different features, freezing layers prevents these learned features from changing due to additional training 
data. 

Different configurations of frozen layers are applied during repeated instances of a transfer learning experiment to identify 
the resulting change in PCC performance. AConvNets is used for this purpose and consists of a sequence of five 
convolutional and pooling layers. Figure 2 displays the network architecture. This provides several locations to freeze 
layers between transfer learning stages, identified as locations 1-5. Layers between the input image and the chosen location 
are frozen.  

A series of experiments were performed to evaluate the performance impact of freezing layers during the transfer learning 
process. Locations 2, 3, and 4 were chosen to freeze to. Each trial was trained for 50 epochs on the entire synthetic 
MSTAR15 data, then for 50 epochs on a random subset of the measured MSTAR17 dataset. The network was validated 
against measured MSTAR15. In this case, the target and source stage training datasets are a high-quality match to the 
validation dataset in terms of target class and imaging parameters. Five trials were performed for each experiment, with 
performance statistics gathered over the last ten epochs of each trial. Figure 3 shows the results as a box plot of PCC 
performance as a function of frozen layers and target training stage set size. 

As seen in Figure 3, there is a slight performance boost when freezing layers to locations 4 and 3 when training with 5%-
10% of the target stage MSTAR17 dataset. However, as more measured data is used in the target training stage it becomes 
more advantageous to freeze no layers (allow the entire network to continue to train). Freezing most of the network (to 
location 2) provides the lowest performance, which is expected since the network cannot adequately learn from the 
available high-quality measured MSTAR17 training data.  

In general, this experiment shows that freezing a few early network layers provides a performance improvement when the 
synthetic source stage dataset is well-matched to the measured validation dataset and there is a small quantity of measured 
target training stage data available. Otherwise, it is advantageous to not freeze the network, allowing it to continue fully 
learning on the target stage training set. Similar results related to layer freezing are also obtained in [13]. Therefore, no 
layers are frozen in the subsequent transfer learning experiments. 

 

 
Figure 3: Frozen layers performance when training on MSTAR 15 synthetic transferring to MSTAR 17 measured and validating 
with MSTAR 15 measured. 

 



 

 

 
 

  

 

4. TRANSFER LEARNING STUDIES  

This section describes a series of transfer learning experiments using different training datasets and details the resulting 
classification performance. Our focus is to assess the performance of TL techniques with synthetic datasets that both match 
and mismatch the target classes relative to the measured datasets. The general structure of these experiments is to initially 
train on a large synthetic image dataset (source training stage) for 100 epochs, then transfer the network to a target training 
stage where training is performed with a measured image dataset. The network is validated against a separate measured 
image dataset. 

Classification performance dependence on the measured training set size is examined through multiple executions of each 
TL experiment. For each execution a subset of the measured training dataset is randomly chosen for target stage training. 
Doing so allows characterizing the improvement of classification performance attributable to the transfer learning process 
with various quantities of measured training data. 

A function fit was performed to the average PCC of 10 independent trials to approximate performance when using between 
5% and 100% of the target training stage measured data. The function used to fit this data is given by equation 

𝑓(𝑠, 𝑥ଵ, … , 𝑥଺) = 𝑥ଵ𝑒
ି|௫మ|௦ + 𝑥ଷ𝑒

ି|௫ర|௦ + 𝑥ହ𝑒
ି|௫ల|௦                                                 (1) 

where 𝑠 is the subset fraction of the target stage training dataset. Coefficients 𝑥ଵ, … , 𝑥଺ were optimized to best match the 
function to the mean performance of the experiments. The standard deviation for the curve is identified as a transparent 
background around the average function-fit performance. Two curves are generated for each experiment set: 1) baseline 
performance where the network is only trained on a subset of the measured training data set samples, and 2) transfer 
learning performance where the network is trained on synthetic data for 100 epochs then transferred to continue training 
with the same subset fraction of measured training data as in the baseline performance case. Training with measured data 
was performed for more than 200 epoch to ensure the network completely learned from the measured training set. 

 

4.1 Same Target Classes 

In this section, we examine TL when the synthetic training dataset contains the same target classes as in the measured 
datasets and is therefore well-matched to the measured datasets. Separate experiments were performed which use different 
combinations of MSTAR and SAMPLE in the synthetic source stage and measured target stage, but the same validation 
dataset. Table 1 summarizes the datasets used for each experiment. Note that experiments involving both MSTAR and 
SAMPLE (experiments 2a-2e) only use the shared 5 classes (BMP, BTR70, T72, ZSU) and chips with an azimuth between 
280 and 351 degrees due to the limitations of the Public SAMPLE dataset. 

Table 1: Datasets used for TL experiments with the same target classes. 

Exp. 
Source Stage Training 

Set (Synthetic) 
Target Stage Training 

Set (Measured) 
Validation Set 

(Measured) 
Number of Target 

Classes 

1 MSTAR 15 MSTAR 17 MSTAR 15 10 

2a MSTAR 15 MSTAR 17 MSTAR 15 5 

2b MSTAR 15 SAMPLE16/17 MSTAR 15 5 

2c MSTAR15 SAMPLE16 MSTAR15 5 

2d SAMPLE SAMPLE16/17 MSTAR15 5 

2e SAMPLE MSTAR17 MSTAR15 5 

 

The first experiment trains using the synthetic MSTAR15 data set in the source stage, the measured MSTAR17 data set in 
the target stage, and validates against the measured MSTAR15 data set. Figure 4 and Figure 5 display the classification 
PCC performance for AConvNets and DenseNet. Transfer learning provides a PCC increase for each randomly selected 
subset size of the target stage training data. The PCC increase is much larger when using a small amount of measured 
training data than for cases with many training data training samples.  



 

 

 
 

  

 

The transfer learning experiments in Figure 4 demonstrate that transfer learning using synthetic data allows for a 50% or 
more reduction in measured data while maintaining classification performance. For example, training with synthetic data 
and 10% of the MSTAR17 dataset yields equivalent performance to training with only 20% of the MSTAR17 dataset. 
This shows that the measured MSTAR17 data is very well matched to the measured MSTAR15 validation set and will 
dominate the classification performance of the trained network. Since both MSTAR datasets were obtained during the 
same collection with the same physical target vehicles, it is expected that the datasets would closely match in both target 
signature and background clutter. 

The second set of experiments examines scenarios where the training datasets are not as well-matched to the measured 
validation data set. This series of experiments uses SAMPLE training datasets that are a poorer match to the measured 
MSTAR15 validation dataset to demonstrate the impact of transfer learning with synthetic data.  

Figure 6 displays the classification performance for each transfer learning scenario, where the AConvNets network 
architecture was used. Experiment 2a is the highest-fidelity training data match to the validation dataset, where each stage 
utilizes MSTAR data. Transfer learning provides a performance increase when few measured training chips are used, but 
a much smaller benefit when a larger amount of measured MSTAR15 data is trained with. These results match those of 
experiment 1 since the same data was used. 

Experiments 2b-2d each train with the measured SAMPLE dataset during the target training stage. As seen in Figure 6, 
the average PCC of each baseline case is about 0.85, suggesting that the measured Public SAMPLE dataset is not as well 
matched to MSTAR15 as compared to MSTAR17. Experiments 2b-2c both train with synthetic MSTAR15 during the 
source stage, leading to a large classification performance improvement. Experiment 2d trains with synthetic SAMPLE 
during the source stage, which leads to a slight performance improvement, smaller than observed for experiments 2b-2c. 
In all cases, initial training with synthetic data via transfer learning helps alleviate the dataset mismatch problem and leads 
to better performance regardless of the number of measured training samples used.  

Experiment 2e demonstrates it is possible to obtain significantly increased performance transfer learning from a synthetic 
to a measured dataset as compared to training on either of those datasets individually, shown using publicly available 
MSTAR and SAMPLE datasets. Training using synthetic SAMPLE data from [4] we found 64.4% PCC validating on 
MSTAR15, and 77.2% when training on ~45 measured MSTAR17 chips, but 90.6% PCC when using these two training 
datasets together with transfer learning.  

 
Figure 4: Transfer learning experiment results when training 
on synthetic MSTAR15, transferring to measured 
MSTAR17, and validating with measured MSTAR 15. The 
AConvNets architecture was used. 

 
Figure 5: Transfer learning experiment results when training 
on synthetic MSTAR15, transferring to measured MSTAR17, 
and validating with measured MSTAR 15. The DenseNet 
architecture was used. 
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The results from the transfer learning experiments performed in this section are summarized into a few main conclusions. 
First, transfer learning leads to PCC improvement for all amounts of measured training stage data but provides the most 
improvement when small amounts of measured data are available to finish training. Second, performance improvement 
due to transfer learning is increased when the source dataset is well matched to the validation dataset. Finally, transfer 
learning performance improvement is large when measured training data is not as well-matched to the validation data as 
compared to the synthetic data (red and yellow curved of Figure 6), and in this case the performance benefit of transfer 
learning persists even when larger quantities of measured data is available. 

 

4.2 Different Target Classes 

In this section, the synthetic dataset used in the transfer learning experiment does not contain target classes present in the 
measured datasets (target classes are disjoint). We perform a transfer learning experiment where the synthetic dataset 
contains MSTAR target classes disjoint from the validation set. This experiment trains using the synthetic MSTAR 15 
dataset (classes: 2S1, BMP, BTR70, T72, ZSU) in the source stage, the measured MSTAR 17 dataset (Classes: BRDM, 
BTR60, D7, T62, ZIL) in the target stage, and validates against the measured MSTAR 15 dataset (Classes: BRDM, BTR60, 
D7, T62, ZIL). The synthetic dataset contains samples from a disjoint class set compared to the classes contained in the 
measured datasets.  

Figure 7 and Figure 8 display the classification PCC performance using AConvNets and DenseNet. Transfer learning 
provides a slight PCC increase compared to the baseline network trained only on the subset of the measured training set. 
Note that using only synthetic data during training (zero measured training samples used in the target training stage) results 
in a PCC that is very low since none of the synthetic training data samples represent classes contained in the measured 
datasets. This causes the network to misclassify the validation dataset. As more measured training data (which contains 
the desired target classes) is used in the transfer learning experiment, the PCC rapidly increases. 

Overall, transfer learning from synthetic data of disjoint classes can be beneficial, with consistent modest performance 
benefit. This is due to the synthetic training set only containing disjoint target classes so only generic SAR features are 
transferrable and becomes apparent when comparing to the results in Section 4.1 where class specific features are 
transferred. 

 

 
Figure 6: TL experiments involving both MSTAR and SAMPLE datasets. The legend lists datasets as (synthetic source training 
set)-(measured target training set)-(measured validation set). Solid lines represent the case of training with only measured data 
and dashed lines are the TL case. Network is AConvNets. 
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Figure 7 Transfer learning experiment results when training on 
synthetic MSTAR15 (disjoint), transferring to measured 
MSTAR 17, and validating with MSTAR15. The AConvNets 
architecture was used. 

 

Figure 8 Transfer learning experiment results when training 
on synthetic MSTAR15 (disjoint), transferring to measured 
MSTAR 17, and validating with MSTAR15. The DenseNet 
architecture was used. 

5. CONCLUSION 

The good ATR performance training using 100% synthetic data corresponding to the SAMPLE and MSTAR datasets 
demonstrates that networks trained on synthetic data can learn class specific features. We see that the absolute performance 
gains from transfer learning when minimal measured data is available are much larger when the source dataset shares the 
same classes and imaging parameters as the validation set, supporting that class specific information is transferrable.  

When measured data is scarce (i.e. <50 chips per class for a 10 class experiment) it can be useful to freeze layer weights 
when transferring, however, when more data is available performance is improved by letting all weights fine tune. We 
show the benefit of transfer learning persists across different network architectures. When synthetic data is plentiful and 
measured data is scarce, the benefits of transfer learning may be increased for deeper networks as suggested by our results 
on AConvNets as compared to DenseNet, but this merits further study.  

Transfer learning leads to the largest performance improvements when available measured data is scarce, relatively less 
well matched to the validation data, and when the synthetic data is well matched to the validation dataset. We show it is 
possible to achieve significantly improved performance (>13% absolute PCC increase to over 90% PCC) using transfer 
learning from a synthetic to a measured dataset relative to training on these datasets individually using the publicly 
available synthetic SAMPLE and measured MSTAR datasets. Transfer learning from plentiful class matched synthetic 
data can allow 50% or more reduction in measured data requirements to achieve equivalent performance. 
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