Chapter 1
Stochastic Control for Cognitive Radar
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Cognitive radar problems involve the selection of actions based on the uncertain
knowledge of a system state that is partially observed through noisy measurements.
This process of sequential decision making under uncertainty can be considered as
a stochastic optimization problem. This chapter explicitly makes the connection be-
tween cognitive radar and stochastic optimization by presenting a framework for de-
scribing cognitive radar problems in terms of stochastic optimization, thereby point-
ing to ways to employ stochastic optimization for designing perception-action cycles
in a cognitive radar.

1.1 Introduction

Cognitive radar problems require the selection of actions based on an uncertain per-
ception that is obtained through inexact measurements. There is a broad variety of
cognitive radar problems that differ in terms of the relevant perception and the types
of actions selected, for example, waveform selection and optimization, measurement
scheduling, resource management, detection, tracking and imaging [1]. A single
radar may in fact comprise several individual perception-actions cycles, spread over
multiple information abstraction levels [2]. Despite their differences, the variety of
cognitive radar problems can be described in terms of a set of similar problem com-
ponents. Consequently, after identifying the problem components, similar method-
ologies can be applied for designing perception-action cycles for a cognitive radar.
Cognitive radar problems can be classed as types of stochastic optimization
problems. Stochastic optimization is a broad term for techniques that perform de-
cision making under uncertainty, which are currently widely deployed in a range of
applications including finance, business, logistics and transportation, and science and
engineering. Stochastic optimization methods seek a policy that exploits models to
map from a perception, which represents all the available information at the current
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2 Next Generation Cognitive Radar Systems

time, into an optimized action. As this policy is essentially a perception-action cycle,
the design of perception-action cycles for cognitive radar can benefit from applying
algorithmic strategies for finding policies from the stochastic optimization field.

There are many communities focusing on stochastic optimization problems,
who have established a wide variety of algorithmic solutions. These stochastic op-
timization communities have conducted research covering techniques and applica-
tions such as decision trees, stochastic search, optimal stopping, optimal control,
(partially observable) Markov decision processes (MDPs/POMDPs), approximate
dynamic programming, reinforcement learning, model predictive control, stochastic
programming, ranking and selection, and multiarmed bandit problems. It has been
shown [3] that these problems can be described in a single stochastic optimization
framework, and the respective solution methodologies can be grouped into just four
classes.

Some of the work in cognitive radar explicitly refers to these stochastic opti-
mization techniques. For example, multiarmed bandits [4], model predictive con-
trol [5], and reinforcement learning [6]. However, for many techniques developed in
cognitive radar, the connection is less clear. The primary contribution of this chapter
is to directly connect the cognitive radar problem with the large body of work done in
stochastic optimization. This connection makes the methodologies developed in the
stochastic optimization communities directly applicable to the cognitive radar prob-
lem, promising to lead to improved methods for designing perception-action cycles
in cognitive radar. This chapter extends our previous work in [7].

1.2 Connection to Earlier Work

Current approaches to cognitive radar build on and can be traced back to earlier work
which was referred to as sensor management [8]. These earlier efforts, while often
applied to radar sensing, were ostensibly agnostic to the sensing modality and as such
addressed the broad problem of determining the best way to task a sensor or group of
sensors when each sensor may have multiple agilities. This section briefly reviews
early work in sensor management to give context and connection to the current state
of cognitive radar research.

Sensor management research frequently focused on the use case of tasking sen-
sors to deduce the kinematic state (e.g., position and velocity) and identification of
a group of targets as well as the number of targets. Applications of sensor man-
agement were often military in nature [9], but also included things such as wireless
networking [10] and robot path planning [11].

Like cognitive radar, one of the main issues sensor management research ad-
dressed is the many competing objectives an automated decision maker may be tuned
to meet, e.g., minimization of track loss, probability of new target detection, mini-
mization of track error/covariance, and identification accuracy. Each of these differ-
ent objectives taken alone may lead to a different sensor allocation strategy [9, 12].
Sensor management work was interested in mechanisms for capturing the trade-off
between these competing objectives to deliver a measurement strategy that effec-
tively addresses all of the objectives.
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Information measures, including entropy reduction, Kullback-Leibler divergence
(KLD) and mutual information, were a popular way of capturing the utility of sensing
actions in foundational sensor management work and as such was explored by a num-
ber of researchers. Hintz [13, 14] did early work using the expected change in Shan-
non entropy when tracking a single target moving in one dimension with Kalman
Filters. A related approach used discrimination gain based on a measure of relative
entropy, the KLD. Schmaedeke and Kastella [15] used the KLD to determine sensor-
to-target taskings. Kastella [16, 17] used KLD to manage a sensor between tracking
and identification mode in the multitarget scenario. Mahler [18] used the KLD as a
metric for “optimal” multisensor multitarget sensor allocation. Zhao [19] compared
several approaches, including simple heuristics and information-based techniques
based on entropy and relative entropy.

For multi-stage planning, sensor management was often formulated as a Par-
tially Observable Markov Decision Process (POMDP) [20,21] and researchers worked
to develop approximate solution techniques. For example, Krishnamurthy [22, 23]
used a multi-arm bandit formulation involving hidden Markov models. In [22], an
optimal algorithm was formulated to track multiple targets with an electronically
scanned array that has a single steerable beam. Since the optimal approach has
prohibitive computational complexity, several suboptimal approximate methods are
given and some simple numerical examples involving a small number of targets mov-
ing among a small number of discrete states are presented. In [23], the problem was
reversed, and a single target was observed by a single sensor from a collection of
sensors. Again, approximate methods were formulated due to the intractability of
the globally optimal solution.

Bertsekas and Castafion [24] did early work where they formulated heuristics
for the solution of a stochastic scheduling problem corresponding to sensor schedul-
ing. They implemented a rollout algorithm based on heuristics to approximate the
solution of the stochastic dynamic programming algorithm. Additionally, Castaiion
[25,26] investigated the problem of classifying a large number of stationary objects
with a multi-mode sensor based on a combination of stochastic dynamic program-
ming and optimization techniques. In [27] Malhotra proposed using reinforcement
learning as an approximate approach to dynamic programming.

Chhetri [28] approached the long-term scheduling problem for a single target
using particle filters and the unscented transform. The method involves drawing
samples from the predicted future distribution and minimizing expected future costs.
This requires enumeration of the exponentially growing number of possible sensing
actions, a very computationally demanding procedure. This is combined with branch
and bound techniques which require some restrictive assumptions on additivity of
costs. In a series of works, Zhao [10, 19,29] investigated sensor management in the
setting of a wireless ad hoc network, which involved long term considerations such
as power management.

With those connections as background, we now turn our attention to laying out
a general framework for describing cognitive radar problems which makes them
amenable to modern solution approaches.
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1.3 Stochastic Optimization Framework

This section presents a framework, inspired by [3] /, which enables cognitive radar
problems to be described in terms of stochastic optimization problems.

1.3.1 General Problem Components

As described in [3], all the problems addressed by the stochastic optimization com-
munities comprise the problem components described in this subsection. The next
subsection shows how these components can be extended for the case when a system
state is partially observed through noisy measurements. As the partially observable
case is more relevant to cognitive radar problems, it is used as the focus for the
remainder of this chapter.

System State - We are interested in the state of a dynamic system, which can
be modelled as a random vector X}, for decision step k. A realisation of the random
vector at decision step k is denoted x; € 2~ where 2 is the system state space.

Actions and Action Space - We can select an action or action vector at each
decision step k, which influences the transition of the system state between time step
kand k+ 1. An instantiation of an action for decision step k is denoted a; € o7 where
7/ is the action space.

Exogenous Information - Additional information is revealed at each sequential
decision step and can, along with previously revealed information, be used as the
basis for the action selection at the current decision step. The information revealed
at each time step is modelled as a random vector Z; and a realisation of this random
vector is denoted z;. For completely observable problems the exogenous information
is the system state.

State Transition Function - Between decision steps the system state evolves
according to a transition function x;.1 = fx (Xg,a,, Wx), where wy is a realisation
of the state transition noise (alternatively termed process noise). Due to the state
transition noise, the transition can be described probabilistically by the transition
probability density p(Xg1|Xg,ax).

Reward Function - At each decision step a reward is encountered, which is
described by the function ry(Xy,ay,Z;11 ). Cost can be handled as a negative reward,
and therefore cost and reward are used interchangeably in this chapter. This objective
function is described in more detail in the following sections.

These common components allow the breadth of stochastic optimization prob-
lems considered by the stochastic optimization communities to be described. Note
that although the system state is completely observable, decision making under un-
certainty is present due to the stochastic state transitions. A perception-action cycle
using these components is illustrated in Figure 1.1.

! Although we adopt the framework in [3], we use the terminology and notation that is established in the
signal processing community.
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Figure 1.1 General perception-action cycle using stochastic optimization
components. The following repetitive steps occur: (1) The system has a
state Xy, which is completely observed as the perception, (2) an action
ay is selected, (3) the system state transitions to Xg1, (4) the system
state Xy is revealed as exogenous information, (5) a reward is
generated.

1.3.2 PFartial Observability

A common aspect of cognitive radar problems is that the system state is only par-
tially observable through noisy measurements. Therefore, uncertainty is not only
present due to stochastic state transitions but also through stochastic measurements.
Consequently, we extend and adapt the components described Section 1.3.1 to the
more specific partially observable case, which results in a framework closely resem-
bling a POMDP.

Measurements and Measurement Space - The exogenous information de-
scribed in Section 1.3.1 can now be thought of as a noisy measurement of the system
state. Now, the random vector Z; can be defined more exactly as a measurement
with realisation z; € 2 where 2 is the measurement space.

Measurement Likelihood Function - Measurements are related to the system
state through the measurement function z; = h(Xy,a,_1,Vy) wWhere vy is a realisa-
tion of the measurement noise. Due to the measurement noise, the measurement
process can be described by the measurement likelihood function .2 (xi|z, ar—1) =
P(2Zk| X, a5-1).

Information State - As the state of the system is not observable, it is necessary
to decide on an action based on the information state. The information state is the
set of actions and measurements that have occurred prior to the current decision step.
The information state for decision step k is denoted .9 = (ag,z1,...,a;_1,2;). This
information state grows with each time step, i.e., % = %1 U (ax_1,%).

Belief State - As the cardinality of the information state grows with each time
step, it is generally undesirable to be used as the perception upon which actions are
decided. Instead, decisions can be based on a belief state. The belief state is a set
of parameters with fixed cardinality that are an (ideally sufficient) statistic of the
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information state. The belief state at decision step k is modelled as a random vector
By, and a realisation of a belief state at decision step k is denoted by. For example,
under linear Gaussian assumptions a sufficient statistic of the information state is the
mean and covariance of the posterior PDF, i.e. p(xx|-%) = p(xk|bx). Typical belief
states are parameters of a Gaussian, a Gaussian sum, or a set of particles. Although
this belief state represents imprecise knowledge on the underlying system state, it
is itself completely observable. Consequently, by treating this belief state as the
system state in Section 1.3.1, a partially observable problem can be handled like a
completely observable problem.

Belief State Transition Function - It is necessary to define a transition func-
tion for belief states, analog to the system state transition function. This transition
function is denoted by 1 = fg(by,a,zrr1). As the belief state can be thought of
as parameters of the posterior PDF p(x|by), the transition function represents the
standard Bayesian prediction and update steps. As a cognitive radar is an observer,
it is often the case that the system state transition is not influenced by the selected
sensing action. However, the belief state transition certainly will be influenced by
the selected action.

Reward Function - A reward function is now defined as a function of the belief
state, i.e. r(by,ay,z;.1). This differs from the reward function described in Section
1.3.1, which was a function of the system state. The reward function maps to the
reward that is associated with the measurement realisation z; | when the belief state
was by and action a; was taken. The next subsection describes specific forms of this
reward function.

A perception-action cycle for the case of a partially observable system state is
illustrated in Figure 1.2. In this figure, a; = A" (by) is the policy function that maps
from belief states to actions. This policy function is described in detail in Section
L.5.

For the remainder of this chapter we will assume a partially observable problem.
However, a completely observable problem can be recovered by substituting the be-
lief state with the observable system state, considering the likelihood function as a
Dirac delta function, and using the state transition function instead of the belief state
transition function.

1.4 Objective Functions for Cognitive Radar

The exact form of the reward function r(by,a,2z;.1) is crucial, as it must accu-
rately represent the physical problem to be solved. Specifying reward functions for
cognitive radar can be loosely categorized into task, information, or utility (quality-
of-service) based approaches. However, the separation between the categories is not
always distinct and existing approaches form more of a continuum.

1.4.1 Task Based Reward Functions

Task based reward functions calculate the cost or reward of an action in terms of a
measure that is specific to the task being performed. Relevant task based metrics
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Figure 1.2 Partially observable perception-action cycle using stochastic
optimization components. The following iterative steps occur: (1) The
system has a state Xy, (2) the perception of the system state is
summarized in a belief state by (3) an action Xy, is selected according to
the policy function, (4) the system state transitions to Xy and a
measurement Zy | is generated, (5) a reward is produced, (6) the belief
state transitions to by 1.

include radar timeline or spectrum usage, probability of target detection, detection
range for an undetected target density, tracking root mean square error (RMSE),
track sharpness, track purity, track continuity, and probability of correct target clas-
sification, to name a few.

Each task-based reward function can be regarded as some function g(by, a, z 1)
that is combined in some way to produce a scalar function that maps into the quality
space 2. It is often the case that a desired task-based metric is difficult to calculate
and is replaced by a surrogate metric such as signal-to-interference plus noise ratio
(SINR) or an information theoretic metric.

1.4.2  Information Theoretic Reward Functions

A second class of reward functions used in cognitive radar and related fields is based
on information theory. Broadly speaking, an information theoretic function gauges
the relative merit of a sensing action in terms of the information flow it provides.
While this does not correspond directly to an operational criteria like track hold
probability, information flow does capture actions that ultimately lead to good oper-
ational performance. A primary motivation for information-based reward functions
is the ability to compare actions which generate different types of knowledge (e.g.,
knowledge about a target class versus knowledge about target position) using a com-
mon measuring stick.
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A review of the history of information metrics in this context is provided in [8].
Here, we highlight some of the most commonly used reward functions. The most
basic information theoretic cost function is the Posterior Shannon Entropy, given as:

I (Xiy1|br, Ak, Zp1) = (1.1
/P(XkH|bk7akazk+l)lnp(xk+l‘bkaakazkﬂ)dxkﬂ

Note that p(xi1|b, @k, Zk11) = p(Xet1|brr1) in the case that the belief state is a
sufficient statistic of the information state.

A related approach computes the information gain between densities rather than
just the information contained in the posterior. The most popular approach uses the
KLD, which is defined using the prior and posterior densities as:

@<P(Xk+1 br, A,z 1)| | p(Xky 1 \bk)) = (1.2)

P(Xit1/br, Ak, Zi41)
P(Xir1|by)

/P(Xk+l|bkaak»zk+l)1n dXps

The KLD has several desirable properties [30], including its connection to Mu-
tual Information. There are a number of generalizations of the KLD in the liter-
ature, including the Rényi Divergence [31], the Arimoto «-divergences, and the
f—divergence [32].

A third approach specific to parameter estimation is the Fisher Information Ma-
trix (FIM) and related Bayesian Information Matrix (BIM) [33], which characterize
the amount of information that a distribution contains about individual parameters
(such as target position or velocity). The inverse of the FIM is the Cramér-Rao Lower
Bound (CRLB) and the inverse of the BIM is the Bayesian CRLB, which quantifies
the uncertainty in the parameter estimates. The (square root of) the Bayesian CRLB
has the property that it is in the units of the parameter being estimated and is a lower
bound on the RMSE. Thus it is often used as a surrogate for the RMSE and catego-
rized as a task-based metric.

The Bayesian CRLB approach is actually closely related to the KLD approach,
since the BIM is related to a more general version of the KLD [34], and there is an
equivalent Bayesian o-CRLB that is derived from the Bayesian version of the Renyi
divergence [35] . Thus, these approaches have at their core the same information
theoretic quantities, and the distinction is in the separation and weighting of individ-
ual tasks in the task-based Bayesian CRLB method versus a global approach in the
information-based KLD method. A comparison between the approaches for fully
adaptive radar resource allocation is explored in Chapter 10.

1.4.3  Utility and QoS Based Objective Functions

Quality-of-service approaches [2, 36] differ from task or information-based reward
functions in that they optimize the user or operator satisfaction that is derived from a
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task. A utility function is defined on the task quality space 4 : 2 — [0, 1] that should
accurately describe the satisfaction that is derived from the different possible task
quality levels. Combining the quality and utility functions results in a function of the
required form u(by,ay,zx1) = (40 q)(bg,ax,Zx+1), where (fog) is the composite
function of i following g.

Using utility functions allows a user to specify requirements on task qualities,
which are generally tangible to the user. This is very valuable in the context of radar
resource management [2] as it enables a radar with limited resources to optimize
multiple tasks based on the task quality levels that are required by the mission. Map-
ping the quality levels of differing radar tasks into the common utility space enables
trade-offs between tasks evaluated using differing quality metrics. The global util-
ity across the multiple tasks is typically formed by taking a weighted sum of task
utilities. When considering the resource usage, a resource function g(by,a;) can be
used as a constraint on the permissible actions. This quality-of-service conceptual
approach can also be identified in other work [37,38].

1.5 Multi-Step Objective Function

A general objective is to find a policy that determines a feasible action based on
the belief state. The policy is a mapping from belief state to action denoted a; =
A™(by), where 7 carries information about the type of function and its parameters.
As the belief state is a set of parameters describing a perception of the system state,
the policy can be thought of as the perception-action cycle for a cognitive radar.
The policy is not necessarily an analytical function and may actually represent an
optimization problem. This section describes how a multi-step objective function
is used to define optimal values and policies that are the basis for the design of
perception-action cycles in the following section.

1.5.1 Optimal Values and Policies

The objective of a stochastic optimization problem is to maximize rewards or min-
imize costs over a time horizon comprising H future decision steps. The expected
reward achievable over the current and future decision steps that originate from the
current belief state is termed the value of the belief state. Let V7 (by) denote the value
of a belief state when following policy A™. It is defined as the expected value of the
summed rewards with respect to the set of future measurements (Zy1,...,Zr1H),
conditioned on the belief state by:

k+H
Vi) =E r(BF,A®(BT),Zi11) |Bf = by (1.3)
—*

t

where the belief state random variables in the summation evolve according to the be-
lief state transition function when following policy 7, i.e. Bf, | = fp(Bf,A™ (B} ), Zi+y1).
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It is common to rewrite (1.3) by splitting it into the expected reward for the current
time step and the expected reward for subsequent time steps to give:

Vi () = R(by, A% (by)) +E [VF_ 1 (BF.)|BE =by] (1.4)

where the expectation is taken with respect to the future measurement Z;, ;. The
single step reward, R(bg,A"(by)), is the expected reward with respect to the future
measurement Zy:

R(bk,Aﬂ(bk)) =K [r (Bk,A”(Bk),ZkJrl) |Bk = bk] (1.5)

Note that the expectation with respect to the remaining future measurements (Z12, ..., Zr+q)
in (1.3) is now contained in the future value term Vi7_, (Bf, ;) in (1.4). Equation (1.4)

can be identified as a form of Bellman’s equation. The calculation of the value of a

belief state when following policy 7 is illustrated in Figure 1.3.

R(by, A" (by)) E[r(Bi11, A" (Bi11), Zr42)|Bi = by]

Zyyy

I | I
k+1 k+2 k+H
Future —

Figure 1.3 Calculation of the value of a belief state when following policy A™. The
single step expected reward is calculated using the current belief state
realization by and with respect to the future measurement random
variable Zy 1. The expected reward from future times steps is
calculated with respect to future belief state and measurement random
variables.

Similarly to the value of a belief state when following policy 7, it is possible to
define the optimal value of a belief state as:

Vi (by) = max (R(by,a)+E [V (Bi,1)|Bc =by]) (1.6)

where B} | is arandom variable representing the belief state in the next decision step
that evolves when taking action a, i.e. B} | = fp(Bx,a,Z;;1). Using the optimal
value function, the optimal policy function can be defined, which is a description of
an optimal perception-action cycle:

A" (bg) = argmax (R(by,a) +E [V (Bi;.1)|Be = bi]) (1.7)

The first term in (1.7) represents the expected reward associated with the current
belief state and the chosen action, and is relatively easy to calculate. However, the
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second term that represents the expected reward associated with future belief states
in the time horizon is very difficult to calculate. Consequently, solving the opti-
mal policy function is generally intractable. The majority of stochastic optimization
approaches focus on approximate solutions to this optimal policy function.

Equation (1.3) is a multi-step objective function for the case when it is desired
to optimize the expected rewards accumulated over the time horizon. Alternatively,
the terminal reward may be of interest at the end of the time horizon. This can be
accommodated by using an altered reward function that returns zero except for the
last decision step in the time horizon. This section has described a problem with
finite horizon H. An infinite horizon problem can be described in the same way, but
requires the inclusion of a discounting factor.

1.5.2  Simplified Multi-Step Objective Functions

Finding policies that solve (1.7) is very challenging due to the need to evaluate the
impact of the current action on expected future rewards, knowing only the current
belief state. There are simplifications that are often performed that drastically re-
duce the complexity of the problem but result in an objective function that does not
fully consider the uncertainty present in the problem. These simplifications are often
applied in current cognitive radar techniques, as will be shown in Section 1.7.

1.5.2.1 Myopic Optimization

If the time horizon is taken as a single step, i.e. H = 1, then the problem of evaluating
the impact of the action on expected future rewards is removed. Hence, the optimal
policy function in (1.7) is significantly simplified to:

A*(by) = argmax (R(by,a)) (1.3)
aca/

This approach is known as myopic or greedy optimization as it focuses on the im-
mediate expected reward and ignores the impact of potential future rewards. This
approach can represent a significant simplification of the problem that may result
in poor action selection and hence a reduced accumulated reward. However, there
may be problems in which the optimal myopic policy coincides with the optimal
non-myopic policy. In which case, this simplification is completely justified.

1.5.2.2 Deterministic Optimization

A second common simplification is to perform a deterministic optimization based
on expected values of the belief state and/or future measurements, instead of treating
them as random variables and calculating the expected reward. An example of this
approach would be to simplify the myopic reward function in (1.5) as:

R(by, A" (b)) = r (b, A" (b)), E [Zi11|Bi = by]) (1.9)

Whereas myopic optimization ignores the propagation of uncertainty into the future,
deterministic optimization ignores the uncertainty in the belief state transition and
measurement processes. However, by treating the optimization problem as being
deterministic, it can be easier to solve. As the reward is now a deterministic mapping
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from the actions to a real number, standard techniques to optimize functions can be
used, for example numerical optimization methods, metaheuristics such as simulated
annealing, or convex optimization.

1.5.2.3 Discussion

Stochastic optimization techniques aim to find a policy that closely matches the opti-
mal policy function and therefore perform an action that is optimized considering the
uncertainty in the future evolution of the system and the noisy measurement process.
However, it should be clear that solving the optimal value and policy functions for re-
alistic problems is intractable. Consequently, existing cognitive radar techniques of-
ten simplify the problem by performing myopic or deterministic optimization. How-
ever, advances in computational capability combined with the development of new
algorithms mean that it is possible to move away from these simplifications and look
towards designing perception-action cycles that fully consider the uncertainty in the
problem. A subsequent and critical question for any problem is then: which sources
of problem uncertainty have a significant impact on performance and should there-
fore be incorporated into the optimization process?

1.6 Policies and Perception-Action Cycles

Solving a stochastic optimization problem involves finding a policy that maps from
belief states into actions and hence constitutes a perception-action cycle. This section
gives an overview on methods for finding policies that are widely used in stochastic
optimization. As mentioned earlier, [3] organizes the methods of finding policies
into four classes that cover all approaches in the literature. The first two methods are
policy search approaches and are referred to as policy function approximations (PFA)
and cost function approximations (CFA). The second two approaches are lookahead
approaches and are referred to as value function approximations (VFA) and direct
lookahead. We discuss each of these in turn here, with the purpose of showing
that established algorithmic strategies from the field of stochastic optimization can
be valuable tools for designing perception-action cycles in a cognitive radar. More
details on each of these methodologies can be found in [3] and the references therein.

1.6.1 Policy Search

The general approach to policy search is to find and tune a policy that matches or
approximates the optimal policy function in (1.7). Generally, the optimal policy is
unlikely to be found. Instead an approximation to the optimal policy function is
sought in the form of a policy function approximation or a cost function approxima-
tion.

1.6.1.1 Policy Function Approximations

Policy function approximations (PFAs) attempt to find and tune a function that ap-
proximates the optimal policy function in (1.7). For example, we can consider a
family of functions .%, where a function f € .% is parameterized by 6 € ®/. Our
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goal is then to find a function and parameterisation f, 0 so that the optimal policy
function in (1.7) can be approximated as:

Aoy (be) = f(by: 0) (1.10)

The optimal policy can be found if the optimal policy belongs to the family of func-
tions and the corresponding parameter space. The goal of policy function approxi-
mations is not to find the optimal policy, but to find the best approximation within
a class of function approximations. The function class may be any approach for
approximating a function, such as an analytic function or a neural network.

An example from the radar literature is the work presented in [39]. Here the
problem of optimizing the radar revisit times for a target track is considered. The
authors define the concept of a track sharpness Vp, which is the major axis of the
uncertainty ellipsoid in antenna coordinates (u-v space) relative to the beam width.
The general strategy is to schedule a radar dwell to update the track once the track
sharpness crosses a given threshold.

It is possible to cast the problem in [39] into the framework components in Sec-
tion 1.3. The tracker provides parameters for the belief state by = [r ® £ ¢ B],
where r is the estimated target range, ®,X are parameters of the Singer target dy-
namic model, ¢ is the measurement error standard deviation, and B is the radar half
beamwidth. Note that o and B are sensor parameters that may be dependent on the
target kinematic parameters. The action space is a scalar representing the revisit in-
terval time, i.e. a; € R,. where R denotes the positive real numbers. [39] proposes
a function for finding the steady state revisit interval:

0.4
Vo rO'\/é l]2'4
Appa(Br) =04 =5 1+0.502

(1.11)

where U = BVjy/0 is the variance reduction ratio. Although it is not stated in [39],
this can be considered as a policy function approximation, whereby the function in
Equation (1.11) is parameterized by the track sharpness 68 = V}y. After proposing the
policy function in Equation (1.11), [39] proceeds by finding the function parameter-
ization, i.e. the value of Vj), that minimises the radar loading while also maintaining
track on the target.

1.6.1.2 Cost Function Approximations

Instead of approximating the entire policy function as with a PFA, a cost function
approximation (CFA) finds a functional approximation for the cost function, which
is interchangeable with the reward function described in this paper. Consequently,
the optimal policy function in (1.7) is replaced with:

Ag}g1 (by) = argaerza}r)ge) [F*(by,a;0)] (1.12)
which comprises of the approximation to the cost function 7 (b, a;;0) as well as a
potentially constrained action space «7™(6).

An example for such a cost function approximation can be found in the work
of [40]. Here the track revisit interval is chosen to minimize the trace of the pre-
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dicted conditional Bayesian information matrix (PC-BIM). Without any additional
constraints such an optimization would always choose the minimum revisit interval.
Therefore, a parameter K is introduced, which can be tuned to perform a trade-off
between the information gain and the resource usage. Consequently, the following
minimization is performed on a cost function approximation:

K
Afabo) = angmin (u(Plab)+ ) (L1

where & = R is the set of all possible revisit intervals, and tr(P(a,by)) is the
trace of the PC-BIM after a measurement is produced with a revisit interval of a and
conditioned on the current belief state realization by.

1.6.2 Lookahead Approximations

Lookahead approximations differ from policy search as they attempt to evaluate the
influence of an action on future rewards, instead of approximating the policy func-
tion. A lookahead approximation can be performed via a value function approxima-
tion or by simulating a direct lookahead.

1.6.2.1 Value Function Approximations
A value function approximation uses the optimal policy function in (1.7), but re-
places the true optimal value of future belief states Vi;_, (B, ) with an approx-
imation Vi_, (Bz +1). In some cases the expectation in (1.7) may be difficult to
calculate, in which case a value function approximation can be used to replace
E [Vii 1 (BY. 1) [Be =by].

The resulting policy for a value function approximation is:

XY pa (by) = argmax (r(by,a) + E [V (B}, )]) (1.14)

Another variant is the approximation of the action value Q, which results in the
policy

XVQFA(bk) = argmax O(by,a) . (1.15)
acd/

A famous algorithm from the literature that uses such policies is the Q-learning
algorithm [41], whose variants have also been used for radar management [6]. A
non-learning example in radar management can be found in [42]. Here the reward is
based on the detection range of the radar, and the action a; = [t ri]” consists of the
revisit interval ri and the dwell duration ¢. The problem is radar search, where the
detection range of the radar should be optimized. To frame this problem in terms of
Equation (1.15), O(by,a) is the expected target detection range. Note that by here
does not contain the estimate of a target track, as no track is detected yet. Instead, it
contains observable quantities such as the platform’s altitude and prior information
about the expected target RCS and popup range. In [42] this value is approximated
with a lookup table and used in a QoS resource allocation algorithm.
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1.6.2.2 Direct Lookahead

For the cases when it is not possible to find an accurate value function approximation,
the expected future value can be evaluated by simulating future system evolutions
using the available models. As this process is computationally very costly, direct
lookahead methods focus on making effective simplifications that still lead to accu-
rate values. Common methods belonging to this class are deterministic lookaheads,
Monte Carlo sampling, rollout policies and Monte Carlo tree search.

Myopic, single period lookahead policies are variants of this method, which are
often used in the radar literature, e.g. [43,44]. A non-myopic lookahead method can
be found in [45], which uses a policy rollout method to determine the optimal track
revisit intervals. Note that this work also contains components of a cost function
approximation, by encoding the performance to resource trade-off with a tune-able
parameter in the cost function. Policy rollout is also used in [46] for solving the radar
resource management problem.

1.6.3 Discussion

General methodologies for finding policies involve finding a function approxima-
tion to either the policy function, the cost function or the value function. The dif-
ference between these approaches is simply where the functional approximation is
made, as illustrated in Figure 1.4. The effectiveness of these approaches depends on
how well a function approximation can capture these respective relationships. All of
these methodologies can be implemented with handcrafted models or using machine
learning techniques. Although it is typical to perform offline training, these func-
tion approximations could be updated online as more data becomes available. Direct
lookahead approaches are used when it is not possible to capture the structure of the
problem with a function approximation.

Cost Function Approximation

Policy Function Approximation

A*(by) = arg max (R(by,a) +E [Vi;_1 (B, 1)|Be = by])

Value Function
Approximation

Figure 1.4 Different function approximation types for the optimal policy function.

1.7 Relationship between Cognitive Radar and Stochastic
Optimization

In the previous sections, the general framework of stochastic optimization, as well
as possible solution techniques are described. This framework models the prob-
lem of selecting the best action under uncertainty, to maximize a reward. Cognitive
radar is an application domain, which falls under the assumptions of this framework.
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Knowledge about the true state is only received by noisy measurements, and state
and belief state transitions are non-deterministic. A radar controller must select the
optimal sensing actions to maximize performance of the system, which can be for-
malized by a suitable reward function. In the following, this view of the cognitive
radar task as a stochastic optimization problem is mapped out.

1.7.1 Problem Components

A representative set of cognitive radar problems for different applications can be
found in the references. Although it may not always be explicitly stated, these
problems can be characterized as stochastic optimization problems that possess the
framework components described in Section 1.3. The components are sometimes
explicitly stated or can be inferred.

In the case of target tracking [2,37,39,44,47-51], the belief state characterizes
a posterior probability density function defined on the system state space. Typical
belief states are the mean and covariance matrix of the distribution or a set of par-
ticles. The belief state transition function incorporates the Bayesian prediction and
update processes. The exogenous information is some noisy function of the system
state that maps to radar measurements, thus the system state is partially observable.
Often, the likelihood function is a Gaussian approximation of the true measurement
errors. Adaptive tracking [2, 39, 48] methods select actions in the form of revisit
interval times as well as the waveform energy for the next measurement, in order to
minimize resource usage while maintaining track. An early approach [39] was to
use a function that mapped measurement and track accuracies, and Singer manoeu-
vre parameters to a revisit interval time. In the context of the methods described in
Section 1.6, this can be thought of as an empirically derived policy function approx-
imation. Another strand of work has focussed on waveform selection and adapta-
tion [44,47,50], whereby the action space comprised different waveform modula-
tions that were selected in order to minimize track RMSE.

The framework components are easy to identify for tracking problems, because
the framework is essentially an extension to the standard Bayesian tracking process.
However, other radar functions and applications can also be cast into the frame-
work. For a search problem, the belief state can parameterize an undetected target
posterior density. In target detection [52-55], the system state is the state of the
clutter, interference, and noise environment. Typical belief states include the clutter,
interference, and noise covariance matrix or a posterior distribution on a spectrum
occupancy state. For imaging and classification [56] the belief state characterizes
a posterior probability mass function. Typical belief states are the pairwise likeli-
hood ratios or the posterior probabilities themselves. Some works also consider a
combination of radar functions [43,57,58].

Generally, the action space is some set of parameters that characterize the radar
transmission and reception, including transmit and receive sensor selection and schedul-
ing, transmit frequency, bandwidth, time, duration, power, and waveform design.
The exogenous information is some noisy function of the system state, thus the sys-
tem state is partially observable. Generally, reward functions differ widely, but can
be categorized according to the classes in Section 1.4.
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1.7.2  Typical Cognitive Radar Solution Methodologies

A variety of solution methodologies have been applied to cognitive radar problems,
which can be compared with the strategies described in Section 1.6. The majority
of the reference works formulate myopic optimization problems, which represent
a simplification with respect to the general non-myopic multi-step objective func-
tion. Depending on the problem, this can be a very valid approach to reduce the
complexity of the optimization, especially if it is clear that the current action does
not influence future rewards. However, it is worthwhile to explicitly consider how
the myopic and non-myopic solutions differ, as there are certainly problems where
considering the future rewards associated with the current action can significantly
improve performance.

There are also cases in the reference works where an optimization is performed
on an expected value of the belief state and/or an expected future measurement,
instead of treating the system state and future measurements as random variables
and calculating the expected reward. This approach has the benefit of enabling de-
terministic optimization methods to be applied and is a valid approximation if the
reward function is not sensitive in the region of significant probability as described
by the posterior and expected measurement PDFs. However, this approach ignores
or under-utilizes the uncertainty in the future state evolution and corresponding mea-
surements, which could significantly impact performance.

The cognitive radar methodologies in the reference works generally attempt
to solve an optimization problem online by performing numerical optimizations or
searches over the action space. However, the strategies described in Section 1.6 first
attempt to identify structure in the policy, cost or value function and attempt to use
specific models or machine learning to produce a functional approximation. This is
a particularly attractive approach because it can reduce the complexity of the online
optimization problem, or remove the need to perform an online optimization, de-
pending on the functional approximation type. This approach is underrepresented in
the reference works, but can be identified in [51], where a neural network is used to
learn the policy function that an optimizer with more complexity would generate.

1.7.3 Cognitive Radar Objective Functions

Although cognitive radar problems and approaches can be cast into the framework
described in Section 1.3, there are some key differences. A main difference comes
in form of the objective function.

In Section 1.5 the objective of the framework is described as finding a policy
with maximal accumulated reward. This is a common formulation in many fields of
stochastic optimization, for example, in control theory or reinforcement learning. Al-
most all papers in the reinforcement learning literature demonstrate the development
of these accumulated rewards (or costs) over the time of the training, consequently
allowing a summary of the performance of a policy in a single metric. Therefore, it
is possible to directly compare two policies and decide which is better.

On the other hand, such a statement is rare in the cognitive radar literature.
Typically several metrics are considered in the evaluation. Although these metrics
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are used in the performance evaluation, they are not always stated explicitly as part of
the objective function. We acknowledge that the evaluations yield important insights,
however, it is useful to also clearly state the true objective in a single quantifiable
way. For example “in the given evaluation scenario, we want to minimize the sum of
the tracking errors over the whole scenario time”. A common occurrence in the radar
literature is the usage of surrogate functions (e.g. SNR, mutual information, etc.).
Generally, it should be clear whether this is the true objective or actually a surrogate
for the harder to evaluate true objective function.

We note that finding representative and quantifiable objective functions is a non-
trivial challenge, which is a justification for using simplified or surrogate objective
functions that are then evaluated against the actual true objectives. For example, it
is very challenging to find appropriate objective functions for multi-function radars,
which are required to balance the conflicting demands of different functions. Gen-
erally, the radar designer may be less interested in the result of optimization as the
all-round performance of the radar in realistic situations, which may not be possible
to evaluate until after the optimization has been performed. Regardless, differences
between the objective function, and the actual objective and hence evaluation met-
rics, is an indicator that the objective function may not be truly representative of
the problem to be solved. We identify the construction of representative objective
functions as an important challenge in cognitive radar research.

1.8 Simulation Examples

In this section, we present two simulation examples that demonstrate the influence
of different sources of uncertainty on the control process.

1.8.1 Adaptive Tracking Example

This section presents an adaptive tracking example, whereby it is necessary to decide
on the next revisit interval for tracking a target with an agile beam radar. As the radar
steers the beam to the estimated target position, a beam positioning loss occurs that is
dependent on the difference between the beam pointing direction and the true target
direction, which in turn depends on the accuracy of the track. Overall, it is desired
to use as few resources as possible to track the target whilst also aiming to prevent
the target from escaping the radar beam.

1.8.1.1 Problem Components
This problem can be described in terms of the problem components introduced in
Section 1.3.2.

System State and State Transition Function - The underlying system state is
the position and velocity of the target in antenna (i.e. u-v) coordinates. The system
state transitions according to a constant velocity, continuous white noise acceleration
model, with a specific process noise intensity.

Actions and Action Space - The action is the revisit interval, which is the inter-
val between the current time and the time of the next track update. Revisit intervals
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between 0.1s and 5s are allowed and this continuous range is discretized into 50
possible revisit interval values.

Measurements and Measurement Space - The radar produces measurements
of the target angle in antenna (i.e. u-v) coordinates. Therefore, z;, | € [—1, 1]2.
A measurement occurs if the signal amplitude exceeds the detection threshold as-
suming Swerling 1 radar cross section fluctuations. The detection and measurement
processes depend on an SNR value which is influenced by the beam positioning loss.
This beam positioning loss occurs as the beam is directed to the angle given by the
estimate in the track, which may differ from the true target angle. The beam posi-
tioning loss is modelled as a Gaussian loss function matched to the radar beamwidth.

Measurement Likelihood Function - Each measurement dimension is cor-
rupted by independent Gaussian noise with standard deviation depending on the
SNR:

B
Oyy= ——— 1.16
= 5 JSNR (110
where B is the radar 3-dB beamwidth. Consequently, . (¢ |z, a;_1) = A (z; Hxy, Ry)
where H is the observation matrix

1 000
H—[O Lo o} (1.17)

and Ry = diag([637V03 ,]) is the measurement error covariance.

Information State - As described in Section 1.3.2, the information state is the
collection of previous actions and measurements. As the belief state described next
is a sufficient statistic of the information state, it is not necessary to maintain the
information state.

Belief State - The belief state comprises an estimate of the target angles in an-
tenna coordinates and the associated covariance matrix. Additionally, the belief state
contains the known mean target radar cross section and the process noise intensity
for the system state transition model.

Belief State Transition Function - The belief state transition function incorpo-
rates the standard Kalman filter prediction and update steps.

Reward Function - If a detection occurs, then the reward is the revisit interval
value that was selected. If no detection occurs, then zero reward is achieved, leading
to the reward function:

0 ifz =
r(bk,ak,lkﬂ){ w1 = {}

a;  otherwise (1.13)

Consequently, the controller is motivated to maximise the revisit interval whilst also
ensuring a detection occurs and hence that the target does not escape the beam. The
reward is normalised by the number of actions in the horizon in order to allow an
easy comparison between different horizon lengths.

1.8.1.2 Control Methods

The problem described above is solved using an exhaustive direct lookahead that
evaluates the expected reward for every possible action. For a time horizon of multi-
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ple time steps, all possible action sequences are evaluated. The reward function is a
function of several random variables that can be considered as sources of uncertainty.
The state uncertainty is represented by the belief state, and results in an SNR loss due
to the uncertain target angle differing from the estimated target angle. The measure-
ment uncertainty results from Swerling 1 radar cross section fluctuations that impact
on the SNR, the stochastic detection process, and stochastic angular measurement
errors.

For this analysis we use different methods that account for different sources of
uncertainty. When a source of uncertainty is considered by the controller, then the
expected reward is evaluated using Monte Carlo sampling for the respective random
variable. We compare the following lookahead strategies for evaluating the expected
reward:

e Expected Value State/Expected Value Measurement (EVS/EVM) - The expected
values of the state and the target radar cross section are used. The SNR is scaled
by the non-zero expected beam positioning loss. An angular measurement is
generated with no measurement noise. The reward is scaled by the probability
of detection.

*  Randomly Sampled State/Expected Value Measurement (RSS/EVM) - Samples
of the state are drawn from the belief state, leading to samples of the beam
positioning loss and consequently samples of the SNR based on the mean radar
cross section. For each sample, an expected angular measurement is generated
with no measurement noise. The reward is scaled by the probability of detection.

o Expected Value State/Randomly Sampled Measurement (EVS/RSM) - The ex-
pected value of the state and the beam positioning loss is used. The radar cross
section and hence SNR is sampled and the detection process simulated for each
sample. If a detection occurs, noisy angular measurements are generated ac-
cording to the standard deviation of the respective SNR sample.

e Randomly Sampled State/Randomly Sampled Measurement (RSS/RSM) - Sam-
ples of the state and the radar cross section are drawn, leading to samples of
the beam positioning loss and consequently samples of the SNR. The detection
process is simulated for each sample. If a detection occurs, noisy angular mea-
surements are generated according to the standard deviation of the respective
SNR sample.

As RSS/RSM evaluates the expected reward considering all the modelled sources of
uncertainty, it can be considered as the true reward value, under the assumption that
the underlying models match to the reality.

1.8.1.3 Results

These results are produced using the parameter values in Table 1.1.

The expected rewards associated with the possible actions using a single step
horizon are illustrated in Figure 1.5. It can be seen that the different consideration
of the sources of uncertainty in the lookahead strategies lead to different expected
rewards. As the action with the greatest expected reward is selected, not considering
certain sources of uncertainty can lead to sub-optimal action selections. In this result,
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Parameter Value

SNR 111 (20 dB)
Probability of False Alarm 1076

Mean RCS 1 m?

Beamwidth 1 (degrees)

Track Sharpness 0.15 (beamwidths)
Process Noise (0.004)?

Table 1.1 Simulation parameters unless otherwise stated in the results. SNR is the
SNR for the mean radar cross section and without beam positioning
losses.

measurement sampling (RSM) does not influence the expected reward and instead an
expected measurement can be used. This is logical, as the reward function for a one
step horizon is not impacted by the different measurement values or the associated
measurement noise covariances. The reward function is impacted by the detection
probability, however, it is not necessary to simulate the actual detection process.
In Figure 1.5 it can be seen that sampling the state results in significantly different
expected rewards. The state uncertainty is the source that has the greatest influence
on the expected reward. When considering RSS/RSM to be the true expected reward,
not considering the state uncertainty leads to the selection of a 3.1s revisit interval
instead of 2s, which results in a 19% reduction of the expected reward from 1.294 to
1.048.

Single Step Expected Reward for Possible Actions

Expected Reward

——EVS/EVM

——— RSS/EVM
02r EVS/RSM |
—— RSS/RSM

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Action - Revisit Interval (s)

Figure 1.5 The expected rewards using the different lookahead strategies for a one
step horizon.
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Figure 1.6 shows the best action selected for different values of the process noise
intensity and track sharpness. Generally, lower revisit intervals are selected for larger
process noise intensities and initial track sharpness. Not considering the state un-
certainty leads to sub-optimal action selection, regardless of whether measurement
sampling is performed or not. As to be expected based on Figure 1.5, EVS/EVM
and EVS/RSM selected optimistically long revisit intervals, because they do not ad-
equately evaluate the impact of beam positioning loss on the expected reward. In
Figure 1.6 it can be identified that there are simple functional relationships between
the parameters of the belief state and the selected action. Consequently, it is possible
to perform regression on the results from the exhaustive direct lookahead to produce
a policy function approximation that has negligible online computation.

Selected Action for Different Process Noise Values Selected Action for Different Initial Track
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Figure 1.6  The selected actions using the different lookahead strategies for a one
step horizon.

Figure 1.7 illustrates the expected reward of the possible actions using the differ-
ent lookahead strategies for a two step horizon length. In contrast to Figure 1.5, all
sources of uncertainty impact on the evaluation of the expected reward. Now, mea-
surement sampling in the first step influences the probability of detection and hence
the reward in the second step. However, just performing state sampling and not mea-
surement sampling still results in expected rewards that are closer to the optimum
of RSS/RSM. By analysing this figure it can be seen that EVS/EVM, RSS/EVM,
EVS/RSM result in a loss of expected reward of 22.68%, 1.06% and 8.35% respec-
tively. For this example, a single step horizon instead of a two step horizon results in
aloss of expected reward of 2.33%. Although a longer time horizon improves perfor-
mance, considering the sources of uncertainty has a greater impact on the expected
reward and hence action selection.

Figure 1.8 shows the best action sequence selected for different values of the
process noise intensity and track sharpness. Again it can be seen that larger pro-
cess noise intensities and track sharpness lead to lower revisit intervals. A general
recognisable strategy is to schedule a short revisit interval followed by a long re-
visit interval, especially in the cases of low process noise intensities as well as large
initial track sharpness. As seen with the single step horizon, a basic functional re-
lationship between the belief state parameters and the selected action can be seen.
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Two Step Expected Reward for Possible Actions

Expected Reward

——— EVS/EVM
——— RSS/EVM

EVS/RSM ||
——— RSS/RSM

0 L I I I 1 I I I I
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Action - Revisit Interval (s)

Figure 1.7 The expected rewards using the different lookahead strategies for a two
step horizon.

Consequently, a policy function approximation can be produced using regression to
approximate the result of this exhaustive direct lookahead, which required significant
computation even for this simple example.
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Figure 1.8 The selected action sequence using the different lookahead strategies
for a two step horizon.

This analysis of the different lookahead strategies assumed that the underlying
models match the reality and that the reward function matches the objective of the
radar. Although the choice of the reward function is intuitively appealing, a radar
engineer is likely to start wondering how this control strategy performs in terms of
other performance measures, such as track losses and track accuracies. This high-
lights the difficulty in creating truly representative reward functions, as discussed in
Section 1.7.3. Additionally, RSS/RSM can be considered as the true expected re-
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ward when the models are true. However, it is not the case that an object exhibits
continuous white noise acceleration motion in antenna coordinates. An evaluation
of these strategies on real trajectories will result in different accumulated rewards to
those predicted by the lookahead strategies. This motivates the use of learning tech-
niques for learning policy, cost or value function approximations based on realistic
conditions.

1.8.2 Target Resource Allocation Example

This example uses a myopic lookahead method for allocating radar resources be-
tween multiple targets.

1.8.2.1 Scenario

The scenario contains a stationary radar, which tracks three airborne targets. The tar-
gets exhibit Swerling I radar cross section (RCS) fluctuations and follow trajectories
1-3 from [59]. Figure 1.9a shows the geometry of the scenario, which has a duration
of 140 seconds. Additional parameters are given in Table 1.2. Nominal radar param-
eters in Table 1.2 specify the radar SNR performance, the actual SNR is calculated
based on the actual parameter values by scaling the nominal SNR.
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Figure 1.9 Myopic planning example. (a) Scenario. The black lines show the field
of view of the radar, and the orange arrows the movement direction of
the targets. (b) Expected position error for different allocation
methods.

The radar uses a 2000 Hz low pulse repetition frequency waveform and allocates
a fixed time budget of 10% to the task of tracking the three targets. For every time
step of 1200 ms, it uses 120 ms which is equivalent to 240 pulses for tracking. At
each time step, the controller must make the decision of how to allocate those pulses
to each of the targets. The targets are tracked using an IMM-EKEF tracker, which a
nearly constant velocity and a maneuver model. As the simulation focuses on track-
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Parameter Value
Nominal radar range 50 km
Nominal radar SNR 20 (13 dB)
Nominal RCS 1 m?
Nominal number of pulses 100
Nominal pulse length 2 us
Pulse length 2 s
Pulse repetition frequency 2000 Hz
Signal bandwidth 1 MHz
Probability of a false alarm 1076
Wavelength 0.03 m
Target RCS 1 m?
No-maneuver model noise factor g 10.0
Maneuver model noise factor g 1000.0
Simulation length 140 s

Table 1.2 Simulation Parameters.

ing and not search, tracks are initialized with the ground truth state at the beginning
of the simulation. The tracker does not drop tracks during the simulation and it uses
an ideal measurement to track association.

Since tracks are not dropped, the beam is always steered towards the true po-
sition of the target in order to avoid track divergence. While a track might still
diverge, it would receive measurements when it gets resources allocated again. This
is of course a simplifying assumption, and a real system would need some kind of
reacquisition method for lost tracks. However, the implementation of such a method
would make the simulation more complex, and distract from its purpose of compar-
ing the sampling uncertainties.

1.8.2.2 Objective

The objective is to minimize the uncertainty of the tracks. We quantify this using
just the position part of the covariance matrices for the tracks, leading to a negative
reward (cost) at each stage k of

b an,zen) == L\ fu (PR, ) (1.19)

teT

l([’,fi 1), the 3x3 Cartesian position part of the covariance

matrix of target ¢ at time step k+ 1, updated with z;, |, and t r is the trace function.

where T is the set of targets, P’

1.8.2.3 Control Methods
We use four baseline control methods, which use simple heuristics

* (BE) equally allocates the same amount of pulses to each target
e (BP) allocates the pulses to targets such that all targets achieve the same SNR
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e (BI) uses all the pulses for a single target and iterates through the targets between
decision steps

¢ (BHE) uses all pulses on the target with the currently highest expected error, i.e.
the target whose contribution to the reward is the highest

The planner is a myopic one-step lookahead planner. It considers a discrete
action set A of possible allocations, and selects the action
a;, = arg max E [ry(by,a,Z;.1) | a] (1.20)
acA
The actions consists of possible allocations of multiples of 60 pulses, leading
to 15 different possible actions. For example, 240/0/0 or 60/120/60 are two possi-
ble actions. The control algorithm evaluates the expected value using Monte Carlo
sampling. We sample two different random variables in the measurement generation
process: the RCS of the targets, and the measurement errors. The RCS fluctuation
influences the measurement SNR and therefore also the detection probability and
measurement covariance. The measurement error is distributed according to the co-
variance of the measurement and influences not only the point estimate of the target,
but also the likelihood of the different maneuver models. As we want to compare
the influence of these two factors, we either perform Monte Carlo sampling or take
the expected value. Each action is sampled 66 times, leading to a full computing
budget of slightly below 1000 samples. We use Common Random Numbers when
comparing the actions in order to reduce the sampling variance.

1.8.2.4 Results

Figure 1.9b shows the performance of the different methods after 100 Monte Carlo
runs. The names of the different planner instantiations consists of combinations of
randomly sampled (RS) or expected value (EV) of the RCS (R) or the error (E). For
example, the rightmost entry results from a randomly sampled RCS and a randomly
sampled error.

The results are given as the average from the covariance per target and per de-
cision step. Note, that because the tracks are not dropped during the scenario and
consequently the number of targets does not change, this scaled representation is
proportional to the negative sum of the rewards ry(by,ay,z;1) over the whole sce-
nario. However, a scaled representation results in a more interpretable error metric.

We can see multiple effects in Figure 1.9b. Firstly, it seems to pay off to focus
the pulses on a single target. Both baseline heuristic methods that spread the pulses
(BE and BP) are significantly worse than those that focus them on a single target
(BI and BHE). Secondly, the random variable that is sampled in the measurement
process for the planner has a clear influence. When using the expected RCS, the
planner is approximately as good as the strongest baseline. However, when sampling
the RCS, the planner surpasses the baseline. On the other hand, whether it samples
the measurement error or simply the takes expected measurement has no significant
influence on performance. In this scenario, the RCS sampling has mostly an effect
on the topmost target, which is furthest away. When taking the expected value of the
RCS, the planner assumes that there is no detection chance at all and never allocates
resources to this target for the first 25 seconds of the scenario. However, when
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sampling the RCS, it recognizes that the RCS fluctuations provide a chance of a
detection.

The keen-eyed reader has likely realized that we did not consider a third source
of uncertainty, the actual position of the target. Instead, we only used the expected
value of the track. In theory, we have a probability distribution over the target given
by the mean and covariance in the track. However, it is very rare that the target
is really distributed according to this probability distribution function as the control
output of few pilots is truly Gaussian noise, as assumed by many models. A Gaussian
process model works well to make the tracker stable, but is not necessarily suited
for lookahead planning. In our experiments sampling the state had sometimes even
detrimental effects, as the planner thought the target could be very far away and it
would not reach a detection, for example in situations involving manoeuvres that
led to a large covariance. This highlights the value of higher fidelity target dynamic
models [60] in the context of planning. In the given setup we could also not find
benefits from a non-myopic planning. Note that this is not necessarily surprising,
given the performance guarantees of greedy strategies in comparison to non-myopic
controllers [61].

This example shows that it is important to consider the source of uncertainty in
the planning step. Some sources may have have a large impact on performance and
some may have little impact. This consideration can be incorporated into the design
of a planning algorithm using the stochastic optimization framework described in
this chapter. For example, the results above would indicate that replacing the sam-
pling process by just two outcomes - detection and non-detection, weighted by their
analytical probabilities, is likely sufficient. The influence of other sources of uncer-
tainties, e.g. the target state, might have an influence, however, care must be taken
that the sampling distribution actually corresponds to the true possible states of the
targets.

1.9 Conclusion

Many cognitive radar techniques are emerging that tackle different applications or
sub-problems in a radar system. This chapter has presented a common framework for
describing these cognitive radar problems in terms of a stochastic optimization prob-
lem. By doing so, the cognitive radar problem can be addressed using existing algo-
rithmic strategies from the field of stochastic optimization. Specifically, the strategy
of finding functional approximations for the optimal policy, cost or value function
using machine learning techniques is an attractive approach. In general, learning
techniques can be adopted to tackle a stochastic optimization problem, when models
in the problem are difficult to describe analytically. Consequently, both control-
theoretic methods and learning methods fall under the same framework.
Traditionally, cognitive radar and radar management has performed myopic and
deterministic optimizations. However, advances in computing and algorithmic capa-
bilities can enable the more general stochastic optimization problem to be tackled,
which fully considers uncertain measurements and state transitions as well as the
impact of action selection on future rewards. However, it is important to consider
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which sources of uncertainty actually impact on the performance. Since increas-
ing the consideration of uncertainty in a planning algorithm ultimately results in
increased computation, focusing on just the critical sources of uncertainty enables
an efficient and performant algorithm.
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