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10.1 Introduction

Modern digital radars offer unprecedented flexibility in their waveforms, radar pa-
rameter settings, and transmission schemes in order to support multiple radar sys-
tem objectives including target detection, tracking, classification, and other func-
tions. This flexibility provides the potential for improved system performance, but
requires a closed-loop sense and respond approach to realize that potential. The con-
cept of fully adaptive radar (FAR), also called cognitive radar [1–5], is to mimic
the perception-action cycle (PAC) of cognition [6] to adapt the radar sensor in this
closed-loop manner. In this work, we apply the FAR concept to the radar resource
allocation (RRA) problem to decide how to allocate finite radar resources such as
time, bandwidth, and antenna beamwidth to multiple competing radar system tasks
and decide the transmission parameters for each task so that radar resources are used
efficiently and system performance is optimized.

A number of perception-action approaches to RRA have been proposed, includ-
ing [7–19]. Recent work in this area has been referred to as cognitive radar resource
management [16–19], while older related work has been referred to as simply sen-
sor management and/or resource allocation [7–15]. These algorithms rely on two
fundamental steps. First, they capture (perceive) the state of the surveillance area
probabilistically. Next, they use this probabilistic description to select future sensing
actions by determining which actions are expected to maximize utility.

A key challenge of any RRA algorithm is to balance the multiple competing
objectives of target detection, tracking, classification, and other radar tasks. This is
addressed through the objective function used in the optimization step to select the
next radar actions. Objective functions are also referred to as payoff, criteria, value,
or cost functions. Articulating the system goals in a mathematical form suitable
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for optimization is thus critical to the operation of a fully adaptive radar resource
allocation (FARRA) system. As the number of parameters available for adaptation
and the number of radar system tasks grow, this becomes increasingly difficult. There
are two basic approaches to this optimization: task-driven [19] and information-
driven [10].

In the task-driven approach, performance quality of service (QoS) requirements
are specified for each task, such as the expected time to detect a target or the tracking
root-mean-squared error (RMSE), and a composite objective function is constructed
by weighting the utility of various tasks. This has the benefit of being able to sep-
arately control task performance and lay out the relative importance of the tasks.
However, it requires significant domain knowledge and judgment on the part of the
user to specify task requirements and sensor costs and to construct cost/utility func-
tions and weightings for combining disparate task performance metrics [19–21].

In the information-driven approach, a global information measure is optimized.
Common measurements of information include entropy, mutual information (MI),
Kullback-Leibler divergence (KLD), and Rényi (alpha) divergence [8, 22–25]. In-
formation metrics implicitly balance different types of information that a radar may
acquire. This has the desirable property of a common measuring stick (informa-
tion flow) for all tasks [13], but does not explicitly optimize a task criterion such as
RMSE. As such, the information theoretic measures can be difficult for the end-user
to understand and attribute to specific operational goals [26]. Furthermore, without
additional ad-hoc weighting, they do not allow for separate control of tasks and may
produce solutions that over-emphasize some tasks at the expense of others or select
sensor actions that provide only marginal gain when judged by user preference.

In this work, we consider a radar system performing concurrent tracking and
classification of multiple targets. The FAR framework developed in [18, 27], which
is based on stochastic optimization [28], provides the structure for our PAC. We
develop and compare task and information-driven FARRA algorithms for allocat-
ing system resources and setting radar transmission parameters, and illustrate the
performance on a simulated airborne radar scenario and on the Cognitive Radar
Engineering Workspace (CREW) laboratory testbed at The Ohio State University.
This work combines and extends our previous work in sensor management [8–14]
and FAR [18, 21, 27, 29–31]. A preliminary version was published in [32]. The re-
sults show that the task and information-driven algorithms have similar performance
but select different actions to achieve their solutions. We show that the task and
information-driven algorithms are actually based on common information-theoretic
quantities, so the distinction between them is in the granularity of the metrics used
and the degree to which the metrics are weighted.

This chapter is organized as follows. In Section 10.2, we provide an overview
of the FAR framework and in Section 10.3, we develop the multitarget multitask
FARRA system model by specifing the components of the FAR framework for this
problem. In Section 10.4 we describe the perceptual and executive processors that
make up the FARRA PAC, including the task and information-based objective func-
tions we employ. In Section 10.5 we provide airborne radar simulation results com-
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paring the optimization approaches and in Section 10.6, we show CREW testbed
results. Finally, Section 10.7 presents the conclusions from this effort.

10.2 Fully Adaptive Radar Framework

The FAR framework for a single PAC was developed in [18, 27] and is summarized
here. A system block diagram is shown in Figure 10.1. The PAC consists of the
perceptual processor and the executive processor. The PAC interacts with the exter-
nal environment through the hardware sensor and with the radar system through the
perceptual and executive processors. The perceptual processor receives data from
the hardware sensor and processes it into a perception of the environment. The per-
ception is passed to the radar system in order to accomplish system objectives and
to the executive processor to decide the next action. The executive processor re-
ceives the perception from the perceptual processor along with requirements from
the radar system, and solves an optimization problem to determine the next sensor
action. The executive processor informs the hardware sensor of the settings for the
next observation, the sensor collects the next set of data, and the cycle repeats.

Figure 10.1: Single PAC FAR Framework

To develop the mathematical model of the PAC, we assume that the objective of
the FAR system is to estimate the state of a target (or targets) at time tk, denoted as
xxxk. The time-varying nature of the target state is characterized by the state transition
(motion) model, which is assumed to be a first order a Markov model with initial tar-
get state probability density function (PDF) q(xxx0) and transition PDF q(xxxk|xxxk−1;θθθ k),
which represents the probability that a target in state xxxk−1 will evolve to state xxxk. The
transition density may depend on the sensor parameters θθθ k; this will occur, for exam-
ple, when the choice of sensor parameters affects the time difference tk− tk−1. The
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hardware sensor observes the environment and produces a measurement vector zzzk
that depends on the target state xxxk and the sensor parameters θθθ k. The measurement
model is described by the conditional PDF, or likelihood function, f (zzzk|xxxk;θθθ k).

The perceptual processor processes the data and produces a perception of the
target state in the form of a posterior PDF f (xxxk|ZZZk;ΘΘΘk) and a target state estimate
x̂xxk(ZZZk), where ZZZk

.
= {zzz1,zzz2, · · · ,zzzk} denotes the measurements up to time tk and ΘΘΘk

.
=

{θθθ 1,θθθ 2, · · · ,θθθ k} denotes the sensor parameters up to time tk. For the Markov motion
model, the posterior PDF of xxxk given ZZZk can be obtained from the Bayes-Markov
recursion:

f+ (xxx0) = q(xxx0) (10.1)

f− (xxxk)
.
= f (xxxk|ZZZk−1;ΘΘΘk) =

∫
q(xxxk|xxxk−1;θθθ k) f+(xxxk−1)dxxxk−1 (10.2)

f− (zzzk)
.
= f (zzzk|ZZZk−1;ΘΘΘk) =

∫
f (zzzk|xxxk;θθθ k) f−(xxxk)dxxxk (10.3)

f+(xxxk)
.
= f (xxxk|ZZZk;ΘΘΘk) =

f (zzzk|xxxk;θθθ k) f−(xxxk)

f− (zzzk)
, (10.4)

where f−(xxxk) is the motion-updated predicted density and f+(xxxk) is the information-
updated posterior density. The state estimation performance is characterized by the
posterior Bayes risk, which is the expected value of the perceptual processor error
function ε (x̂xx(ZZZk),xxxk) with respect to the posterior PDF,

R+(ZZZk;ΘΘΘk) = E+ {ε (x̂xx(ZZZk),xxxk)} , (10.5)

where E+
k {·} denotes expectation with respect to f+(xxxk). The state estimate is found

by minimizing the posterior Bayes risk:

x̂xxk(ZZZk) = argmin
x̂xx(ZZZk)

R+(ZZZk;ΘΘΘk). (10.6)

The goal of the executive processor is to find the next set of sensor parameters
to optimize the performance of the state estimator that will include the next obser-
vation zzzk as well as the previously received observations ZZZk−1. We define the joint
conditional PDF of xxxk and zzzk conditioned on ZZZk−1 as

f ↑(xxxk,zzzk)
.
= f (xxxk,zzzk|ZZZk−1;ΘΘΘk) = f+(xxxk) f− (zzzk) . (10.7)

We define the predicted conditional (PC)-Bayes risk by taking the expectation of the
error function with respect to the joint conditional PDF,

R↑(θθθ k|ZZZk−1;ΘΘΘk−1) = E↑k {ε(x̂xx(ZZZk),xxxk)}, (10.8)

where E↑k {·} denotes expectation with respect to f ↑(xxxk,zzzk). We can also write the
PC-Bayes risk as the expectation of the posterior Bayes risk with respect to f− (zzzk),
i.e.,

R↑(θθθ k|ZZZk−1;ΘΘΘk−1) = E−zzzk
{R+(ZZZk;ΘΘΘk)}, (10.9)

where E−zzzk
{·} denotes expectation with respect to f− (zzzk). In many applications, the

PC-Bayes risk may be difficult to compute and in general will not have a closed form
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analytical expression. To overcome this difficulty, information-theoretic surrogate
functions that are analytically tractable and provide a good indication of the quality
of the target state estimate are often substituted. The next set of sensor parameters are
chosen to minimize an executive cost (or objective) function CE(θθθ k|ZZZk−1;ΘΘΘk−1). In
the task-driven approach, the executive cost function is a scalar function that incorpo-
rates the processor performance, derived from the PC-Bayes risk or a surrogate, with
system requirements and the cost of obtaining measurements. In the information-
driven approach, the executive cost function is an information theoretic measure.
The executive processor optimization problem is then

θθθ k = argmin
θθθ

CE(θθθ |ZZZk−1;ΘΘΘk−1). (10.10)

In the next two sections, we specialize the general FAR framework for the mul-
titarget multitask RRA problem.

10.3 Multitarget Multitask FARRA System Model

The multitarget multitask FARRA system model is shown in Figure 10.2. There is a
single PAC with a perceptual processor that consists of M tasks and an executive pro-
cessor that allocates system resources to the M tasks and specifies the next sequence
of transmissions of the radar.

Figure 10.2: System Model for Multiple Task FARRA
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10.3.1 Radar Resource Allocation Model
We define a resource allocation frame as an interval of fixed length TF and let k
denote the frame (time) index. We assume there are M variable length dwells in the
kth frame, corresponding to M different tasks, where M is fixed and known. During
each task dwell, we assume that the radar can transmit nothing (taking up no time)
or one of L waveforms from a waveform library. Let al ; l = 0, . . . ,L denote each of
the possible actions (waveforms), where a0 is the action of no transmission, and let
A = {a0, . . . ,aL} denote the set of actions.

10.3.2 Controllable Parameters
The radar resource parameter vector, or action vector, for the kth frame is defined as
the M×1 vector

θθθ k =
[
θ1,k θ2,k · · · θM,k

]T
, (10.11)

where θm,k ∈ A is the action in the mth dwell of the kth frame. The objective of the
FARRA executive processor is to determine the best action vector for the next one
or more frames.

10.3.3 State Vector
Following TBD, we assume there are N targets, where N is fixed and known, and the
multitarget state vector has the form:

xxxk =
[
xxxT

1,k xxxT
2,k · · · xxxT

N,k
]T

, (10.12)

where xxxn,k is the state vector for the nth target and contains components relevant to
the tasks at hand. Here we consider multitarget tracking and classification, therefore
each target’s state is composed of a tracking state vector yyyn,k and a classification state
variable cn,k:

xxxn,k =
[
yyyT

n,k cn,k
]T

. (10.13)

The tracking state vector yyyn,k consists of kinematic variables (position, velocity, and
possibly acceleration) and the received signal-to-noise ratio (SNR). The tracking
state variables are continuous random variables, while the target class is a discrete
random variable that takes on one of a discrete set of values. As such, the various
PDFs define in Section 10.2 become a combination of a PDF for the continuous
components and a probability mass function (PMF) for the discrete components.

10.3.4 Transition Model
The transition model consists of a prior PDF/PMF q(xxx0) and a transition PDF/PMF
q(xxxk|xxxk−1;θθθ k). We assume the target transition models are independent across tar-
gets, and that for each target, the tracking and classification transition models are
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independent, therefore the joint tracking and classification transition model has the
form:

q(xxx0) =
N

∏
n=1

q(xxxn,0) =
N

∏
n=1

q(yyyn,0)q(cn,0) (10.14)

and

q(xxxk|xxxk−1)=
N

∏
n=1

q(xxxn,k|xxxn,k−1;θθθ k)=
N

∏
n=1

q(yyyn,k|yyyn,k−1;θθθ k)q(cn,k|cn,k−1). (10.15)

In this model we assume that the tracking transition model depends on the sensor
parameters but the classification transition model does not, as explained below.

For each target, we assume an initial tracking state distribution of the form yyyn,0∼
N
(
µµµn,0,ΣΣΣn,0

)
, where the notation yyy∼ N (µµµ,ΣΣΣ) means that the random vector yyy has a

multivariate Gaussian distribution with mean µµµ and covariance matrix ΣΣΣ. We use the
notation N (yyy; µµµ,ΣΣΣ) to denote the multivariate Gaussian PDF for the random variable
yyy, i.e.

N (yyy; µµµ,ΣΣΣ)
.
=

1√
|2πΣΣΣ|

exp
{
−1

2
[yyy−µµµ]T ΣΣΣ

−1 [yyy−µµµ]

}
. (10.16)

Therefore

q(yyyn,0) = N
(
yyyn,0; µµµn,0,ΣΣΣn,0

)
. (10.17)

Let ∆t(θθθ k) = tk− tk−1. We assume a linear, additive white Gaussian noise (AWGN)
motion model of the form:

yyyn,k = FFFn (∆t(θθθ k))yyyn,k−1 + eeen,k, (10.18)

where the process noise distribution is eeen,k ∼N (000,QQQn (∆t(θθθ k))) so that the transition
PDF is:

q(yyyn,k|yyyn,k−1;θθθ k) = N
(
yyyn,k;FFFn (∆t(θθθ k))yyyn,k−1,QQQn (∆t(θθθ k))

)
. (10.19)

We assume the target class cn,k takes on one of a discrete set of Nc values in the
set C,

cn,k ∈C = {1,2, . . . ,Nc} . (10.20)

For each target, the prior distribution is characterized by the PMF q(cn,0), which is
represented by the Nc×1 vector qqqn, which consists of the Nc probabilities

[qqqn]i = P(cn,0 = i); i = 1, . . . ,Nc. (10.21)

The transition model q(cn,k|cn,k−1) is represented by the Nc×Nc transition matrix
ϒϒϒn, where

[ϒϒϒn]i j = P(cn,k = i|cn,k−1 = j); i, j = 1, . . . ,Nc. (10.22)

Depending on the model, the target may or may not be able to switch classes. For
example, if the class represents a target behavior class, then switching can occur,
however if the class represents a type of vehicle or aircraft, then switching cannot
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occur and ϒϒϒn = III. We assume that the classification transition model does not depend
on the time between updates or the sensor parameters θθθ k.

10.3.5 Measurement Model
We assume that each target is allocated one dwell per frame, in which up to one
tracking and up to one classification measurement is obtained. Let zzzn,k and ξξξ n,k
denote the tracking and classification measurement vectors, respectively, for the nth
target during the kth frame. Either or both of these may be empty if there is no
measurement of that type. Thus we have 2N measurements from M = N dwells and
the measurement vector has the form:

zzzk =
[
zzzT

1,k ξξξ
T
1,k zzzT

2,k ξξξ
T
2,k · · · zzzT

N,k ξξξ
T
N,k

]T
. (10.23)

We assume the measurements are independent, thus the likelihood function has the
form:

f (zzzk|xxxk;θθθ k) =
N

∏
n=1

f (zzzn,k|yyyn,k;θθθ k) f (ξξξ n,k|cn,k;θθθ k). (10.24)

For tracking, we assume that measurements are received with detection prob-
ability PD

(
yyyn,k;θθθ k

)
, where the detection probability is determined by the received

SNR, which is a function of the target state and sensor parameters. When measure-
ments are received, we assume they follow a nonlinear, AWGN measurement model
of the form:

zzzn,k = hhhn
(
yyyn,k
)
+nnnn,k, (10.25)

where hhhn
(
yyyn,k
)

is a nonlinear transformation from the target state space to the radar
measurement space and nnnn,k is the measurement error, which is modeled as nnnn,k ∼
N
(
000,RRRn,k (θθθ k)

)
, where RRRn,k (θθθ k) is the measurement covariance matrix. The single

target tracking likelihood function is then:

f (zzzn,k|yyyn,k;θθθ k) = N
(
zzzn,k;hhhn

(
yyyn,k
)
,RRRn,k (θθθ k)

)
. (10.26)

For classification, we consider two measurement models: a discrete class mea-
surement model and a continuous Gaussian feature vector model. In the discrete
class model, we assume that the sensor makes a discrete valued measurement of tar-
get class, i.e. ξn,k ∈C = {1,2, . . . ,Nc} and the likelihood function f (ξn,k|cn,k;θθθ k) is
represented by the Nc×Nc likelihood matrix LLLn(θθθ k), where

[LLLn]i j (θθθ k) = P(ξn,k = i|cn,k = j); i, j = 1, . . . ,Nc. (10.27)

In the Gaussian feature vector model, we assume that the sensor makes a continuous
valued measurement of a feature vector ξξξ n,k and the likelihood function is a Gaussian
density with mean and covariance matrix determined by the target class. For the ith
class, the likelihood function is:

f (ξξξ n,k|cn,k = i;θθθ k) = N
(
ξξξ n,k; µµµn,i (θθθ k) ,ΣΣΣn,i (θθθ k)

)
; i = 1, . . . ,Nc. (10.28)
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10.4 FARRA PAC

10.4.1 Perceptal Processor
Since the motion and measurement models developed in Section 10.3 are indepen-
dent across targets and tasks, the Bayes-Markov recursions decouple and can be com-
puted separately for the tracking and classification tasks for each target. While the
Bayes-Markov recursion expressions in (10.1)-(10.4) appear straightforward, they
are usually analytically and/or computationally infeasible to evaluate exactly. One
exception is in the tracking problem when the motion and measurement models are
linear with AWGN, and the transition density, likelihood function, predicted density,
and posterior density are all Gaussian. In this case the exact solution is given by the
linear Kalman filter (KF) and the motion and measurement updates consist of explicit
linear calculations of the mean vectors and covariance matrices that characterize the
Gaussian densities. For the general tracking problem, approximate and suboptimal
implementations include the extended Kalman filter (EKF), unscented Kalman filter
(UKF), particle filters, and many others. Our tracking model includes a nonlinear
AWGN measurement model and we will use the EKF as an approximate solution to
the Bayes-Markov recursion. The EKF reduces to the exact KF if the measurement
model is in fact linear. Another exception is in the classification problem when the
target state is one of a discrete set of classes, the motion model is specified by a tran-
sition matrix, and the likelihood function has a closed form analytical expression.
Our classification models meet these requirements.

For the tracking tasks, the predicted and posterior PDFs are computed using the
EKF. The PDFs are presumed to be Gaussian of the form

f−(yyyn,k) = N
(

yyyn,k; µµµ
−
n,k,PPP

−
n,k

)
(10.29)

f+(yyyn,k) = N
(

yyyn,k; µµµ
+
n,k,PPP

+
n,k

)
. (10.30)

The EKF is initialized with:

µµµ
+
n,0 = µµµn,0 (10.31)

PPP+
n,0 = ΣΣΣn,0 (10.32)

and the recursions have the from:

µµµ
−
n,k = FFFn (∆t(θθθ k))µµµ

+
n,k−1 (10.33)

PPP−n,k = FFFn (∆t(θθθ k))PPP+
n,k−1FFFn (∆t(θθθ k))

T +QQQn (∆t(θθθ k)) (10.34)

HHHn,k = HHHn(µµµ
−
n,k) (10.35)

KKKn,k = PPP−n,kHHHT
n,k

[
HHHn,kPPP−n,kHHHT

n,k +RRRn,k(θθθ k)
]−1

(10.36)

µµµ
+
n,k = µµµ

−
n,k +KKKn,k

[
zzzn,k−hhhn(µµµ

−
n,k)
]

(10.37)

PPP+
n,k = PPP−n,k−KKKn,kHHHn,kPPP−n,k, (10.38)
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where HHHn(yyy) is the Jacobian matrix, defined as:

HHHn(yyy) =
[
∇yyyhhhn(yyy)T ]T . (10.39)

For the classification tasks, the predicted and posterior PMFs are computed us-
ing the exact Bayes-Markov recursions. Let f−i (cn,k)

.
= P(cn,k = i|ZZZk−1;ΘΘΘk−1) de-

note the predicted PMF and f+i (cn,k)
.
= P(cn,k = i|ZZZk;ΘΘΘk) denote the posterior PMF.

The recursion is initialized with:

f+i (cn,0) = [qqqn]i ; i = 1, . . . ,Nc, (10.40)

and the predicted PMF is computed from:

f−i (cn,k) =
Nc

∑
j=1

[ϒϒϒn]i j f+j (cn,k−1); i = 1, . . . ,Nc. (10.41)

For the discrete class measurement model, the information update has the form:

f−(ξn,k) =
Nc

∑
j=1

[LLLn]ξn,k, j
(θθθ k) f−j (cn,k) (10.42)

f+i (cn,k) =
[LLLn]ξn,k,i

(θθθ k) f−i (cn,k)

f−(ξn,k)
; i = 1, . . . ,Nc, (10.43)

while for the Gaussian feature vector measurement model, the information update
has the form:

f−(ξξξ n,k) =
Nc

∑
j=1

f (ξξξ n,k|cn,k = j;θθθ k) f−j (cn,k) (10.44)

f+i (cn,k) =
f (ξξξ n,k|cn,k = i;θθθ k) f−i (cn,k)

f−(ξξξ n,k)
; i = 1, . . . ,Nc. (10.45)

The posterior Bayes risk for the multitarget tracking and classification state vec-
tor is the sum of the the traces of the posterior mean square error (MSE) matrices and
the posterior probability of incorrect classification across all targets. The solution to
(10.6) is the mean of the posterior PDF for the tracking variables and the maximum
of the posterior PMF for the classification variables:

ŷyyn,k(ZZZk) = E+
k

{
yyyn,k
}
= µµµ

+
n,k; n = 1, . . . ,N (10.46)

ĉn,k(ZZZk) = argmax
i∈C

f+i
(
cn,k
)

; n = 1, . . . ,N. (10.47)

10.4.2 Executive Processor
In this chapter, we develop both task-driven and information-driven methods for
specifying the objective function used by the executive processor. It should be noted
here that in both approaches, the optimization is in a global sense and may not be the
optimal solution for a particular radar task.
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10.4.2.1 Task-Driven (QoS) Approach
Following the development in [19], we assume there are M tasks. The perceptual
processor for the mth task computes a perception of its environment, which may in-
clude quantities such as target location, target class, target SNR, etc. The executive
processor for the mth task analytically evaluates the performance of the perceptual
processor in terms of a task QoS metric, which is denoted by Gm,k(θθθ k|ZZZk−1;ΘΘΘk−1).
The QoS metric for the current frame will in general depend on the perception
from the previous frame, the previous sensing actions, and the current sensing ac-
tion. Each task QoS metric has a task QoS requirement, denoted Ḡm. The task
QoS metrics and requirements are physically meaningful quantities with appropriate
physical units. The task QoS metric and requirement are converted to a task utility
Um,k(θθθ k|ZZZk−1;ΘΘΘk−1), which is a unitless quantity on the interval [0,1]. It represents
the level of satisfaction with the QoS and is determined from the task utility function,

Um,k(θθθ k|ZZZk−1;ΘΘΘk−1) = um(Gm,k(θθθ k|ZZZk−1;ΘΘΘk−1), Ḡm). (10.48)

The executive processor combines and balances the task utilities along with resource
constraints to determine the resource allocation for the next frame. The mission util-
ity, or mission effectiveness, is a measure of the radar system’s ability to meet all of
its requirements. It is a weighted sum of the task utilities, where the task weighting,
wm, represents the relative importance of the mth task to the overall mission, and the
weights sum to one. The mission utility is given by

U(θθθ k|ZZZk−1;ΘΘΘk−1)) =
M

∑
m=1

wmUm,k(θθθ k|ZZZk−1;ΘΘΘk−1). (10.49)

Constraints on system resources are described by the function gc(θθθ k), constructed so
the constraint may be expressed as the inequality gc(θθθ k)≤ 0. The next action vector
is then determined by maximizing the mission utility subject to the constraint

θθθ k = argmax
θθθ

U(θθθ |ZZZk−1;ΘΘΘk−1), s.t.gc(θθθ)≤ 0. (10.50)

For a tracking task, we use the position and velocity RMSE and the requirement
is an upper limit on the RMSE. In most cases, it is not possible to evaluate the RMSE
analytically. However, the Bayesian Cramér-Rao lower bound (BCRLB), the inverse
of the Bayesian information matrix (BIM), provides a (matrix) lower bound on the
MSE matrix of any estimator [33] and is usually analytically tractable. For tracking
applications, this yields the posterior Cramér-Rao lower bound (PCRLB) [34]. The
PCRLB provides a lower bound on the global MSE that has been averaged over xxxk
and ZZZk, thus it characterizes tracker performance for all possible data that might have
been received. Here we use a predicted conditional BIM (PC-BIM) and a predicted
conditional Cramér-Rao lower bound (PC-CRLB) to bound the PC-MSE matrix,
which is averaged over the joint density of xxxk and zzzk conditioned on ZZZk−1. The PC-
CRLB differs from the PCRLB in that it characterizes performance conditioned on
the actual data that has been received. For our model the PC-BIM has the same form
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as the inverse of the EKF posterior covariance matrix in (10.38), which simplifies to

BBB↑n,k(θθθ k|ZZZk−1;ΘΘΘk−1) =
[
PPP−n,k−KKKn,kHHHn,kPPP−n,k

]−1

=
[
PPP−n,k

]−1
+HHHT

n,kRRRn,k(θθθ k)
−1HHHn,k. (10.51)

In our model, a detection is obtained with probability PD
(
yyyn,k;θθθ k

)
. When a detection

is obtained, the PC-BIM has the form given in (10.51). When a detection is missed,
the second term is equal to zero and the PC-BIM is equal to the inverse of the pre-
dicted covariance matrix. Using the approach of the information reduction factor
bound in [35], and substituting the mean of the predicted density for the unknown
target state, the tracking PC-BIM with missed detections is:

B̃BB↑n,k(θθθ k|ZZZk−1;ΘΘΘk−1) =
[
PPP−n,k

]−1
+PD

(
µµµ
−
n,k;θθθ k

)
HHHT

n,kRRRn,k(θθθ k)
−1HHHn,k. (10.52)

The tracking PC-CRLB is the inverse of the PC-BIM,

C̃CC
↑
n,k(θθθ k) = B̃BB↑n,k(θθθ k|ZZZk−1;ΘΘΘk−1)

−1, (10.53)

where we have temporarily dropped the conditioning on ZZZk−1 and ΘΘΘk−1 to simplify
the notation. The QoS metrics are the position and velocity RMSEs obtained from
the PC-CRLB as follows:

GR
n,k(θθθ k) =

√[
C̃CC
↑
n,k(θθθ k)

]
x
+
[
C̃CC
↑
n,k(θθθ k)

]
y
+
[
C̃CC
↑
n,k(θθθ k)

]
z

(10.54)

GV
n,k(θθθ k) =

√[
C̃CC
↑
n,k(θθθ k)

]
ẋ
+
[
C̃CC
↑
n,k(θθθ k)

]
ẏ
+
[
C̃CC
↑
n,k(θθθ k)

]
ż
. (10.55)

The QoS requirements are the values that we want the RMSEs to be below, denoted
as ḠR

n and ḠV
n . We then define the position and velocity task utility functions to be:

UR
n,k(θθθ k) =


ḠR

n
GR

n,k(θθθ k)
GR

n,k(θθθ k)> ḠR
n

1 GR
n,k(θθθ k)≤ ḠR

n

(10.56)

UV
n,k(θθθ k) =


ḠR

n
GV

n,k(θθθ k)
GV

n,k(θθθ k)> ḠV
n

1 GV
n,k(θθθ k)≤ ḠV

n .
(10.57)

With these utility functions, if the QoS metric is below the required value, the re-
sulting utility is one and there is neither a penalty nor any additional utility for being
below the requirement.

For a classification task, the desired QoS metric is the probability of incor-
rect classification. The posterior probability of incorrect classification is difficult
to compute and in general does not have a closed form analytical expression. The
PC-probability of incorrect classification is even more difficult to compute since it
involves an additional expectation over the next measurement ξξξ n,k. To overcome
this difficulty, we substitute an information-theoretic surrogate that is analytically
tractable and provides a good indication of the quality of the target class estimate.

12 
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As in [30–32], we use the entropy, which can be calculated directly from the discrete
classification PMF. The entropy of the predicted and posterior PMFs, respectively,
are defined as [22]:

H−(cn,k) = −
Nc

∑
i=1

f−i (cn,k) ln f−i (cn,k) (10.58)

H+(cn,k) = −
Nc

∑
i=1

f+i (cn,k) ln f+i (cn,k). (10.59)

The entropy has the property 0 ≤ H ≤ ln(Nc). It is low when the PMF is concen-
trated on one of the classes and high when the PMF is distributed across the classes.
The minimum value is obtained when all the probability is in one class and the max-
imum value is obtained when all classes have the same probability. The posterior
entropy is a surrogate for the posterior probability of incorrect classification and is
used to characterize classification performance after the measurement is received. In
order for the executive processor to determine the next sensing action, we also need
a surrogate for the PC-probability of incorrect classification, which characterizes the
expected performance of the current (next) measurement, given the past measure-
ments that have been observed. If we take the expected value of the posterior entropy
with respect to f−(ξξξ n,k), we obtain the desired surrogate, which is the conditional
entropy [22] of cn,k given ξξξ n,k conditioned on the past measurements ZZZk−1.

For the discrete class measurement model, we must compute f−(ξn,k) and f+i (cn,k)
for every ξn,k using (10.42) and (10.43). Using slightly more explicit notation, define
f+i| j(cn,k|ξn,k)

.
= P(cn,k = i|ξn,k = j,ZZZk−1;ΘΘΘk) and f−j (ξn,k)

.
= P(ξn,k = j|ZZZk−1;ΘΘΘk).

The conditional entropy is then computed from:

H↑n (θθθ k|ZZZk−1;ΘΘΘk−1)=
Nc

∑
j=1

f−j (ξn,k)

{
−

Nc

∑
i=1

f+i| j(cn,k|ξn,k) ln f+i| j(cn,k|ξn,k)

}
.(10.60)

For the Gaussian feature vector measurement model, we must compute f−(ξξξ n,k)

and f+i (cn,k) as a function of ξξξ n,k using (10.44) and (10.45). Using the notation
f+i (cn,k|ξξξ n,k)

.
= P(cn,k = i|ξξξ n,k,ZZZk−1;ΘΘΘk), the conditional entropy is then computed

from:

H↑n (θθθ k|ZZZk−1;ΘΘΘk−1)=
∫

f−(ξξξ n,k)

{
−

Nc

∑
i=1

f+i (cn,k|ξξξ n,k) ln f+i (cn,k|ξξξ n,k)dξξξ n,k

}
.(10.61)

The integral does not have a closed form expression and must be evaluated numeri-
cally or approximated.

The QoS classification accuracy metric is the conditional entropy, GC
n,k(θθθ k) =

H↑n (θθθ k|ZZZk−1;ΘΘΘk−1) and the QoS requirement is the value that FARRA wants the
conditional entropy to be below, denoted as ḠC

n . We then define the classification
task utility function to be:

UC
n,k(θθθ k) =


ḠC

n
GC

n,k(θθθ k)
GC

n,k(θθθ k)> ḠC
n

1 GC
n,k(θθθ k)≤ ḠC

n

(10.62)
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The mission utility function is obtained by assigning weights to the task utility
functions, which we denote as wR

n , wV
n , and wC

n , and computing the weighted sum of
the task utilities,

U(θθθ k|ZZZk−1;ΘΘΘk−1)) =
N

∑
n=1

(
wR

nUR
n,k(θθθ k)+wV

n UV
n,k(θθθ k)+wC

nUC
n,k(θθθ k)

)
. (10.63)

10.4.2.2 Information-Driven Approach
In the information-driven approach, the relative merit of different sensing actions
is measured by the corresponding expected gain in information [8, 10, 12, 17, 25].
Assume, temporarily, that at time tk a FARRA strategy has selected action θθθ k, it has
been executed, and measurement zzzk has been received. To judge the value of this
action, we compute the information gained by that measurement; specifically the
information gain between the predicted PDF on target state before the measurement
was taken f−(xxxk) and the posterior PDF after the measurement has been received
f+(xxxk). The most popular approach uses the KLD. The KLD between f+(xxxk) and
f−(xxxk) is defined as [22]:

D( f+(xxxk)|| f−(xxxk))
.
=
∫

f+(xxxk) ln
f+(xxxk)

f−(xxxk)
dxxxk. (10.64)

There are a number of generalizations of the KLD in the literature, including the
Renyi divergence, the Arimoto-divergences, and the f-divergence [23–25]. The KLD
has a number of nice theoretical and practical properties, including (a) the ability to
compare actions which generate different types of knowledge (e.g., knowledge about
target class versus knowledge about target position) using a common measuring stick
– information gain; (b) the asymptotic connection between information gain and risk-
based optimization; and (c) the avoidance of weighting schemes to value different
types of information. Taking the expectation with respect to f−(zzzk), we obtain the
expected KLD, which is also known as the MI [22]:

Ixxxzzz(θθθ k|ZZZk−1;ΘΘΘk−1)
.
= E−zzzk

{∫
f+(xxxk) ln

f+(xxxk)

f−(xxxk)
dxxxk

}
. (10.65)

The next action vector is then determined by maximizing the mutual information,

θθθ k = argmax
θθθ

Ixxxzzz(θθθ |ZZZk−1;ΘΘΘk−1) (10.66)

For our model, the global MI decomposes into the sum of the tracking and clas-
sification MIs, which we denote as Iyyyzzz;n(θθθ k|ZZZk−1;ΘΘΘk−1) and Icξξξ ;n(θθθ k|ZZZk−1;ΘΘΘk−1),
respectively,

Ixxxzzz(θθθ k|ZZZk−1;ΘΘΘk−1)=
N

∑
n=1

(
Iyyyzzz;n(θθθ k|ZZZk−1;ΘΘΘk−1)+ Icξξξ ;n(θθθ k|ZZZk−1;ΘΘΘk−1)

)
.(10.67)

The tracking MI has the form

Iyyyzzz;n(θθθ k|ZZZk−1;ΘΘΘk−1)=
1
2

ln |PPP−n,k|+
1
2

ln
∣∣∣∣[PPP−n,k]−1

+HHHT
n,kRRRn,k(θθθ k)

−1HHHn,k

∣∣∣∣ .(10.68)
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The classification MI is the difference between the entropy of the predicted PMF in
(10.58) and the conditional entropy in (10.60) or (10.61),

Icξξξ ;n(θθθ k|ZZZk−1;ΘΘΘk−1) = H−(cn,k)−H↑n (θθθ k|ZZZk−1;ΘΘΘk−1). (10.69)

Comparing the second term in (10.68) to the expression for the PC-BIM in
(10.51), we see that the tracking MI is a function of the determinant of the PC-
BIM. Thus, the task-based and information-based methods developed here have at
their core the same information theoretic quantities, and the distinction is in the sep-
aration and weighting of individual tasks in the task-based method versus a global
approach in the information-based method.

10.5 Simulation Results

We now demonstrate FARRA algorithm performance for concurrent tracking and
classification of multiple targets using a single multimode radar sensor. We consider
a scenario consisting of an airborne radar platform and three airborne targets, as il-
lustrated in Figure 10.3. The tracking state vector yyyn,k is a ten-dimensional vector

Figure 10.3: Airborne Radar Simulation Scenario

consisting of the nine-dimensional (x,y,z) position, velocity, and acceleration, and
the SNR in decibels, which we denote as sn,k = 10log10 ζn,k, where ζn,k is the SNR
in linear scale. We use a Singer model [36] for target motion in the tracker. The
classification state variable cn,k is assumed to be one of Nc = 5 classes, and we as-
sume the transition matrix has diagonal entries [ϒϒϒn]ii = 0.95 and off-diagonal entries
[ϒϒϒn]i j = 0.0125.

We assume the RRA frame is 100ms and the radar sensor must allocate resources
to a surveillance task for detecting new targets and to tracking and classification tasks
for each of the known targets. We assume 90ms are used for surveillance (search)
dwells and the remaining 10ms are for the tracking and classification. In this study,
we focus on the tracking and classification tasks and consider the surveillance task
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only by allocating it a fixed amount of the RRA frame time, thus restricting the time
available for the tracking and classification tasks.

The radar system parameters that characterize task performance include the cen-
ter frequency ( fc), azimuth beamwidth (∆φ ), elevation beamwidth (∆θ ), pulse band-
width (Bp), pulse repetition frequency ( fp), and number of pulses (Np), as well as
the speed of light (c).

The radar can adaptively select between a tracking mode and a classification
mode. When in tracking mode, it can choose a pulse repetition frequency (PRF),
bandwidth, and pulse count from a list of possibilities. When in classification mode,
the radar can select among modes which trade classification accuracy with timeline.
The available waveforms, their parameters, and dwell times are listed in Table 10.1.
Also included is the “do nothing” waveform #0.

Table 10.1 Waveform Parameters and Dwell Times

Waveform Bp (MHz) fp (kHZ) Np T (ms)
0 N/A 0.0

1,2,3 1,5,10 20 1 0.05
4,5,6 1,5,10 10 1 0.1
7,8,9 1,5,10 20 10 0.5

10,11,12 1,5,10 10 10 1.0
13,14,15 1,5,10 20 20 1.0
16,17,18 1,5,10 10 20 2.0
19,20,21 1,5,10 20 50 2.5
22,23,24 1,5,10 10 50 5.0

Waveform pcc T (ms)
25 .3 1.0
26 .6 2.5
27 .75 5.0

In this simulation, the fixed radar parameters are fc = 3GHz, ∆φ = 2◦, ∆θ = 6◦,
c = 3×108m/s, and PF = 10−6.

The FARRA algorithm may elect to measure each target during the dwell or any
subset of the targets as long as the total measurement time fits into the allocated time
budget. For each target, the sensor may select from the following options:

• Do nothing Choose waveform #0. This takes zero time and generates zero
utility. It frees up the timeline to dedicate extra dwell time to other targets.

• Perform a track dwell. Choose from waveforms #1− 24. This takes variable
time given by Np/ fp and provides variable utility depending on the waveform
parameters.

• Perform a classification dwell. Choose from waveforms #25−27. This takes
variable time and provides variable utility.
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The tracking measurement process results in detection-level data of target range
(R), range-rate (Ṙ), azimuth angle (φ ), elevation angle (θ ), and SNR in decibels
(s). Let Bp;n,k, fp;n,k, and Np;n,k denote the bandwidth, PRF, and number of pulses
corresponding to the selected waveform for the nth target. For a given probability of
false alarm, PF , tracking measurements are made with a probability of detection [37]:

PD(ζn,k;θθθ k) = QMAR

(√
2Np;n,kζn,k,

√
−2lnPF

)
, (10.70)

where QMAR(a,b) is the Marcum Q-function. The estimation covariance matrix is a
diagonal matrix whose components are [38, 39]:

[
RRRn,k(θθθ k)

]
R =

[
2Np;n,kζn,k

(
2
c

)2 (
3Bp;n,k

)2

]−1

(10.71)

[
RRRn,k(θθθ k)

]
Ṙ =

[
2Np;n,kζn,k

(
4π fc

c

)2
(

1
12B2

p;n,k
+

(N2
p;n,k−1)

12 f 2
p;n,k

)]−1

(10.72)

[
RRRn,k(θθθ k)

]
φ

=

[
2Np;n,kζn,k

(
1.782π

∆φ

)2
]−1

(10.73)

[
RRRn,k(θθθ k)

]
θ

=

[
2Np;n,kζn,k

(
1.782π

∆θ

)2
]−1

(10.74)

[
RRRn,k(θθθ k)

]
s =

(
10

ln(10)

)2

. (10.75)

The classification measurement process returns a discrete classification call with
probability of correct classification pcc;n,k corresponding to the selected waveform
for the nth target. The likelihood matrix has the form

[LLLn]i j (θθθ k) =

{
pcc;n,k i = j

1− pcc;n,k
4 i 6= j.

(10.76)

The predicted utility of a sensing action is scored using either the task-driven
metric in (10.88) or the information-driven metric in (10.67). For the QoS metric,
we set ḠR

1 = 100m, ḠV
1 = 20m/s, ḠC

1 =1.2, ḠR
2 = ḠR

3 = 200m, ḠV
2 = ḠV

3 = 60m/s,
and ḠC

2 = ḠC
3 =0.8. The tasks are equally weighted. The objective is then maximized

subject to the timeline constraint.
The simulation is repeated for 1000 Monte Carlo trials for each method. The

trials have the sensor and target trajectories fixed, but a random realization of the
measurements is drawn anew each time. This, in turn, affects the adaptive resource
allocation calculations leading to different allocations and performance each time.

Figure 10.4 shows the positon and velocity RMSEs and Figure 10.5 shows the
classification entropy and probability of corrrect classification for each method. Also
shown are the performance goals used in the task-driven method. These are not used
in the information-driven method, but are shown for reference. Figure 10.6 shows
the MI for each method. This is not used in the task-driven method, but is shown for
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reference. Figure 10.7 shows how the resource allocation algorithm selected to use
the sensors over time by looking at what fraction of the 10ms frame is used for each
target at each time.

(a) Task-Driven Method

(b) Information-Driven Method

Figure 10.4: Tracking RMSE

This example illustrates that the task-driven and information-driven FARRA al-
gorithms produce similar RMSEs, probability of correct classification, and classi-
fication entropy for the three targets. In the task-driven method, Targets 2 and 3
always meet their performance goals, while Target 1 is only able to meet its clas-
sification goal. In the information-driven method, where performance goals are not
considered, Target 1 RMSE values are slightly higher and Target 2 and 3 RMSE val-
ues are slightly lower. The classification entropies are essentially the same for all
three targets, with a lower value for Target 1 and higher values for Targets 2 and 3
as compared to the task-driven method. The information-driven method maximizes
the total mutual information and does so by making the mutual information approx-
imately the same for each target. The task-driven method does not consider mutual
information and achieves a slightly higher value for Target 1 but lower values (on
average) for Targets 2 and 3.

The methods the scheduling algorithms deploy to reach the roughly equal track-
ing and classification performance are different. Broadly speaking, we find that both
approaches interleave tracking and classification, with more classification dwells
during the first portion of the simulation to maintain track accuracy but also to learn
about the target class. After that, classification dwells are taken periodically to main
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(a) Task-Driven Method

(b) Information-Driven Method

Figure 10.5: Classification Entropy and Probability of Correct Classification

(a) Task-Driven Method (b) Information-Driven Method

Figure 10.6: Mutual Information

classification performance. For tracking, the task-driven method typically measures
one target at 5ms and the other two at 2.5ms. In contrast, the information-driven
approach prefers to make 5ms dwells. It does this by typically measuring two targets
at 5ms and skipping one target. This generates larger PD dwells for two targets at
the expense of not measuring a third. In the task-driven method, the algorithm is not
able to meet the RMSE performance goals for Target 1, but tries very hard by taking
tracking measurements about 85% of the time and classification measurements about
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(a) Task-Driven Method

(b) Information-Driven Method

Figure 10.7: FARRA Selection of Waveforms

15% of the time. For Targets 2 and 3, the RMSE goals are met easily, and less time is
spent on tracking measurements. In the information-driven method, the allocation of
tracking, classification, and no measurement dwells is roughly the same for all three
targets at approximately 60%, 25%, and 20%, respectively.

10.6 Experimental Results

In this section, we demonstrate FARRA algorithm performance for concurrent track-
ing and classification of a single target using a single radar sensor in the CREW
testbed [29]. The scenario is illustrated Figure 10.8. As the human target moves
back and forth in the laboratory, the tracking task estimates the range to the target
and its velocity and the classification task separately assigns one of three motion
classes: “walking”, “jogging/running”, and “punching” to the observed target.

The tracking model is the same as in [27]. The state vector yyyk is a three-
dimensional vector consisting of the target’s range (R), velocity (V ), and the pulse-
integrated SNR in linear scale (S = Npζ ). We use a nearly constant velocity target
motion model in the tracker with an empirically determined process noise covariance
matrix [27]. The classification state variable is assumed to be one of Nc = 3 classes
and the transition matrix has diagonal entries [ϒϒϒn]ii = 0.99 and off-diagonal entries
[ϒϒϒn]i j = 0.005.

The radar sensor must allocate resources to a tracking task and a classification
task. During each dwell, the CREW radar transmits linear frequency modulation
(LFM) waveform pulse, where the available waveforms consist of different combi-
nations of allowable LFM bandwidths, pulse widths, PRFs, and number of pulses.
The CREW can set these parameters with very fine precision, thus the number of
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Figure 10.8: CREW Scenario

available waveforms is very large and we don’t enumerate all the possibilities, but
define the sensor parameter vector in terms of the four adjustable parameters, i.e.,

θθθ k =
[
Bp;k τp;k fp;k Np;k

]T
. (10.77)

The tracking task processes data from every dwell and tracking information up-
dates are always performed regardless of sensor parameter settings used to collect
data. The range of values of the four adjustable parameters is given in Table 10.2. In
this experiment we limited each parameter to 10 values. The CREW can also adjust
its transmit power (Pt ) on each dwell, however in this example we hold it fixed. The
fixed transmit power and center frequency are also shown in Table 10.2.

Table 10.2 CREW Tracking Waveform Parameters

Parameter Number of Values Adaptive Value Range
fc 1 95.5 GHz
Pt 1 11.5 dBm
Bp 10 300-1000 MHz
τp 10 0.5-1.0 µs
fp 10 4-15 kHz
Np 10 64-512

The classifier used in the classification task has been developed using training
data collected with two fixed sets of sensor parameters, therefore classification can
be performed only when the data is collected using these sensor parameter settings,
shown in Table 10.3. If the current data is collected using other sensor parameters,
the data is not provided to the classification task and there is no classification infor-
mation update.
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Table 10.3 CREW Classification Waveform Parameters

Waveform Bp (GHz) τp (µs) fp (kHZ) Np

Low 0.3 0.5 4.889 64
High 1.0 0.5 15.0 512

Let ∆t(θθθ k) denote the measurement update interval. It depends on the length of
the CPI and the processing time, tproc,

∆t(θθθ k) =
Np;k

fp;k
+ tproc. (10.78)

The FARRA algorithm must decide the sensor parameters to use during each
dwell. If it chooses parameters to optimize tracking performance, then no data may
be provided to the classifier. If it chooses parameters to optimize classification per-
formance, then data is still provided to the tracker, but it may be of less utility. There
is no ”do nothing” option in this experiment.

For the tracking task, the data is range-Doppler processed and detection-level
data of target range (R), Doppler frequency (F), and pulse-integrated SNR (S) are
obtained. The transmit power is high enough that the probability of detection is equal
to one. The estimation covariance matrix is a diagonal matrix whose components
are [27]:

[RRRk(θθθ k)]R =
[
CRSkB2

p;k
]−1

(10.79)

[RRRk(θθθ k)]F =

[
CF Sk

(
Np;k

fp;k

)2
]−1

(10.80)

[RRRk(θθθ k)]S =
[
CSNp;k

]−1
. (10.81)

where the constants CR, CF , and CS were determined through empirical data analysis
[27].

For the classification task, the data is processed to produce a two-dimensional
feature vector. As described in [31], the classification feature vector is obtained
by processing the I/Q data from the CREW sensor to produce a range profile and
locate the target range bin. A spectrogram is then computed using the short time
Fourier transform, and a high-dimensional feature vector is formed from 500 nor-
malized spectral samples. This was repeated many times to obtain a set of training
data, and multiple discriminant analysis (MDA) was performed to obtain a matrix
for projection of the full 500-dimensional feature vector down to a two-dimensional
(2D) feature vector. The projection matrix was stored, and is used to project the
high-dimensional data down to the 2D feature vector space. Figure 10.9 shows the
2D feature vectors obtained after MDA and projection to 2D space for two training
datasets collected with the two different radar parameter settings. Note that the fea-
ture space vectors are unique up to an arbitrary angular rotation in 2D space, thus
this has to be recognized and ignored when comparing the datasets. The plots show
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that the high performance waveform produces much tighter class clusters than the
low performance waveform. In particular, the walking (legs moving) and punch-
ing (hands moving) classes of the low performance waveform have a large overlap
resulting in increased classification uncertainties for these classes.

(a) Low Performance Waveform (b) High Performance Waveform

Figure 10.9: Feature Space Comparison of CREW Measured Target Returns for Low
and High Performance Waveforms

The means and covariance matrices of the 2D feature vectors shown in Figure
10.9 are determined from the sample mean and covariance of the clusters. The mean
is the center of the cluster and the covariance is represented by the 2σ error ellipse
overlaid on the data. These are the values of µµµ i(θθθ k) and ΣΣΣi(θθθ k) used in the likelihood
function in (10.28).

For this example, we use the multi-objective optimization cost function ap-
proach to develop a task-based FARRA objective function [21]. In this approach,
cost functions are specified rather than utility functions, and the objective function
is minimized. The tracking QoS metrics are the range and velocity RMSEs obtained
from the PC-CRLB and the classification QoS metric is the conditional entropy:

GR
k (θθθ k) =

√[
C̃CC
↑
k(θθθ k)

]
R

(10.82)

GV
k (θθθ k) =

√[
C̃CC
↑
k(θθθ k)

]
V

(10.83)

GC
k (θθθ k) = H↑(θθθ k|ZZZk−1;ΘΘΘk−1). (10.84)

The QoS requirements are the values that we want the RMSEs and conditonal en-
tropy to be below, denoted as ḠR, ḠV , and ḠC. We then define the position, velocity,

23 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



24

and entropy cost functions to be:

CR
k (θθθ k) =

GR
k (θθθ k)− ḠR

ḠR GR
k (θθθ k)> ḠR

0 GR
k (θθθ k)≤ ḠR

(10.85)

CV
k (θθθ k) =

GV
k (θθθ k)− ḠV

ḠV GV
k (θθθ k)> ḠV

0 GV
k (θθθ k)≤ ḠV

(10.86)

CC
k (θθθ k) =

GC
k (θθθ k)− ḠC

ḠC GC
k (θθθ k)> ḠC

0 GC
k (θθθ k)≤ ḠC.

(10.87)

With these cost functions, if the QoS metric is below the required value, the resulting
cost is zero and there is neither a penalty nor any additional utility for being below the
requirement. The mission processing cost function is obtained by assigning weights
to the task cost functions, which we denote as wR, wV , and wC, and computing the
weighted sum of the task costs,

CP(θθθ k) = wRCR
k (θθθ k)+wVCV

k (θθθ k)+wCCC
k (θθθ k). (10.88)

In this example, there is no hard constraint on the observation time, however, we
define a measurement cost function to characterize user preferences for parameter
selections. The preferred sensor parameter values are denoted as B̄p, τ̄p, f̄p, and
N̄p and the measurement cost weights are denoted as wB, wτ , w f , and wN . The
measurement cost function is defined as:

CM(θθθ k)=wB

∣∣∣∣Bp;k− B̄p

B̄p

∣∣∣∣+wτ

∣∣∣∣τp;k− τ̄p

τ̄p

∣∣∣∣+w f

∣∣∣∣ fp;k− f̄p

f̄p

∣∣∣∣+wN

∣∣∣∣Np;k− N̄p

N̄p

∣∣∣∣ .(10.89)

Finally, the executive cost function is the sum of the measurement and processor cost
functions,

CE(θθθ k|ZZZk−1;ΘΘΘk−1) =CM(θθθ k)+CP(θθθ k) (10.90)

The next action vector is then determined by minimizing the executive cost function

θθθ k = argmin
θθθ

CE(θθθ |ZZZk−1;ΘΘΘk−1). (10.91)

The QoS requirements, goal values, and weights for this example and given in
Table 10.4. Following [21], we chose the goal values and weights to favor timeline
minimization. The time required to update a target track is the sum of the CPI and
the processing time, with the CPI being the dominant factor. We set the goal PRF to
the highest value and the goal number of pulses to the lowest value. The processing
time is a function of the amount of data the radar has to process. The number of
fast-time samples collected with each pulse increases with pulse width o small pulse
width is preferable for this case. Similarly, decreasing the waveform bandwidth
decreases the Nyquist sampling rate, so lower sampling frequencies can be used.
This decreases the number of samples per measurement, but only if the sampling
frequency is adjustable. This is not a feature of the CREW system, but the bandwidth
was still included in the optimization to demonstrate how such a flexible system

24 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 



25

might benefit. Both pulse width and bandwidth impacted the overall track update
time less than the CPI, so they were given weights of one, while PRF and Np were
given weights of 20 and 10, respectively. The PRF weight was double the Np weight
to reflect an additional preference for higher PRFs to avoid Doppler aliasing.

Table 10.4 QoS Requirements, Goal Values, and Weights

Parameter Requirement/Goal Weight
Bp 300 MHz 1
τp 0.5 µs 1
fp 15 kHz 20
Np 64 10
R 0.1 m 1/3
V 0.1 m/s 1/3
C 0.3 1/3

In this example, we also explored incorporating measurement cost and task
weighting in the information-based approach. We created cost functions for the
tracking and classification tasks, assigned weights to the tasks which we denote as
wT and wC, and summed to form the processor cost function,

CT
k (θθθ k) = −Iyyyzzz(θθθ k|ZZZk−1;ΘΘΘk−1) (10.92)

CC
k (θθθ k) = −Icξξξ ;n(θθθ k|ZZZk−1;ΘΘΘk−1) (10.93)

CP(θθθ k) = wTCT
k (θθθ k)+wCCC

k (θθθ k). (10.94)

Note that the costs defined above can be less than zero. We also incorporate the
measurement cost function defined in (10.89), this time weighted by wM ,

CE(θθθ k|ZZZk−1;ΘΘΘk−1) = wMCM(θθθ k)+CP(θθθ k). (10.95)

For this example, we chose wT = 1, wC = 6, and wM = 0.1. With these weights,
the measurement the tracking, classification, and measurement costs are roughly the
same order of magnitude.

The predicted cost of a sensing action is scored using either the task-based met-
ric in (10.90) or the information-based metric in (10.95). The cost is then minimized.
Our computational approach is to use Matlab’s ‘fmincon’ sequential quadratic pro-
gramming algorithm in the Optimization Toolbox. Despite the discrete set of avail-
able parameters in the waveform library, the optimization was solved over a continu-
ous parameter space, and each parameter final solution was rounded up to the nearest
available value. The rounding approach results in an overspending of resources, but
we preferred this solution because the continuous space optimizations were faster
than explicitly solving the discrete parameter problem.

The target in this example is initially punching at a close range, then jogging
away from the sensor, then reaches the maximum range and stops and punches for
a while, then jogs toward the sensor, then reaches the minimum range and stops and
punches for a while.
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10.6.1 Information-Based FARRA
Figure 10.10 shows the measurement cost, processor cost, and executive cost vs.
time. The tradeoff between processor and measurement cost is evident in the plots.
Most of the time, the executive cost is minimized by choosing a tracking waveform
with low measurement cost and moderate processor cost. However, when the pos-
terior entropy in the classification task gets too high, the classification cost becomes
the dominant factor and the executive cost is minimized by choosing the high per-
formance classification waveform with a high measurement cost and low processor
cost. Figure 10.11 shows the sensor parameters vs. time.

Figure 10.10: Information-Based FARRA Cost Functions vs. Time

Figure 10.12 shows the tracking task performance. The three plots in the first
column on the left show the range, velocity, and SNR tracks. The three plots in
the second column show Doppler clutter/ambiguity avoidance, velocity RMSE com-
pared to the task-based requirement, and range RMSE compared to the task-based
requirement. Because the information-based FARRA algorithm made no attempt to
meet the tracking requirements, the velocity RMSE exceeded the requirement most
of the time and the range RMSE was well below the requirement most of the time.

Figure 10.13 shows the classification task performance. The left plot shows the
posterior entropy compared to the task-based requirement and the right plot shows
the posterior class probabilities. The information-based algorithm makes no attempt
to meet the requirement, and we see that the entropy gradually increases until a clas-
sification measurement is received, then drops significantly because the classifier is
able to determine the correct class with high probability with just a single measure-
ment. The correct class probabilities lag the class changes due to the timing of the
received measurements.

10.6.2 Task-Based FARRA
In comparison, Figure 10.14 shows the cost functions vs. time for the task-based
FARRA algorithm and Figure 10.15 shows the waveform selections. Figure 10.16
shows the tracking task performance and Figure 10.17 shows the classification task
performance. Here we see the same tradeoff between processor and measurement
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Figure 10.11: Information-Based FARRA Waveform Parameter Selections

cost. Most of the time, the executive cost is minimized by choosing a tracking wave-
form with low measurement cost and low processor cost. When the posterior entropy
in the classification task gets too high, the classification cost becomes the dominant
factor and the executive cost is minimized by choosing the high performance classi-
fication waveform. In this case, the range and velocity RMSEs are kept very close to
the requirements by choosing tracking waveforms most of the time with parameters
that vary. Again we see that the entropy gradually increases until a classification
measurement is received. In this case, classification measurements are taken more
often because the task-based algorithm tries to stay below the entropy requirement.
Again, the correct class probabilities lag the class changes due to the timing of the
received measurements.
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Figure 10.12: Information-Based FARRA Tracking Performance

Figure 10.13: Information-Based FARRA Classification Performance

10.7 Conclusion

In this work, we demonstrated FARRA algorithm performance for concurrent track-
ing and classification of multiple targets using a single radar sensor. The FARRA
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Figure 10.14: Task-Based FARRA Cost Functions vs. Time

Figure 10.15: Task-Based FARRA Waveform Parameter Selections

approach is based on the perception-action cycle of cognition and includes a percep-
tual processor that performs multiple radar system tasks and an executive processor
that allocates system resources to the tasks to decide the next transmission of the
radar on a dwell-by-dwell basis. We used a simulation to model a scenario con-
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Figure 10.16: Task-Based FARRA Tracking Performance

Figure 10.17: Task-Based FARRA Classification Performance

sisting of an airborne radar platform and multiple airborne targets and the CREW
testbed to model a scenario consisting of a single moving target and a single station-
ary sensor. In both cases, we presented examples to demonstrate the application of
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task-based and information-based FARRA algorithms to simultaneous tracking and
classification.

We showed that the task and information-based algorithms were actually based
on the same information-theoretic quantities, and the examples showed that the
two methods had similar tracking and classification performance but selected dif-
ferent parameter sets to achieve their solutions. Furthermore, the task-based and
information-based algorithms had essentially the same computational complexity
since their objective functions were based on the same fundamental quantities and
they used the same methods for solving the executive processor optimization prob-
lem.
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