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Abstract—In recent years there has been widespread adoption
of Deep Convolutional Neural Networks to electro-optical (EO)
image classification, most famously using the ImageNet database
to form challenge problems. The Synthetic Aperture Radar
(SAR) classification problem, typically referred to as Automatic
Target Recognition (ATR), is a related topic that has received
less attention. While there have been some custom networks
proposed for SAR-ATR, the size of the literature is significantly
smaller than that for EO classification. A natural question arises
as to how well the state-of-the-art EO networks designed for
natural (optical) image classification perform on standard SAR
ATR problems. This paper evaluates a number of well-known
EO architectures (including DenseNet, ResNet, Inception and
Xception) on a standard SAR ATR problem and identifies the
factors that drive performance. We also perform a comparison to
existing SAR-ATR networks in the literature. We recognize four
important “pillars“ of successful SAR ATR – data, architecture,
augmentation and preprocessing. While the first two are well
studied, the latter two are also of critical importance. In fact, we
find that off-the-shelf EO networks can perform well on SAR-
ATR with appropriate preprocessing and data augmentation.

Index Terms—synthetic aperture radar, machine learning,
classification, identification

I. INTRODUCTION

Deep Convolutional Neural Networks have enjoyed
widespread success in visual image classification problems
[1]–[7], most famously using the ImageNet database [8] in
a series of large scale visual recognition challenges [9]. Syn-
thetic Aperture Radar (SAR) Automatic Target Recognition
(ATR) is a related problem which primarily aims to classify
man-made objects such as vehicles or aircraft using the radar
modality instead of an optical sensor. While there have been
some Deep Learning architectures networks proposed specif-
ically for SAR-ATR [10]–[15], the size of the literature is
significantly smaller than that focused on the electro-optical
(EO) application.

A natural question arises as to how well the networks
designed for optical image classification perform in standard
SAR ATR problems. Furthermore, it is of interest to determine
what modifications are necessary to the architecture, data
augmentation, or data preprocessing stages to unleash the
utility of these networks in the SAR ATR problem.

This paper evaluates a number of well-known EO archi-
tectures – including DenseNet [1], ResNet [2], EfficientNet
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[3], Inception [5], MobileNet [6], and Xception [7] – on a
standard SAR ATR dataset called SAMPLE [16] and identifies
the factors that drive performance. SAMPLE is a publicly
available dataset which contains both synthetically generated
and collected SAR images (“chips“) of military vehicles that
have been ground truthed and have been studied elsewhere in
the literature [17].

Our study identifies four important “pillars“ of successful
SAR ATR – the data, the network architecture (or model), the
data augmentation algorithm and the preprocessing step. While
the first two factors have been studied, the latter two factors
are also of critical importance to train a functioning Deep-
Learning based SAR ATR algorithm. In fact, we find that off-
the-shelf EO networks can perform well on SAR ATR when
we use appropriate preprocessing and data augmentation.

This paper proceeds as follows. First, in Section II, we
describe the training and test data used for our studies. Next,
in Section III we enumerate the network architectures we use
in the study. Third, Section IV discusses the SAR-tailored
set of data augmentations we use during training. Fourth,
Section V describes the preprocessing methods typically used
by EO networks and two preprocessing techniques specialized
to SAR. Finally, Section VI shows the results of our extensive
study which investigates more than thirty network architec-
tures and six different preprocessing methods by capturing
their performance statistically. These results show that many
EO architectures can achieve fairly good ATR performance
when coupled with the write preprocessing scheme. Finally,
Section VII provides a conclusion and some comments.

II. TRAINING AND TESTING DATA

Our experiments use the Synthetic and Measured Paired
and Labeled Experiment (SAMPLE) dataset [16] which has
been recently released by the Air Force Research Laboratory
(AFRL). SAMPLE includes a publicly available SAR dataset
that consists of 10 target classes of collected data from the
MSTAR flight test [18] and a recently created matching set
of synthetic data. All images are “chips“ of target-centered
data of size 128 × 128. The synthetic data is created using
CAD models of the target chips and a ray-tracing approach to
provide a fully synthetic set that matches the collected chips
in azimuth, elevation, and target mode. Figure 1 shows an
example chip from each class.

We use the synthetic set as training chips and the collected
set as validation chips as is typically done in the literature [19].



Fig. 1. Example collected and synthetic chips from the 10-class SAMPLE dataset. Images are detected and displayed log-scale with 30dB of dynamic range.

Ultimately, all inputs to our network are magnitude-detected
(i.e., we use the absolute value of the pixels, discarding the
phase). Recent work [20] has studied using complex data
with SAMPLE, finding that for the networks they investi-
gated, complex-data networks did not significantly outperform
magnitude-only networks. Fully exploiting the complex SAR
data in ATR continues to be an open area of study [21].

In addition, we have elected to divide the synthetic and
collected sets in accordance with [17] where the training data
comes from elevations 14◦ − 16◦ and the test data is at 17◦

elevation. As a result, there are a total of 806 training chips
and 539 test chips.

III. NETWORK ARCHITECTURES

Our study includes a suite of broadly cited image classifica-
tion networks from the literature, many of which have imple-
mentation in the deep learning API for Python called Keras.
We include DenseNet [1], ResNet [2], EfficientNet [3], [4],
Inception [5], MobileNet [6], and Xception [7]. Each of these
architectures includes a collection of particular architectures
(e.g., DenseNet129, DenseNet169 and DenseNet201) which
represent variations in architecture.

Image classification architectures typically expect 3-channel
(RGB) data as input whereas the (detected) SAMPLE SAR
data is single-channel. The two obvious ways of dealing with
this are channel blanking (i.e., putting the detected SAR data
into the R channel and zeros into the G and B channels) or
channel stuffing (i.e., replicating the detected data in all three
channels). A preliminary investigation we performed indicated
no major performance difference between the two approaches
and so for this study we elected to do channel blanking.
More sophisticated approaches, such as those that make use
of polarization, complex data, or apply pre-filters to give the
network three looks at the data simultaneously are of interest
but beyond the scope of this study.

In addition to these image classification networks, we also
compare the performance of published algorithms that have
been developed specifically for the purpose of SAR-ATR,
including AConvNets [10], LM-BN-CNN [11], MorganNet
[12], TemplateNet [13], and SMPL [16]1. This comparison is a
second reason for using simple channel blanking for the image

1 [16] includes a description of the dataset, a network architecture we refer
to as SMPL, and a preprocessing technique we refer to as “clipping“.

classification architectures because more sophisticated pre-
filtering would confound the comparison between the different
classes of algorithms.

IV. DATA AUGMENTATION

As commonly done, we apply data augmentation to the
training set at each stage of the training. This is a well-
known approach to increase robustness in the learned model.
In our experiments, we apply a SAR-specific set of data
augmentations. We find that successful SAR ATR networks
are enabled by augmentation approaches that are tailored to
the unique aspects radar that distinguish it from EO.

One property of SAR that differentiates it from EO is
that it is not invariant under rotation. In contrast to optical
images, which can be rotated arbitrarily and produce realistic
images, SAR images must respect the illumination direction.
This stems from the specular nature of SAR data. While EO
measured data is often well-modeled as diffuse scattering,
meaning the reflected energy is (roughly) independent of the
illumination direction (the sun or other light source), SAR
data exhibits specular scattering meaning the reflected signal
is strongly dependent on the direction of the transmitted signal.

A second distinguishing property of SAR – especially when
used with man-made objects – is the large dynamic range. In
contrast to EO imagery which is displayed meaningfully on a
linear scale, typically SAR imagery is viewed on a log scale
or with a quantization-based remapping.

Furthermore, noise and clutter in the SAR modality is
best modeled as Rayleigh or Weibull, rather than Gaussian
noise. Finally, various timing and positioning errors manifest
themselves in phase errors which are best modeled in the
complex imagery.

With this as background, we perform the following “SAR-
specific” steps in our data augmentation process:

• Random Shift. Training chips are randomly translated
in the horizontal and vertical dimensions (range and
cross-range) to model the imperfect centering of the
collected data. The shift is a uniform random variable
with maximum shift of 10% of the image size.

• Random Phase Error. Training Chips have a quadratic
phase error (QPE) added to model residual defocus
possibly present in the collected data. The QPE added
to each chip is selected from a Gaussian random variable
with σ = 150◦.



• Random Target to Clutter Ratio. Training chips have
Rayleigh clutter added to model the background clutter
present in the collected chips. For each chip, we first
randomly select the desired target to clutter ratio (TCR).
We elected to draw the TCR from a Gaussian with mean
0dB and standard deviation of 3dB. We then add random
Rayleigh clutter scaled to achieve this target TCR.

• Random Pixel Swapping. A subset of the top-N pixels
are amplitude swapped with a neighbor. This models
small differences between collected and training data
either due to actual differences between the physical
vehicle being collected and the CAD model or small
differences in recorded viewing direction from actual
viewing direction. We have elected to perform this per-
turbation on each pixel with probability 0.08, and when
a pixel is selected, a random neighbor pixel is selected
and its amplitude is used in place of the current pixel.

V. PREPROCESSING

We investigate a number of preprocessing approaches, in-
cluding the standard preprocessing methods in image clas-
sification efforts (i.e., de-meaning and scaling) and methods
tailored to the SAR modality. As mentioned earlier, one
important difference between SAR data and EO data is that
SAR data includes a dramatically larger range of pixel values,
typically spanning four or five decades.

We find empirically that networks trained using prepro-
cessing methods that are insensitive to the large variation
in SAR pixel magnitudes (such as the simple scaling often
employed with natural image classification) perform poorly
as the weights tend to be overly swayed by a small number
of large-amplitude image pixels. In contrast, preprocessing
methods which are sensitive to large amplitude spreads such
as quantization and clipping lead to more effective networks.

The preprocessing techniques we consider are:

• DenseNet-style [1] - Input chips are simply scaled to
between 0 and 1.

• ResNet-style (caffe) [2] - Input chips are zero-centered
with respect to the ImageNet dataset, i.e., first scaled to
be between 0 and 255, then set to have the same mean
as the “R“ channel in ImageNet.

• Inception-style [5] - Input chips are simply scaled be-
tween −1 and 1.

• Top-N - Input chips are preprocessed by keeping only
the N = 5000 highest-amplitude pixels (the remaining
are set to zero). Chips are then scaled between 0 and 1.

• Clipping [16] - Input chips are preprocessed by first
clipping large amplitude pixels (identified by an outlier
test) and then setting all with amplitude more than
d = 64dB below the maximum to zero. Finally, the data
is scaled between 0 and 1.

• Quantization [13], [22]–[24] - Input chips are prepro-
cessed by keeping the N highest amplitude pixels and
quantizing to Nl levels. We elect to use N = 400 and
Nl = 6 in these experiments.

VI. EXPERIMENTAL RESULTS

Our primary result is a performance comparison of the
architectures discussed in Section III. These architectures in-
clude both image classification models and models developed
specifically for the SAR problem. The comparisons are carried
out using the SAMPLE data discussed in Section II, where the
10-class training data is synthetically generated and the testing
data comes from an airborne collect. Of particular interest
is the performance of the architectures with the different
preprocessing approaches discussed in Section V.

The performance of a trained network on a test dataset
is inherently stochastic, stemming from the random batching
and data augmentation that happens at every training epoch.
Therefore, our approach to characterizing the performance of a
network will be to run T trials where each trial fully trains the
network for E epochs. We then report the mean performance
and standard deviation (over the T training episodes) at final
epoch E. Here we use E = 60 epochs and T = 100 trials,
consistent with what is done elsewhere [17].

Figures 2, 3, and 4 illustrate the SAR-ATR classification
performance using the ResNet, Densenet, *Ception, and Effi-
cientNet family of architectures with the different preprocess-
ing approaches described in Section V. Each bar is centered at
the mean validation performance and is one standard deviation
tall. Broadly speaking, we find SAR-tailored preprocessing
approaches (primarily quantization but usually clipping as
well) generate superior performance over those that use EO-
type preprocessing (i.e., simple scaling).

Fig. 2. Test set Percent Correctly Classified (PCC) for six different ResNet
configurations and the six different preprocessing approaches.



Fig. 3. Test set Percent Correctly Classified (PCC) for DenseNet, Inception,
Xception and MobileNet configurations and the six different preprocessing
approaches.

Fig. 4. Test set Percent Correctly Classified (PCC) for fifteen different
EfficientNet configurations and the six different preprocessing approaches.

Finally, Figure 5 summarizes the EO-network results from
the proceeding figures by selecting one representative variant
of each architecture and showing the performance with quan-
tization preprocessing and DenseNet preprocessing. Further-
more, we also show the performance of published architectures
that were designed specifically for SAR-ATR (TemplateNet
[13], MorganNet [12], LM-BN-CNN [11], AconvNets [10],
SAMPLE [16]). We generally find that the SAR-specific
networks exhibit higher performance, but we also find that
many EO networks can provide fairly good performance with
appropriate preprocessing.

Fig. 5. Performance of networks designed for SAR-ATR and representative
off the shelf EO networks with different preprocessing schemes.

VII. CONCLUSION

This paper studied the performance of Deep Learning
approaches for SAR-ATR. Of particular interest here is the
application of state-of-the-art EO architectures to the SAR
problem. While it is well known that the model architecture
and training data are strong drivers of performance, we find
that SAR-tailored preprocessing and data augmentation play
an crucial role algorithm performance. In fact, while SAR-
specific networks provide the best performance, we find that
many EO networks with appropriate front-end manipulations
can perform fairly well on the SAR-ATR problem.
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