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Abstract—This paper describes an evaluation of different
methods of radar resource allocation. The evaluation operates
in a cognitive fully adaptive radar framework, specialized to
concurrent tracking and classification of multiple airborne tar-
gets using a single airborne radar platform. The framework is
based on the perception-action cycle of cognition and includes a
perceptual processor that performs multiple radar system tasks
and an executive processor that allocates system resources to the
tasks to decide the next transmission of the radar on a dwell-by-
dwell basis. We compare allocation algorithms using task-based
and information-based strategies. Our main contribution is the
illustration of the allocation algorithms in a MATLAB-based
testbed and a comparison of the performance and the sensor
task selections made by each.

Index Terms—Fully Adaptive Radar, Cognitive Radar, Re-
source Allocation, Sensor Management, Tracking

I. INTRODUCTION

The modern contested environment presents challenges for
conventional wide-area search and queued tracking approaches
to radar resource allocation (RRA) which stems from the large
number of targets and the relative unpredictability of target
kinematics. These properties require a closed-loop sense and
respond approach to fully take advantage of the unprecedented
flexibility available in modern digital radars. The concept of
fully adaptive radar (FAR), also called cognitive radar, is to
exploit all available degrees of freedom on transmit and receive
in order to optimize radar system performance and efficiency.
Cognitive radar systems [1]–[6] mimic the perception-action
cycle (PAC) of cognition [7], [8] to adapt the radar sensor
to collect data to achieve a system performance goal. This
requires developing a perception of the current system status,
predicting the effect of different sensing actions, and choosing
the next sensing action, all in real-time.

Recently, a number of perception-action approaches to the
RRA problem have been proposed, including [9]–[12]. These
algorithms rely on two fundamental steps. First, they capture
(perceive) the state of the surveillance area probabilistically.
Next, they use this probabilistic description to select future
sensing actions by determining which actions are expected
to have maximum utility. Recent work in this area has been
referred to as FAR or cognitive radar [12]. In the past,
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related work has been referred to as sensor management and/or
resource allocation [9], [13].

This work extends past efforts in this direction. Specifically,
here we model an agile multimode radar and apply RRA
techniques to select from dozens of possible transmission
waveforms.

A key challenge of any RRA algorithm is to balance the
multiple competing objectives of target detection, tracking,
classification, and other radar tasks. This is addressed through
the objective function used in the optimization step to select
the next radar actions. There are two approaches to this
optimization: task-driven [14] and information-driven [13]. In
the task-driven approach, performance quality of service (QoS)
requirements are specified, while in the information-driven
approach, an information measure is optimized.

In the task-driven method, a composite objective function
is constructed by weighting the various objectives, such as the
expected time to detect and the tracking root mean square error
(RMSE) given a detection. This has the benefit of explicitly
laying out the relative importance of the objectives, but as
such does require specification of QoS levels for each of
the requirements and selection of weights which mix these
incommensurate quantities [12]. An alternative approach uses
an information theoretic objective function, which maximizes
the information flow. Common measurements of information
include entropy, mutual information (MI), Kullback-Leibler
divergence (KLD), and Rényi (alpha) divergence (RD) [10],
[15]. Information metrics implicitly balance different types of
information that a radar may acquire. This has the desirable
property of a common measuring stick (information flow) for
all actions [16], but does not explicitly optimize a mission
criterion such as RMSE. As such, the information theoretic
measures can be difficult for the end-user to understand and
attribute to specific operational goals [17].

This paper describes a MATLAB-based fully adaptive radar
resource allocation (FARRA) algorithm for concurrent track-
ing and classification of multiple targets which illustrates
and compares task-driven and information-based algorithms
for allocating system resources. Our major findings can be
summarized as follows:
• Definition of the executive processor objective function

is critical. The objective function must balance task
performance and the cost of using the sensor as well as
accurately reflect user preferences. The objective func-
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tion should result in an optimization problem with low
computational complexity.

• The task and information-based algorithms had similar
performance but selected different actions to achieve
their solutions. We show the task and information-based
algorithms are actually based on common information-
theoretic quantities, so the distinction is in the granularity
of the metrics used to quantify system performance and
the degree to which the metrics were weighted.

• Information-based algorithms do not require the user to
specify task requirements and they directly combine the
value of disparate tasks based on the expected information
gained. However, without additional ad-hoc weighting,
they do not allow for separate control of tasks and may
produce solutions that over-emphasize some tasks at the
expense of others or select sensor actions that provide
only marginal gain when judged by user preference.

• The task-based algorithms are able to separately control
task performance and to achieve specified performance
requirements. However they require the user to spec-
ify requirements and sensor costs and require judgment
in constructing cost/utility functions and weightings for
combining disparate task performance metrics.

• The main compute burden stems from enumerating all
possible actions and not the computation of the task or
information-based metrics. Developing efficient methods
for addressing this piece is important for a real-time
implementation.

This paper is organized as follows. First, Section II describes
the Fully Adaptive Radar framework. Section III describes the
task and information-based objective functions we employ.
Third, in Section IV we give simulation results comparing
the allocation approaches. Finally, section V presents the
conclusions from this effort.

II. FULLY ADAPTIVE RADAR FRAMEWORK

The FAR framework for a single PAC is shown in Figure 1.
The PAC consists of the perceptual processor and the executive
processor. The dual-processor construction aligns with Fuster’s
neuropsychological cognitive structure [7] and the JDL fusion
levels model [18]. The PAC interacts with the external environ-
ment through the sensor and with the radar system through the
perceptual and executive processors. The perceptual processor
receives data from the hardware sensor and processes it into
a perception of the environment. The perception is passed
to the executive processor as well as to the radar system.
The executive processor receives the perception from the
perceptual processor along with requirements from the radar
system, and solves an optimization problem to determine
the next sensor action. The executive processor informs the
hardware sensor of the settings for the next observation, the
sensor collects the next set of data, and the cycle repeats.

We assume the system objective is to estimate the state of a
target at time tk, denoted as xk. The hardware sensor observes
the environment and produces a measurement vector zk that
depends on the target state xk and the sensor parameters θk.

Fig. 1: Single PAC FAR framework

The estimate of the target state at time tk is a function of
the observations up to time tk, which in turn depend on the
sensor parameters up to time tk, which we denote as Zk

.
=

z1, z2, · · · , zk and Θk
.
= θ1,θ2, · · · ,θk, respectively.

The state transition model is assumed to be a first order a
Markov model with initial target state probability density func-
tion (PDF) q(x0) and transition PDF q(xk|xk−1;θk), which
represents the probability that a target in state xk−1 will evolve
to state xk. The transition density may depend on the sensor
parameters. This will occur, for example, when the choice
of sensor parameters affects the time difference tk − tk−1.
The measurement model is described by the conditional PDF,
or likelihood function, f(zk|xk;θk). The cost of obtaining
an observation and any constraints on the sensor parameters
are modeled by the measurement cost function CM (θk).
The perceptual processor processes the data and produces
a perception of the target state in the form of a posterior
PDF f+(xk)

.
= f(xk|Zk; Θk) and a target state estimate

x̂k(Zk). It may also compute a perception of the environment.
The performance of the perceptual processor is characterized
by the processor cost function CP (θk|Zk−1; Θk−1), which
depends on the sensor parameters and the previously received
data. The executive processor decides on the next value
for the sensor parameters by minimizing the executive cost
function CE(θk|Zk−1; Θk−1), which balances the processor
performance against the cost of using the sensor.

The information-updated posterior density f+(xk) is com-
puted using the standard Bayes-Markov recursion. In the
executive processor, we assume that we have received the
observations up to time tk−1 and want to find the next set
of sensor parameters to optimize the performance of the
state estimator that will include the next observation zk as
well as the previous observations Zk−1. We define the joint
conditional PDF of xk and zk conditioned on Zk−1 as

f↑(xk, zk) = f+(xk)f(zk|Zk−1; Θk). (1)
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We define the predicted conditional (PC)-Bayes risk for
the estimator x̂k(Zk) by taking the expectation of the error
function with respect to the joint conditional PDF,

R↑(θk|Zk−1; Θk−1) = E↑k{ε(x̂(Zk),xk)}, (2)

where E↑k{·} denotes expectation with respect to f↑(xk, zk).
We can also write the PC-Bayes risk as

R↑(θk|Zk−1; Θk−1) = Ezk|Zk−1
{R+(Zk; Θk)}, (3)

where the expectation is with respect to f(zk|Zk−1; Θk).
It is important to emphasize that the PC-Bayes risk is a

function of the known past observations Zk−1 but not the
unknown next observation zk since it has been averaged
over both zk and xk. It is also a function of all the sensor
parameters in Θk, however we separate the dependence on
the unknown next sensor parameter Θk from the known past
sensor parameters Θk−1 so that we can optimize over θk.

In many applications, the PC-Bayes risk may be difficult to
compute and in general will not have a closed form analytical
expression. We discuss surrogate functions that are analytically
tractable and provide a good indication of the quality of the
target state estimate in the next section.

The processor cost function is a scalar function derived
from the PC-Bayes risk or a surrogate. The measurement
and processor costs are then combined into a single executive
optimization cost function via some combining function F{ },

CE(θk|Zk−1;Θk−1)=F{CP (θk|Zk−1;Θk−1), CM (θk)}, (4)

and θk is chosen to minimize the executive cost function

θk = arg min
θ

CE(θ|Zk−1; Θk−1). (5)

The framework described by Figure 1 and the equations
above can be applied to a large class of problems. In this
paper, we specialize to an airborne multimode radar which is
used to track and classify multiple airborne targets. By way
of background, we define the elements of the problem as:
• Target State Vector, x: We assume a known and fixed

number of targets. For each target, the state vector is
x = [x, ẋ, y, ẏ, z, ż, s, c], where s is the received signal-
to-noise ratio (SNR) and c is the discrete target class.

• Target State Parameterization: We model the kinematic
component using a Gaussian and the class component
using a PMF over the discrete set of possible classes.

• Motion Model, q(xk|xk;θk−1): We use a linear, additive
white Gaussian noise motion model on target state and a
Nc ×Nc transition matrix for the class transition.

• Controllable Parameters, θ: We enumerate W pos-
sible waveforms the radar can use. Some are tracking
waveforms characterized by bandwidth, pulse repetition
frequency (PRF) and total pulses. Others are classification
waveforms characterized by duration.

• Measurements, zk: In tracking mode, noisy measure-
ments of target range, range-rate, azimuth, and elevation
are made with probability of detection PD, and measure-
ment RMSE defined by the radar waveform parameters.
In classification mode, received data is processed to
provide a classification call and the correct classification
probability is related to the waveform duration.

With this as background, we now turn our attention to the
definition of the perceptual processor error function.

III. FARRA OBJECTIVE FUNCTIONS

A key challenge of any radar resource allocation algorithm
is to balance the multiple competing objectives of target
detection, tracking, classification, and other radar tasks. This is
addressed through the objective function used in the optimiza-
tion step to select the next radar actions. Objective functions
may also be referred to as payoff, criteria, value, or cost
functions. Articulating the system goals in a mathematical
form suitable for optimization is thus critical to the operation
of a FARRA system. As the number of parameters available
for adaptation and the number of radar system tasks grow, this
becomes increasingly difficult.

In this paper, we develop both task-driven and information-
driven methods for specifying the objective function used by
the perceptual processor. The task-driven approach, described
in subsection III-A, uses performance quality of service (QoS)
requirements as the objective function. The information-driven
approach, described in subsection III-B, instead maximizes
expected information flow to the executive processor. It should
be noted here that in both approaches, the optimization is
in a global sense and may not be the optimal solution for
a particular radar task.

A. QoS Approach

Following the development in [12], we assume there are M
tasks. The perceptual processor for the mth task computes a
perception of its environment, which may include quantities
such as target location, target class, target SNR, etc. The
executive processor for the mth task evaluates the performance
of the perceptual processor in terms of a task QoS metric,
which is denoted by Gm(θk|Zk−1; Θk−1). The QoS metric
for the current frame will in general depend on the QoS metric
of the previous frame, the perception from the previous frame,
the previous sensing actions, and the current sensing action.
Each task QoS metric has a task QoS requirement, denoted
Ḡm. The task QoS metrics and requirements are physically
meaningful quantities with appropriate physical units.

For a tracking task, we use the position RMSE extracted
from the state mean square eror (MSE) matrix, and the
requirement is an upper limit on the RMSE. In most cases, it is
not possible to evaluate the MSE matrix analytically. However,
the Bayesian Cramér-Rao lower bound (BCRLB), the inverse
of the Bayesian information matrix (BIM), provides a (matrix)
lower bound on the MSE matrix of any estimator [19] and is
usually analytically tractable. For tracking applications, this
yields the posterior Cramér-Rao lower bound (PCRLB) [20].
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The PCRLB provides a lower bound on the global MSE
that has been averaged over xk and Zk, thus it characterizes
tracker performance for all possible data that might have been
received. Here we use a PC-BIM, B↑k(θk|Zk−1; Θk−1), and a
predicted conditional Cramér-Rao lower bound (PC-CRLB) to
bound the PC-MSE matrix, which is averaged over the joint
density of xk and zk conditioned on Zk−1. The PC-CRLB
differs from the PCRLB in that it characterizes performance
conditioned on the actual data that has been received.

As the task-based metric for scheduling tracking waveforms
uses the PC-CRLB at its core, it is directly connected to infor-
mation theoretic quantities we will discuss later. In addition,
for classification waveforms we use the conditional entropy as
the performance metric, providing a similar connection. The
main distinction with QoS scheduling is that we convert the
objective to a quantity with physical units and then normalize
it with respect to a goal. Specifically, for each task the QoS
metric is converted to a utility Um(θk|Zk−1; Θk−1), which is
a unitless quantity on the interval [0, 1]. It represents the level
of satisfaction with the QoS and is determined from the task
utility function,

Um(θk|Zk−1; Θk−1)=um(Gm(θk|Zk−1; Θk−1), Ḡm). (6)

The executive processor combines and balances the task
utilities along with resource constraints to determine the
resource allocation for the next frame. The mission utility,
or mission effectiveness, is a measure of the radar system’s
ability to meet all of its requirements. It is a weighted sum
of the task utilities, where the task weighting, wm, represents
the relative importance of the mth task to the overall mission,
and the weights sum to one. The mission utility is given by

U(θk|Zk−1; Θk−1) =

M∑
m=1

wmUm(θk|Zk−1; Θk−1). (7)

Constraints are described by the function gc(θk), con-
structed so the constraint may be expressed as the inequality
gc(θk) ≤ 0. The next action vector is then determined by
maximizing the mission utility subject to the constraint

θk = arg max
θ

U(θ|Zk−1; Θk−1) s.t. gc(θ) ≤ 0. (8)

B. Information-Based Approach

In the information gain approach, the relative merit of
different sensing actions is measured by the corresponding
expected gain in information [10], [13], [21]–[23]. As in
the task-based approach, the goal is to select, in advance,
the action θk that will result in maximum benefit. In the
information-based approach, we first define a metric based on
information theory for computing the benefit a measurement
will yield. We must predict, before the measurement is actually
made, the expected value of the metric, therefore we next
perform a statistical expectation with respect to the conditional

sensor model. Finally, we choose the next sensing action that
maximizes the expected value of the metric.

Assume, temporarily, that at time tk an resource alloca-
tion strategy has selected action θk, it has been executed,
and measurement zk has been received. To judge the value
of this action, we compute the information gained by that
measurement; specifically the information gain between the
predicted PDF on target state before the measurement was
taken f−(xk)

.
= f(xk|Zk−1; Θk) and the posterior PDF after

the measurement has been received f+(xk)
.
= f(xk|Zk; Θk).

The most popular approach uses the Kullback-Leibler Diver-
gence. The KLD between f+(xk) and f−(xk) is defined as

D(f+(xk)||f−(xk))
.
=

∫
f+(xk) ln

f+(xk)

f−(xk)
dxk. (9)

There are a number of generalizations of the KLD in the
literature, including the RD, the Arimoto-divergences, and the
f-divergence [23]. The KLD has a number of nice theoretical
and practical properties, including (a) the ability to compare
actions which generate different types of knowledge (e.g.,
knowledge about target class versus knowledge about target
position) using a common measuring stick: information gain;
(b) the asymptotic connection between information gain and
risk-based optimization; and (c) the avoidance of weighting
schemes to value different types of information.

Taking the expectation with respect to f(zk|Zk−1; Θk), we
obtain the EKLD (which is equal to the MI),

Ixz(θk|Zk−1; Θk−1)
.
= Ezk|Zk−1

∫
f+(xk) ln

f+(xk)

f−(xk)
dxk.

(10)
The next action vector is then determined by maximizing

the expected information

θk = arg max
θ

Ixz(θ|Zk−1; Θk−1). (11)

For our model, the MI is a function of the determinant of
the PC-CRLB.

IV. SIMULATION RESULTS

We now describe simulations comparing the objective func-
tions. Our simulation includes three moving targets and a
moving sensor as illustrated in Figure 2.

The measuring platform can adaptively select between
a “tracking” mode and an “classification” mode. When in
tracking mode, it can choose a PRF, bandwidth (BW), and
pulse count (Np) from a list of possibilities. The measurement
process results in detection-level data of target range, range-
rate, azimuth, and elevation. Tracking measurements are made
with a probability of detection PD, which is a function
of SNR, which is in turn a function of waveform. When
in classification mode, the radar can select among modes
which trade probability of correct classification (pcc) with
dwell time. When this measurement modality is selected, the
observation is a classification call. The available waveforms,

Authorized licensed use limited to: Centauri. Downloaded on April 12,2022 at 14:14:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Simulation scenario

their parameters, and dwell times are listed in Table I. Also
included is the “do nothing” waveform #0.

TABLE I: Waveform Parameters and Dwell Times

Waveform BW (MHz) PRF (kHz) Np T (ms)
0 N/A 0.0

1,2,3 1,5,10 20 1 0.05
4,5,6 1,5,10 10 1 0.1
7,8,9 1,5,10 20 10 0.5

10,11,12 1,5,10 10 10 1.0
13,14,15 1,5,10 20 20 1.0
16,17,18 1,5,10 10 20 2.0
19,20,21 1,5,10 20 50 2.5
22,23,24 1,5,10 10 50 5.0

Waveform pcc T (ms)
25 .3 1.0
26 .6 2.5
27 .75 5.0

Targets are tracked using detection data coupled with an
Extended Kalman Filter. We use a Singer model for target
motion in the tracker. The simulation is discretized to 100ms.
We assume 90ms are used for surveillance (search) dwells
and the remaining 10ms are for the purposes of tracking
and classification of the three known targets. The resource
allocation algorithm may elect to measure each target during
the dwell or any subset of the targets as long as the total
measurement time fits into the allocated time budget. For each
target, the sensor may select from the following options:
• Do nothing Choose waveform #0. This takes zero time

and generates zero utility. It frees up the timeline to
dedicate extra dwell time to other targets.

• Perform a track dwell. Choose from waveforms #1−24.
This takes variable time given by Np/PRF and provides
variable utility depending on the waveform parameters.

• Perform a classification dwell. Choose from waveforms
#25−27. This takes variable time and provides variable
utility.

The predicted utility of a sensing action is scored using
either the QoS metric in (8) or the information theoretic

metric in (11). The objective is then maximized subject to
the timeline. Our computational approach is to enumerate all
possible sensing actions (triplets) that can be performed in
the timeline and select the one that maximizes total utility. In
practice this is far fewer than 283 combinations.

A. Comparison of QoS and MI in a Tracking Scenario

We first illustrate QoS-based scheduling and MI allocation
in a tracking-only (i.e., no classification) scenario. In this case,
only waveforms 0 − 24 are meaningful. Figure 3 shows the
RMSE over 100 Monte Carlo trials for each method. The trials
have the sensor and target trajectories fixed, but a random
realization of the measurements is drawn anew each time. This,
in turn, affects the adaptive resource allocation calculations
leading to different allocations and RMSE each time.

Fig. 3: MI (left) and QoS (right) tracking RMSE

This example illustrates that in the tracking-only scenario
with our definition of QoS, the QoS and MI based scheduling
techniques lead to similar RMSEs for the three targets. Fig-
ure 4 shows how the resource allocation algorithm selected to
use the sensors over time by looking at what fraction of the
10ms timeline is used for each target at each time.

Fig. 4: MI (top) and QoS (bottom) selection of measurements

The methods the scheduling algorithms deploy to reach
the roughly equal RMSE performance are different. Broadly
speaking, the MI approach prefers to make 5ms dwells. It does
this by typically measuring two targets at 5ms and skipping
one target to allocate its 10ms scan time. This generates larger
PD dwells for two targets at the expense of not measuring
a third. In contrast, the QoS method typically measures one
target at 5ms and the other two at 2.5ms.

An additional distinction is a consequence of good local-
ization at initialization. The QoS method elects to perform no
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measurements at the very beginning of the simulation because
the target has been well localized at initialization meaning the
QoS metric is met even without a measurement. In contrast,
the MI does perform measurements.

B. MI Allocation in a Tracking and Classification Scenario

We now include a classification mode (waveforms 25−27).
The mode utility is also computed using the MI. The FARRA
algorithm now selects from the following options: not measure
a target, measure in tracking mode, or measure in classification
mode. Both the tracking mode and classification mode have a
multiple waveforms to select from as indicated in Table I.

Figure 5 shows the time sequence of measurement modal-
ities selected for each of the three targets. Note that the
target class is static so once the class is identified no further
classification measurements are needed. Broadly speaking, we
find that algorithm interleaves track and classification dwells
during the first portion of the simulation to maintain track
accuracy but also learn about the target class.

Fig. 5: Top: MI mode selection for the three targets; Bottom:
classification probabiloity, position and velocity RMSE

With these parameters, the scheduler chooses to use the
2.5ms classification dwell (waveform 26) about 40% of the
time and the 5ms classification dwell (waveform 27) about
60% of the time. Typically, the scheduler uses a 2.5ms classifi-
cation dwell followed by two 5ms classification dwells. When
all three of those measurements are the same, it no longer
performs classification dwells as the uncertainty has been
reduced sufficiently. If, however, those three measurements
are not identical, the scheduler uses an additional 2.5ms
classification dwell followed by a 5ms classification dwell
to determine the target class. The algorithm stops performing
classification dwells once the target class is well known.

V. CONCLUSION

This paper has described an evaluation of different methods
of radar resource allocation in the fully adaptive radar resource
allocation framework. Our analysis is specialized to concurrent
tracking and classification of multiple airborne targets using a
single airborne radar platform. The approach is based on the
perception-action cycle of cognition and includes a perceptual
processor that performs multiple radar system tasks and an
executive processor that allocates system resources to the tasks

to decide the next transmission of the radar on a dwell-by-
dwell basis. We described a fundamental connection between
our task-based and information-based methods and showed
that although the two methods opt for different sensor usage
strategies, they in fact have similar performance.
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