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Abstract—Cognitive radar problems involve the selection of
actions based on the uncertain knowledge of a system state
that is partially observed through noisy measurements. This
process of sequential decision making under uncertainty can
be considered as a stochastic optimization problem. This paper
explicitly makes the connection between cognitive radar and
stochastic optimization by presenting a framework for describing
cognitive radar problems in terms of stochastic optimization,
thereby pointing to ways to employ stochastic optimization for
designing perception-action cycles in a cognitive radar.

Index Terms—Cognitive radar, stochastic optimization, sensor
management, POMDP

I. INTRODUCTION

Cognitive radar problems require the selection of actions
based on an uncertain perception that is obtained through
inexact measurements. There is a broad variety of different
cognitive radar problems that differ in terms of input data
and the types of actions selected, for example, waveform
selection and optimization, measurement scheduling, resource
management, detection, tracking and imaging [1]. A single
radar may in fact comprise several individual perception-
actions cycles, spread over multiple information abstraction
levels [2]. Despite their differences, the variety of cognitive
radar problems can be described in terms of a set of simi-
lar problem components. Consequently, after identifying the
problem components, similar methodologies can be applied
for designing perception-action cycles for a cognitive radar.

Cognitive radar problems can be classed as types of
stochastic optimization problems. Stochastic optimization is
a broad term for techniques that perform decision making
under uncertainty, which are currently widely deployed in
a range of applications including finance, business, logistics
and transportation, and science and engineering. Stochastic
optimization methods seek a policy that exploits models to
map from all available information at the current time into an
optimized action. As this policy is essentially a perception-
action cycle, the design of perception-actions for cognitive
radar can benefit from applying algorithmic strategies for
finding policies from the stochastic optimization field.

There are many communities focusing on stochastic opti-
mization problems, who have established a wide variety of
algorithmic solutions. These stochastic optimization commu-
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nities cover techniques and applications such as decision trees,
stochastic search, optimal stopping, optimal control, (partially
observable) Markov decision processes (MDPs/POMDPs),
approximate dynamic programming, reinforcement learning,
model predictive control, stochastic programming, ranking
and selection, and multiarmed bandit problems. It has been
shown [3] that these problems can be described in a single
stochastic optimization framework, and the respective solution
methodologies can be grouped into just four classes.

The primary contribution of this paper is to directly connect
the cognitive radar problem with the large body of work done
in stochastic optimization. This connection makes the method-
ologies developed in the stochastic optimization communities
directly applicable to the cognitive radar problem, promising
to lead to improved methods for designing perception-action
cycles in cognitive radar.

II. STOCHASTIC OPTIMIZATION FRAMEWORK

This section presents a framework, inspired by [3] !, which
enables cognitive radar problems to be described in terms of
stochastic optimization problems.

A. General Problem Components

All the problems addressed by the stochastic optimization
communities comprise the problem components described in
this subsection. The next subsection and the remainder of the
paper focus on partially observable problems that are more
relevant to cognitive radar.

System State - We are interested in the state of a dynamic
system, which can be modelled as a random vector X, for
decision step k with realisation x;, € X where X is the system
state space.

Actions and Action Space - We can select an action or
actions at each decision step k, which influences the transition
of the system state between time step k& and k + 1. The
realisation of an action for decision step k is denoted a; € A
where A is the action space.

Exogenous Information - Additional information is re-
vealed at each sequential decision step. The information re-
vealed at each time step is modelled as a random vector Zy

! Although we adopt the framework in [3], we use the terminology and
notation that is established in the signal processing community.
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with realisation zy. For completely observable problems the
exogenous information is the system state.

State Transition Function - Between decision steps the
system evolves according to a transition function Xji1; =
fx (X, ax, wg), where wy, is a realisation of the state tran-
sition noise (alternatively termed process noise). Due to the
state transition noise, the transition can be described by the
transition probability density p(xj41|Xk, ak).

Objective Function - At each decision step a reward
or cost is encountered, which is described by the function
To (Xkey Aoy Zht1)-

These common components allow the breadth of stochastic
optimization problems considered by the stochastic optimiza-
tion communities to be described.

B. Fartial Observability

A common aspect of cognitive radar problems is that the
system state is only partially observable through noisy mea-
surements. Therefore, uncertainty is present not only in uncer-
tain state transitions but also through uncertain measurements.
Consequently, we extend and adapt the components described
Section II-A to the more specific partially observable case,
which results in a framework closely resembling a POMDP.

Measurements and Measurement Space - The exogenous
information described in Section II-A can now be thought of
as a noisy measurement of the system state. Now, the random
vector Zj, can be defined more exactly as a measurement with
realisation z; € Z where Z is the measurement space.

Measurement Likelihood Function - Measurements are
related to the system state through the measurement function
z, = h(xy, ag, vi) wWhere vy is a realisation of the measure-
ment noise. Due to the measurement noise, the measurement
process can be described by the measurement likelihood
function £(xy|zk,ar) = p(zr|Xk, ak)-

Information State - As the state of the system is not
observable, it is necessary to decide on an action based on the
information state. The information state is the set of actions
and measurements that have occurred prior to the current
decision step. The information state for decision step k is
denoted 7, = (ag,21,...,a5_1,2k). This information state
grows with each time step, i.e., Z, = Zp_1 U (ag_1, 2g)-

Belief State - As the cardinality of the information state
grows with each time step, it is generally undesirable to
be used as the perception upon which actions are decided.
Instead, decisions can be based on a belief state. The belief
state is a set of parameters with fixed cardinality that are
an (ideally sufficient) statistic of the information state. The
belief state at decision step k£ is modelled as a random
vector Bj with realisation by. For example, under linear
Gaussian assumptions a sufficient statistic of the information
state is the mean and covariance of the posterior PDF, i.e.
p(Xk|Zr) = p(xx|by). Typical belief states are parameters of
a Gaussian, a Gaussian sum, or a set of particles.

Belief State Transition Function - It is necessary to
define a transition function for belief states, analog to the
system state transition function. This transition function is

denoted by11 = f(bg,ak,zr+1). As the belief state can be
thought of as parameters of the posterior PDF p(xj|by), the
transition function represents the standard Bayesian prediction
and update steps. As a cognitive radar is an observer, it is often
the case that the system state transition is not influenced by
the selected sensing action. However, the belief state transition
certainly will be influenced by the selected action.

Objective Function - An objective function is now defined
as a function of the belief state, i.e. r(bg,ax,zk+1). This
differs from the objective function described in Section II-A,
which was a function of the system state. The objective func-
tion maps to the reward that is associated with the generation
of a measurement z;,; when the belief state was by and
action a; was taken.

For the remainder of the paper we will assume a partially
observable problem. However, a completely observable prob-
lem can be recovered by substituting the belief state with the
observable system state, considering the likelihood function as
a Dirac delta function, and taking the state transition function
instead of the belief state transition function.

III. OBJECTIVE FUNCTIONS FOR COGNITIVE RADAR

The exact form of the objective function r(by, ax, z;+1) is
crucial, as it must accurately represent the physical problem
to be solved. Specifying objective functions for cognitive
radar can be loosely categorized into task, information, or
utility (Quality-of-service) based approaches. However, the
separation between the categories is not always distinct and
existing approaches form more of a continuum.

A. Task Based Objective Functions

Task based objective functions calculate the cost or reward
of an action in terms of a measure that is specific to the task
being performed. Relevant task based metrics include radar
timeline or spectrum usage, probability of target detection,
detection range for an undetected target density, tracking root
mean square error (RMSE), track sharpness, track purity,
track continuity, and probability of correct target classification,
to name a few. Each task based objective function can be
regarded as some function q(by,ay,Z,,1) that is combined
in some way to produce a scalar objective function that maps
into the quality space Q. It is often the case that a desired
task based metric is difficult to calculate and is replaced by a
surrogate metric such as signal-to-interference plus noise ratio
(SINR) or an information theoretic metric.

B. Information Theoretic Objective Functions

A second class of objective functions used in cognitive radar
and related fields is based on information theory. Broadly
speaking, an information theoretic objective function gauges
the relative merit of a sensing action in terms of the informa-
tion flow it provides. A primary motivation for information-
based objective functions is the ability to compare actions
which generate different types of knowledge (e.g., knowledge
about a target class versus knowledge about target position)
using a common measuring stick.



A review of the history of information metrics in this context
is provided in [4]. Here, we highlight some of the most com-
monly used objective functions. The most basic information
theoretic objective function is the Posterior Shannon Entropy,
given as:

H(X pt1|br, ak, Zpt1) = (D
/p(XkH |br, ak, zk+1) Inp(X i1 |br, Ak, Zky1)dX ki1

A related approach computes the information gain between
densities rather than just the information contained in the
posterior. The most popular approach uses the Kullback-
Leibler Divergence (KLD), which is defined using the prior
and posterior densities as:

D(P(Xk+1|bk7ak7Zk+1)HP(Xk+1|bk)) - (2)
p(XkJrl\bk,ak,ZkH)
. b ! dXx
/ P(X i [br, A, 2 In == rar " o

The KLD has several desirable properties [5], including
its connection to Mutual Information. There are a number
of generalizations of the KLD in the literature, including
the Renyi Divergence, the Arimoto a-divergences, and the
f—divergence [6].

A third approach specific to parameter estimation is the
Fisher Information Matrix (FIM) and related Bayesian In-
formation Matrix (BIM) [7], which characterize the amount
of information that a distribution contains about individual
parameters (such as target position or velocity). The inverse of
the BIM is the Bayesian Cramer-Rao Lower Bound (BCRLB),
which quantifies the uncertainty in the parameter estimates.
The (square root of) the BCRLB has the property that it is
in the units of the parameter being estimated and is a lower
bound on the RMSE. Thus it is often used as a surrogate for
the RMSE and categorized as a task based metric.

C. Utility and QoS Based Objective Functions

Quality-of-Service approaches [2], [8] differ from task or
information based objective functions in that they optimize the
user or operator satisfaction that is derived from a task. A util-
ity function is defined on the task quality space @ : Q +— [0, 1]
that should accurately describe the satisfaction that is derived
from the different possible task quality levels. Combining the
quality and utility functions results in an objective function of
the required form u(by, ag, zx11).

This approach is very valuable in the context of radar
resource management [2] as it enables a radar with limited
resources to optimize multiple tasks based on the task quality
levels that are required by the mission. Mapping the quality
levels of differing radar tasks into the common utility space
enables trade-offs between tasks evaluated using differing
quality metrics. The global utility across the multiple tasks is
typically formed by taking a weighted sum of task utilities.
When considering the resource usage, a resource function
g(bg, ax) can be combined with the utility function to produce
the final objective function. This quality-of-service conceptual
approach can also be identified under different names [9].

IV. MULTI-STEP OBJECTIVE FUNCTION

A general objective is to find a policy that determines a
feasible action based on the belief state. The policy is a
mapping from belief state to action denoted a;, = A7 (by),
where 7 carries information about the type of function and its
parameters. As the belief state is a set of parameters describing
a perception of the system state, the policy can be thought of
as the perception-action cycle for a cognitive radar. The policy
is not necessarily an analytical function and may actually
represent an optimization problem. This section describes how
a multi-step objective function is used to define optimal values
and policies that are the basis for the design of perception-
action cycles in the following section.

A. Optimal Values and Policies

The objective of a stochastic optimization problem is to
maximize rewards or minimize costs over a time horizon
comprising H future decision steps. The expected reward
achievable over the current and future decision steps that
originate from the current belief state is termed the value of
the belief state. The value of a belief state when following
policy 7 is the expected value of the summed rewards with
respect to the set of future measurements (Zy11,..., Zp+H),
conditioned on the belief state by:

k+H
Vi(by) =E | r(Bf,A™(B]),Zi11) |Bf = by
t=k

3)

where the belief state random variables in the summation
evolve according to the belief state transition function when
following policy =, i.e. By, = fp(By, A™(By), Zi41). It
is common to rewrite (3) by splitting it into the expected
reward for the current time step and the expected reward for
subsequent time steps to give:

Vi (by) = R(by, A™ (b)) + E [V _1 (Bji1)|Br = by]
“)
where the expectation is taken with respect to the future
measurement Z 1 and the single step reward is the expected
reward with respect to the future measurement Zj_ ;:

R(by, A" (b)) =E[r (By, A"(Bk), Zi+1) |Br = bi] (5)

Note that the expectation with respect to the remaining future
measurements (Z o, ..., Zi4+pm) in (3) is now contained in
the future value term V7_,(Bg+1) in (4). Equation (4) can
be identified as a form of Bellman’s equation.

Based on the value of a belief state when following policy
m, it is possible to define the optimal value of a belief state
as:

Vi (by) = max (R(bk,ar) + E [V (By,)|Bi = b))
(6)

where B}% | is a random variable representing the belief state

in the next decision step that evolves when taking action ag,

ie. B, = fp(Bg,ak, Zyy1). Using the optimal value



function, the optimal policy function can be defined, which
is a description of an optimal perception-action cycle:

A" (by) = arg max (R(by,ax) + E [Viy_1 (By4,)| Br = bi])
)

The first term in (7) represents the expected reward associated
with the current belief state and the next action, and is
relatively easy to calculate. However, the second term that rep-
resents the expected reward associated with future belief states
in the time horizon is very difficult to calculate. Consequently,
solving the optimal policy function is generally intractable.
The majority of stochastic optimization approaches focus on
approximate solutions to this optimal policy function.
Equation (3) is a multi-step objective function for the
case when it is desired to optimize the expected rewards
accumulated over the time horizon. Alternatively, the terminal
reward may be of interest at the end of the time horizon. This
can be accommodated by using an altered objective function
that returns zero except for the last decision step in the time
horizon. This section has described a problem with finite
horizon H. An infinite horizon problem can be described in the
same way, but requires the inclusion of a discounting factor.

B. Simplified Multi-Step Objective Functions

Finding policies that solve (7) is very challenging due to the
need to evaluate the impact of the current action on expected
future rewards, knowing only the current belief state. There
are simplifications that are often performed that drastically
reduce the complexity of the problem but result in an objective
function that does not fully consider the uncertainty present in
the problem. These simplifications are often applied in current
cognitive radar techniques, as will be shown in Section VI.

1) Myopic Optimization: If the time horizon is taken as a
single step, i.e. H = 1, then the problem of evaluating the
impact of the action on expected future rewards is removed.
Hence, the optimal policy function in (7) is significantly
simplified to:

A*(by) = arg max (R(bg,ax))

ap€A

®)

This approach is known as myopic or greedy as it focusses on
the immediate expected reward and ignores and the impact of
potential future rewards.

2) Deterministic Optimization: A second common simplifi-
cation is to perform a deterministic optimization based on ex-
pected values of the system state and/or future measurements,
instead of treating them as random variables and calculating
the expected reward. An example of this approach would be
to simplify the myopic reward function in (5) as:

R(by, A™(by)) = 1 (bg, A" (b ), E [Z¢41|Br = bi]) (9)

Where myopic optimization ignores the propagation of un-
certainty into the future, deterministic optimization ignores
the uncertainty in the belief state transition and measurement
processes. However, by treating the optimization problem as
being deterministic, it can be easier to solve.

Stochastic optimization techniques aim to find a policy that
closely matches the optimal policy function and therefore per-
form an action that is optimized considering the uncertainty in
the future evolution of the system and the noisy measurement
process. However, it should be clear that solving the optimal
value and policy functions for realistic problems is intractable.
Consequently, existing cognitive radar techniques often sim-
plify the problem by performing myopic or deterministic
optimization. However, advances in computational capability
combined with the development of new algorithms mean that
it is possible to move away from these simplifications and look
towards designing perception-action cycles that fully consider
the uncertainty in the problem.

V. POLICIES AND PERCEPTION-ACTION CYCLES

Solving a stochastic optimization problem involves finding
a policy that maps from belief states into actions and hence
constitutes a perception-action cycle. This section gives an
overview on methods for finding policies that are widely used
in stochastic optimization. The purpose of this overview is
to show that established algorithmic strategies from the field
of stochastic optimization can be valuable tools for designing
perception-action cycles in a cognitive radar. More details on
these methodologies can be found in [3] and the references
therein.

A. Policy Search

The general approach to policy search is to find and tune
a policy that matches or approximates the optimal policy
function in (7). Generally, the optimal policy is unlikely to be
found, instead an approximation to the optimal policy function
is sought, in the form of a policy function approximation or a
cost function approximation.

1) Policy Function Approximations: Policy function ap-
proximations (PFAs) attempt to find and tune a function that
approximates the optimal policy function in (7). For example,
we can consider a family of functions F, where a function
f € F is parameterized by # € ©7. Our goal is then to find a
function and parameterisation f,6 so that the optimal policy
function in (7) can be approximated as:

ALY (by) = f(by; 0)

The optimal policy will be found if the optimal policy belongs
to the family of functions and the corresponding parameter
space. The goal of policy function approximations is not to
find the optimal policy, but to find the best approximation
within a class of function approximations. The function class
may be any approach for approximating a function, such as
an analytic function or a neural network.

2) Cost Function Approximations: Instead of approximat-
ing the entire policy function as with a PFA, a cost function
approximation (CFA) finds a functional approximation to only
the non-myopic cost function, which is interchangeable with
the reward function described in this paper. Consequently, the
optimal policy function in (7) is replaced with:

(10)

(1)

Agpa(br) =arg max [ (b, 0)



which comprises of the approximation to the cost function
77 (b, ax; ) as well as a potentially constrained action space

A™(0).
B. Lookahead Approximations

Lookahead approximations differ from policy search as
they attempt to evaluate the influence of an action on fu-
ture rewards, instead of approximating the policy function.
A lookahead approximation can be performed via a value
function approximation or by simulating a direct lookahead.

1) Value Function Approximations: A value function ap-
proximation uses the optimal policy function in (7), but
replaces the true optimal value of future belief states
Vi _1(Bg+1) with an approximation f/H_l(BkH). In some
cases the expectation in (7) may be difficult to calculate, in
which case a value function approximation can be used to
replace E [V (Bj+1)|Bi = by].

2) Direct Lookahead: For the cases when it is not possible
to find an accurate value function approximation, the expected
future value can be evaluated by simulating future system
evolutions using available models. As this process is computa-
tionally very costly, direct lookahead methods focus on making
effective simplifications that still lead to accurate values.
Common methods belonging to this class are deterministic
lookaheads, Monte Carlo sampling, rollout policies and Monte
Carlo tree search.

C. Discussion

General methodologies for finding policies involve finding
a function approximation to either the policy function, the cost
function or the value function. The difference between these
approaches is simply where the functional approximation is
made, as illustrated in Figure 1. The effectiveness of these
approaches depends on how well a function approximation
can capture these respective relationships. All of these method-
ologies can be implemented with handcrafted models or using
machine learning techniques. Although it is typical to perform
offline training, these function approximations could be up-
dated online as more data becomes available. Direct lookahead
approaches are used when it is not possible to capture the
structure of the problem with a function approximation.

Cost Function Approximation

Policy Function Approximation

« >

A*(by) = arg max (R(by,a) +E [V_, (B )| Bi = b))

Value Function
Approximation

Fig. 1. Different function approximation types for the optimal policy function.

VI. COGNITIVE RADAR PROBLEMS

A representative set of cognitive radar problems for different
applications can be found in the references. Although it
may not always be explicitly stated, these problems can be
characterized as stochastic optimization problems that possess

the framework components described in Section II. The com-
ponents are often explicitly stated or can be easily inferred.
A variety of solution methodologies have been applied, which
can be compared with the strategies described in Section V.

A. Problem Components

In the case of target tracking [2], [9]-[16], the belief state
characterizes a posterior probability density function defined
on the system state space. Typical belief states are the mean
and covariance matrix of the distribution or a set of particles.
The belief state transition function incorporates the Bayesian
prediction and update processes. The exogenous information
is some noisy function of the system state that maps to radar
measurements, thus the system state is partially observable.
Often, the likelihood function is a Gaussian approximation of
the true measurement errors. Adaptive tracking [2], [10], [12]
methods select actions in the form of revisit interval times
as well as the waveform energy for the next measurement,
in order to minimize resource usage while maintaining track.
An early approach [10] was to use a function that mapped
measurement and track accuracies, and Singer manoeuvre pa-
rameters to a revisit interval time. In the context of the methods
described in Section V, this can be thought of as an empirically
derived policy function approximation. Another strand of work
has focussed on waveform selection and adaptation [11], [14],
[15], whereby the action space comprised different waveform
modulations that were selected in order to minimize track
RMSE.

The framework components are easy to identify for tracking
problems, because the framework is essentially an extension to
the standard Bayesian tracking process. However, other radar
functions and applications can also be cast into the framework.
For a search problem, the belief state can parameterize an
undetected target posterior density. In target detection [17]-
[20], the system state is the state of the clutter, interference,
and noise environment. Typical belief states include the clut-
ter, interference, and noise covariance matrix or a posterior
distribution on a spectrum occupancy state. For imaging and
classification [21] the belief state characterizes a posterior
probability mass function. Typical belief states are the pairwise
likelihood ratios or the posterior probabilities themselves.
Some works also consider a combination of radar functions
[22]-[24].

Generally, the action space is some set of parameters that
characterize the radar transmission and reception, including
transmit and receive sensor selection and scheduling, transmit
frequency, bandwidth, time, duration, power, and waveform
design. The exogenous information is some noisy function of
the system state, thus the system state is partially observable.
Generally, objective functions differ widely, but can be cate-
gorized according to the classes in Section III.

B. Solution Methodologies

The majority of the reference works formulate myopic op-
timization problems, which represent a simplification with re-
spect to the general non-myopic multi-step objective function.



Depending on the problem, this can be a very valid approach
to reduce the complexity of the optimization, especially if it is
clear that the current action does not influence future rewards.
However, it is worthwhile to explicitly consider how the
myopic and non-myopic solutions differ, as there are certainly
problems where considering the future rewards associated with
the current action can significantly improve performance.

There are also cases in the reference works where an opti-
mization is performed on an expected value of the system state
and/or an expected future measurement, instead of treating the
system state and future measurements as random variables and
calculating the expected reward. This approach has the benefit
of enabling deterministic optimization methods to be applied
and is a valid approximation if the reward function is not
sensitive in the region of significant probability as described
by the posterior and expected measurement PDFs. However,
this approach ignores or under-utilizes the uncertainty in the
future state evolution and corresponding measurements, which
could significantly impact performance.

The cognitive radar methodologies in the reference works
generally attempt to solve an optimization problem online
by performing numerical optimizations or searches over the
action space. However, the strategies described in Section
V first attempt to identify structure in the policy, cost or
value function and attempt to use specific models or machine
learning to produce a functional approximation. This is a
particularly attractive approach because it can reduce the com-
plexity of the online optimization problem, or remove the need
to perform an online optimization, depending on the functional
approximation type. This approach is underrepresented in the
reference works, but can be identified in [16], where a neural
network is used to learn the policy function that an optimizer
with more complexity would generate.

VII. CONCLUSION

Many cognitive radar techniques are emerging that tackle
different applications or sub-problems in a radar system. This
paper has presented a common framework for describing these
cognitive radar problems in terms of a stochastic optimization
problem. By doing so, the cognitive radar problem can be
addressed using existing algorithmic strategies from the field
of stochastic optimization. Specifically, the strategy of finding
functional approximations for the optimal policy, cost or value
function using machine learning techniques is an attractive
approach. Traditionally, cognitive radar and radar management
has performed myopic and deterministic optimizations. How-
ever, advances in computing and algorithmic capabilities can
enable the more general stochastic optimization problem to
be tackled, which fully considers uncertain measurements and
state transitions as well as the impact of action selection on
future rewards.
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