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Abstract—This paper describes a new information theoretic
approach for modeling the performance of a radar Tracker. Our
approach is based on computing the Posterior Cramér-Rao Lower
Bound (the so-called “Tracker bound’) as a function of radar
capabilities, locations, and target state. The main contribution of
this paper is an extension to more closely model fielded trackers
which exhibit a series of track-drop and re-initialization events
during the target lifetime. We account for this phenomena by
marginalizing the Posterior (Bayesian) information matrix with
respect to the tracker start time. We show that this new approach
allows us to very closely predict the behavior of a radar tracker
by comparing the new performance prediction to Monte Carlo
runs of a tracker on a model 3-radar tracking problem with
centralized fusion.

I. INTRODUCTION

This paper describes an information theoretic approach for
modeling the performance of a radar Tracker. Like earlier
work [3], [4], [7]-[10], we use the Posterior Cramér-Rao
Lower Bound (the so-called “Tracker bound”) to capture the
best possible performance of a tracker as a function of radar
capabilities, locations, and target state.

In this paper, we modify the optimistic Posterior Cramér-
Rao Lower Bound (PCRLB) to account for the fact that a
practical tracker is subject to track-drop and re-initialization
events. Failure to account for this phenomenon leads to sig-
nificant discrepancies between the bound and actual tracker
performance. Our main contribution is the introduction of
an information marginalization approach which conditions on
when the track was initialized. In short, instead of computing
the information matrix assuming the track was initiated at
scan 1 and held to the present scan, we instead compute it
under all possible initialization times and marginalize using
the probability of each.

Our approach produces an expression which predicts
tracker performance as a function of the scenario parameters,
but is now far less optimistic then the nominal PCRLB. There
are two main benefits of this model. First, it provides an
analytical expression for the expected tracker performance that
is a function of radar parameters (bandwidth, frequency, power,
etc.), as well as the physical location of the radars. It does
not require Monte Carlo runs of an actual tracker to predict
how a tracker would perform. As such, it can be used in an
analytical optimization approach to select radar parameters and
locations to meet a desired performance metric. Second, the
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model makes minimal assumptions about the specifics of the
tracker while still achieving improved fidelity over the most
optimistic model. The parameters used in our computation are
limited to what measurements the tracker exploits, the fusion
architecture, and the track start and drop logic.

The rest of this paper is organized as follows. In Section
I, we describe how information theory is used to develop
a model for the utility of radar measurements. This is done
by computing the Fisher Information Matrix (FIM) for the
measurements. Next, in Section III, we describe a high-level
model for track initiation and drop. Section IV introduces
the posterior (Bayesian) information matrix (BIM) and how
it models the performance of a tracker by synthesizing FIMs
over time. Section V then describes our new marginalization
approach to computing the BIM which accounts for track drop
and reinitiation. Section VI provides a comparison of the new
performance prediction to an EKF tracker. Finally, Section VII
concludes.

II. INFORMATION THEORY FOR MEASUREMENT UTILITY
MODELING

In this section, we define the information available from
measurements made by a collection of radar to estimate the
state of a moving target. We assume a constellation of S
stationary radars with locations x5, s = 1,...,5 and a
target with state at time k& denoted o*. We will suppress the
time dependence for notational clarity until it is needed. The
unknown target state is a six-vector capturing the 3D position
and velocity, i.e.,, a =[xz &y y 2z Z].

We assume each radar processes data so as to generate
measurements of range (r), range-rate (7*), azimuth () and ele-
vation (¢) angle at each measurement epoch. The measurement
vector is therefore z = [r 7 6 ¢]. This is a standard model for a
pulsed-Doppler radar which radiates multiple pulses, performs
a matched filter operation, and uses Fourier processing over a
coherent processing interval (CPI) to generate a Range/Doppler
Map at a pointing azimuth/elevation [6], [11].

Each radar is characterized by a set of system parameters,
including center frequency, bandwidth, transmit powers and
antenna gains. These parameters define the resolution of the
radar measurements and when coupled with target range and
RCS, define the measurement signal to noise ratio (SNR).

With that as background, let f(z; ) be a scalar PDF on
the measurement vector z given the parameter vector c. Our
statistical model of the measurements is as follows. First, we
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assume conditional independence among the measurements,
ie., we assume f(z; ) = f,(z; ) fi(2; @) fo(z; ) f4(z; ).

For the measurement of range we assume the radar gen-
erates a measurement of target range corrupted by Gaussian
noise with variance matched to that implied by the range
resolution ¢/2BW [6], where c is the speed of light and BW
is the radar bandwidth, i.e., we assume the range measurement
from sensor s is

ro ~ N(Jley = ., M

C
QBW\/E)’

where «, is the position components of . For convenience we

can also write this rs = h,.(a; zs) + w, where h, is the non-

linear transformation from target space to measurement space
. : . e P

and w is the noise which has standard deviation SEW VS

The range-rate, azimuth, and elevation measurements
are defined analogously. We use the radar resolutions and
beamwidths to define the variance of a Gaussian error on these
components as we did for the range measurement.

The Fisher Information Matrix (FIM) is a 6 X 6 matrix with
elements defined as

2

Fij=-E|——
J 60[@80@‘

log f(z; c)|. 2)

Subject to some regularity conditions, the Cramér-Rao
Bound [12] says that for any unbiased estimator &(z), the
estimator covariance satisfies

cova (&(z)) > F(a) ™. 3)

And as such, the FIM F(a) captures the information
available to the tracker from the measurements.

With our Gaussian noise assumption and a nonlinearity h,
we can use the definition to write the (i5)" element of the
FIM as

1 0h(z; ) Oh(z; )
(9aj ’

F ;= 4)

O'2 [“)ai

For example, the zy component of the FIM for the range
measurement for sensor s is

o ( —25)(y — ys) s

"o O’%\/(‘T - x5)2 + (y - ys)2 + (Z - Zs)2

Assuming conditional independence on the measurements
as before, the FIM for sensor s is then the combination of the
FIMs from the individual measurements, i.e., F'$" + F$" +
Fs9 4 s,

We model a non-unity detection probability (Fy) using the
information reduction factor [7], yielding single-sensor FIM

F* = Py(a,a5) (F5" + F*" + FY £ F*%). (6
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Here we have suppressed the other factors effecting detec-
tion probability, such as the radar parameters.

Finally, the FIM corresponding to the measurements
made by all sensors assuming centralized fusion and time-
synchronized measurements is

F=> Pia,z) (F + P+ 04 F¢) ©)
i=1

This matrix captures the information available at a single
measurement instant from the measurements of a collection of
radars.

III. THE IN-TRACK MODEL

In this section, we develop a two-state model for when
the target is in and out of track. Let P " be the detection
probability from sensor s at time ¢. This number is meant
to include the standard probability that the target-originated
reflection has energy which exceeds threshold, the probability
a detection gates with the tracker (Pg), and the probability it
is correctly associated (Pc4) [13]. The traditional “Swerling”
detection probability is defined by the link budget, target RCS,
and target range. The gating probability captures effects like
large random measurement errors and target maneuvers. In
sum, the composite detection probability is a function of target
state, target RCS profile, and radar parameters and as such it
will vary from scan-to-scan.

We continue to assume centralized fusion, i.e., all data is
fused at a central station. We assume that the central station
forms tracks using this information and therefore a “detection”
means that at least one node has a detection. We define the
“network”™ detection probability as the probability that at least
one node has a threshold exceedance, i.e.,

Pi=(1-T[a-P"). ®)

%

Other fusion architectures are possible. For example, we
could instead assume that each sensor forms tracks indepen-
dently and the tracks are fused rather than measurements. In
this case, we would use P§ = P and perform the following
analysis at each sensor. We do not discuss this possibility
further in this paper.

Our high-level model for the tracker is that it proceeds
through a sequence of in-track and out-of-track states. Ideal
tracking would have the tracker initiate at time 1 and hold for
the entire target life, but in practice there are periods of time
where the target is in track and periods where it is out of track.

Fielded trackers like the Multiple Hypothesis Tracker
(MHT) use “M-of-N” track confirmation (initiation) and dele-
tion logic. Blackman [1] gives an example wherein a target is
initiated with 3 detections in 4 frames (3-of-4) and removed
with 4 consecutive misses. Therefore, our model for how a
tracker moves in and out of track will be given as follows: A
track is initiated when (at least) M detections occur in the last
N opportunities, and an existing track is deleted if there are
K consecutive misses.
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We use the following notation to capture this phenomenon:

e P!, is the probability that at least M detections have
occurred in the last N opportunities at scan ¢ (i.e.,
scans t — N+ 1,t— N +2,...1).

e Pl is the probability of K consecutive non-detections
occurring at scan t.

Since the base detection probability P is a function of scan
t, computing these quantities cannot be done by appealing to
the standard binomial distribution. We use the method of [2]
to compute these quantities efficiently.

IV. THE BAYESIAN INFORMATION MATRIX

The Bayesian Information Matrix (BIM) describes the
information available to a tracker by synthesizing FIMs and
the motion model over time. If a target was under track from
scan 1 until time k, the Bayesian Information Matrix J can be
computed using the recursion of [3]. In the special case where
the tracker models the target motion as linear and Gaussian
(e.g., with the so-called nearly constant velocity model), the
recursion takes a particularly simple form,

Jf+1 (Q—I—A(Jf) AT)_l—l—Ft+17 (9)
where we define J° to be some minimal information matrix,
and we execute the recursion from scan 1 until scan k. The

PCRLB at time ¢ is then given by (J?)~

JO is chosen to represent minimal information, and here
we set it to have an inverse which is very large value, to
indicate the uncertainty is the size of the surveillance region.
Later simulations will show that this setting does not materially
effect the conclusions because when the target is under track
the PCRLB quickly stabilizes to a state which is very weakly
dependent on this initial condition.

Let the notation JF, denote the BIM at time k if the
target was initiated at scan 1, i.e., the BIM computed using
the recursion from scan 1 until scan k. This BIM is valid if
the target was held in-track for the entire timespan 1, ..., k.

V. THE MARGINALIZED BIM AND PCRLB

This section generalizes the computation to the case where
a target is not in track for its entire lifetime. If the tracker
initiated at scan ¢ > 1, or if the tracker has experienced a
sequence of initializations and drops ending with the latest
initialization at time ¢, the BIM should be computed using
only measurements from scan ¢ until the current scan. We
will denote this BIM Jéﬁ k-

The main idea of this paper is that we should compute
the BIM at the current time by marginalizing over the track
initialization time, i.e.,

k
TE=> "M a) g + (1= pf) I, (10)
q=1

where p*(q) is the probability the tracker initiated at scan g
and held until %, J;“: . is the corresponding BIM, and 1 — p¥,
is the probability the target is not in track at time k.

978-1-7281-1679-2/19/$31.00 ©2019 IEEE

Each quantity J;, ko is computed by straightforward appli-
cation of the Tlchavsky [3] recursion starting from scan ¢ and
running until scan k. The main task remaining is to specify
the probability p*(q) to perform the marginalization.

We first compute the probability of being in track at
time ¢. We notice there is a recursion which can be used to
approximately compute if a target is in track: either (i) the
target was in track at time ¢ — 1 and didn’t drop, OR (b)
the target was out of track at time ¢ — 1 and we received an
M —of — N event at time t. This can be expressed as

Pl =i (1= ple) + (1= 25 )P (11)

where p) ~' = 0 and p} = p}f .

Similarly, we can compute the probability that the track
has just started at time ¢ as pf,,, = p',(1 — p!,'). Finally,
the probability that a track is initiated at time ¢ and held until
scan k is the probability it was initiated and then not dropped,

Egs. (10) - (12) completely specify the marginalization.

VI. EXAMPLE

We illustrate the new marginalized performance model by
comparison to an Extended Kalman Filter (EKF) tracker which
uses M — of — N initiation and K-miss drop logic. Here we
selected M = 3, N = 5 and K = 3. The scenario uses 3 S-
band radars with 30M H z bandwidth. A target flies around the
region at approximately 250m/s as illustrated in Figure 1. We
assume that each radar has a 1-degree azimuth and elevation
beamwidth, a 64ms CPI, a 10s scan rate, 20d B transmit gain,
and that the target has a constant 3dBsm RCS. We simulate a
60 minute (361 scan) vignette. These values completely define
the r, 7, 6, » measurement uncertainties and received SN R.

e ~
_ -800
= “aop 1200 1000
1800 1600

X (km)

Fig. 1: The simulation scenario we use to illustrate the new
performance prediction. A single target flies at constant veloc-
ity through a field of 3 surveillance radar.
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Figure 2 illustrates the RMSE computed from the PCRLB
for this scenario for cases where the tracker is assumed to be
initialized and held starting at scans 1, 100, 200, and 300. Each
curve shows the PCRLB from the presumed initialization time
until the current time.

10*
Bound if tracker
starts at t =1
. Bound if tracker
Bound if tracker oo at t = 300
starts at t = 100
E Bound if tracker
w103 starts at t = 200
=
o
102 . . . . . . .

50 100 150 200 250 300 350
TIME (SCAN NUMBER)

Fig. 2: The tracking performance prediction for several tracker
initialization scans, as measured by the RMSE from the
PCRLB.

These information curves are combined with the proba-
bility that the tracker has initiated at a scan and holding to
the current scan to compute the marginalized information.
Figure 3 illustrates one such probability curve, showing the
probability of tracker initiation and hold until scan 285 for
each possible initiation time. The two main peaks mean that
there are basically two situations : the tracker initiated around
scan 100 and held, or the tracker has only recently initiated.
In addition, the probability the target is out of track at time
285 is 10%.
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Fig. 3: The probability of starting at each scan and holding
until scan 285. . The probability the target is out of track at
time 285 is 10%.

Figure 4 amplifies this point by showing the PCRLB for all
possible initialization scans from scan 1 to scan 361. Notice
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that there is always a non-zero probability the target is out of
track. In this case the tracker error corresponds to JO (ie., a
very large value meant to indicate the uncertainty is the size
of the surveillance region). This possibility enters prominently
into the marginalization as seen by the solid black line in
the figure, which is the marginalization of the BIMs and thus
includes the probability of being out-of-track.

108 | | |
Bound Marainalized Over Start Time
Itis higher than the individual bounds as it

107 E includes the probability of being out of track
106 L

—
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=
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=
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Bounds Given Start Time

102! h . . . . .
50 100 150 200 250 300 350

TIME (SCAN NUMBER)

Fig. 4: The tracking performance prediction for all tracker
initialization scan times and the marginalization. Note that the
marginalization is computed using the individual BIMs and the
probability that the target is out of track at a scan. Therefore,
the marginalized prediction must be higher than any of the
individual bounds. The prediction dips at scan 200 mainly due
to the probability of being out of track very low.

We now compare the performance prediction to a tracker.
We implemented an EKF with the same M N K logic used to
predict the performance. 200 instantiations of the tracker are
shown in figure 5. These include track-drop events and runs
where the tracker is out of track for large periods of time.
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100 150 200 250 300
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Fig. 5: 200 instantiations of an EKF in the model problem.

Figure 6 shows the new marginalized prediction along with
the RMSE of the EKF taken over many trials. Notice that
the prediction averages over both in and out-of-track target
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Fig. 6: A Comparison of the tracker RMSE and the track-
drop-BIM. The dashed curve is the new track-drop-sensitive
marginalized prediction, and the solid curve is the RMSE for
many runs of an EKF in a matched scenario.

states and the EKF RMSE calculation includes times where
the tracker is in and out of track. When the EKF is out-of-
track we mark its squared error as the size of the surveillance
region. Analogously, when the model predicts there is some
probability of the target being out of track, the marginalization
includes a J° term which corresponds to this same size.

VII. CONCLUSION

This paper has described an approach to modeling the
performance of a radar Tracker using information theory. Like
earlier work, our approach is based on computing the Posterior
Cramér-Rao Lower Bound (the so-called “Tracker bound) as a
function of radar capabilities, locations, and target state. A new
aspect of this work is we modify the bound to more closely
model how fielded trackers work, which includes a sequence
of track-drop and reinitialization events.

Our approach is to perform a marginalization of the Pos-
terior (Bayesian) information matrix. We show the utility of
this new performance prediction by comparison to a large set
of Monte Carlo runs of a tracker.
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