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Abstract—This paper derives a particle filter with flow induced
by a log-homotopy for non-thresholded measurements (i.e., a
track-before-detect log-homotopy particle filter). We have elected
to use the Geodesic approach to particle flow and study both
scaled-identity and Gaussian diffusion. We show the performance
of the new filter provides order-of-magnitude tracking improve-
ment over SIR filtering on a 2D tracking problem. While the
homotopy approach requires significantly more computations
per particle as it numerically solves a stochastic differential to
flow each particle, we still show a significant improvement in
performance per flop. We expect this performance improvement
to widen, perhaps significantly, with higher dimensional state
space. The numerics are discussed further in the paper.

I. INTRODUCTION

A particle filter approximates a probability distribution
by a set of samples, or particles, and corresponding weights
[1], [2]. A standard “sampling importance resampling” (SIR)
particle filter is comprised of two steps. In the motion update
step, particles are propagated according to the motion model,
while the weights remain fixed. In the information update step,
particles remain fixed while the weights are updated by Bayes
rule. This involves multiplying the weights by the likelihood
function and normalizing. Particle degeneracy occurs when
the likelihood is concentrated on only a few particles and the
information-updated weights are mostly zero [3]. The standard
remedy is resampling, where particles with the largest weights
are replicated in proportion to their weights, and the weights
of all particles are set to be equal [1], [2]. This step leads to
a performance degradation in many practical problems.

In a series of papers [3]–[15], Daum has introduced a new
homotopy-based method to implement the information update.
In this approach, instead of using measurements to simply
update the weight of particles from the prior, measurements
are used to flow prior particles to a posterior location. Among
other things, this addresses the particle degeneracy problem
inherent in SIR particle filtering.

Several practical implementations have been recently re-
ported [16]–[19]. These implementations all use a detect-
then-track approach, which takes an input data surface and
thresholds to a set of detections. The detections (threshold
exceedances) are then associated to the tracking filter to
produce state estimates over time. In contrast, here we discuss
the design and implementation of a track-before-detect log-
homotopy flow particle filter, which incorporates the raw(-er)
non-thresholded observations directly into the filter. Our evalu-
ation shows significant improvement in tracking performance.

The paper proceeds as follows. In Section II, we briefly
review Daum’s approach and give the details of a special case
referred to as Geodesic Flow. Next, Section III gives the details
of our pixelated non-thresholded measurement model. Third,
in Section IV, we specialize the flow equations to our model.
A detailed derivation is omited for lack of space. Section V
provides a simulation comparing the performance of the new
filter to an SIR filter. Finally, Section VI concludes.

II. A SUMMARY OF THE GEODESIC FLOW APPROACH

The homotopy-based approach to particle filtering [5], [8]
starts by defining a flow of the conditional probability density
function on state vector x with respect to a parameter λ

log p(x, λ) = log g(x) + λ log h(x)− logK(λ), (1)

where g(x) is the prior, h(x) is the likelihood and K(λ) is a
normalization. p(x, λ) can be seen to move between the prior
when λ = 0 and the posterior when λ = 1.

It is distinguished from standard particle filtering as parti-
cles are flowed from a prior to a posterior location using the
measurements. The approach supposes [6] the flow of particles
obeys the Ito stochastic differential equation

dx = f(x, λ)dλ+ dw, (2)

where the covariance of the process noise is given by Q(x, λ).

Daum’s most recent work focuses on a special case [7], [8]
which results in the Geodesic flow

f(x, λ) = −
[
∂2 log p(x, λ)

∂x2

]−1(
∂ log h(x)

∂x

)T
. (3)

Coupled with Q(x, λ) this defines the stochastic differential
equation (SDE) in variables x and λ that flows particles from
their prior location to their posterior location.

There are many ways to pick an optimal Q(x, λ) [14]. We
explore two cases. First, we look at Q(x, λ) derived using a
Gaussian assumption on the densities [15], i.e., Q(x, λ) is

[P−1 + λHTR−1H]−1HTR−1H[P−1 + λHTR−1H]−1, (4)
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where P comes from the prior and R from the sensor model.

We also investigate the case where Q(x, λ) is a positive
constant multiple of the identity matrix (given f(x, λ), x, and
λ) [14]. In this case, the constant is approximately

α ≈
2

∥∥∥∥∂ log p(x, λ)∂x

∂f(x, λ)

∂x

∥∥∥∥∥∥∥∥ ∂∂x
[
div

(
∂p(x, λ)

∂x

)
/p(x, λ)

]∥∥∥∥ . (5)

Together equations (3) and (4) or (5) completely specify
the flow of particles from prior to posterior.

III. NON-THRESHOLDED MEASUREMENT MODEL

This section defines the sensor likelihood h(x) for our
non-thresholded sensor measurements. We specialize here to
the case where the raw sensor data has been processed to
create an N ×M array of pixelated input data (for example, a
Range/Doppler Map or an Infrared Array). The measurements
are then a set of intensities on the MN sensor pixels and will
be denoted z = [z1, z2, · · · , zMN ]. The model h(x) defines the
statistics of the pixels, and is coarsely described as modeling
the expected intensity in each pixel as related to the distance
from the pixel to the projection of the target on to sensor space.
The sensor impulse response (IPR) defines how the expected
intensity falls off as the distance from the target.

The target is characterized by state x, and the mapping
m(x) = [ix jx]

T projects the target state x to the sensor
space (pixels). In general, this projection will be a nonlinear
mapping. The distance between the projection of x and a
sensor pixel (i, j) will be denoted δij(x) = m(x) − [i j]

T .
For the purposes of exposition, we use m(x) = x, i.e., we
measure cells with unit thickness in the same space as x.

We model intensities of the pixels as having Rayleigh
statistics. The expected intensity in pixel (i, j) is given by
its distance from the projection of the target state x, weighted
by the target IPR. We elect to use an exponential for the target
IPR and define its value in pixel (i, j) as

Iij(x) = e−
1
2 δ
T
ij(x)S

−1δij(x). (6)

The Rayleigh intensity parameter in pixel (i, j) is then

λij(x) = λb + (λt − λb)Iij(x). (7)

This model captures the fact that the intensity parameter
in pixel (i, j) is λb (the background intensity) in pixels very
far from the target. It is λt (the target intensity) for a pixel
centered exactly at the target, and falls off as dictated by the
IPR covariance S.

With this as background, we can now write the full non-
thresholded measurement model explicitly as

h(x)
.
= p(z|x) =

∏
ij

p(zij |x) =
∏
ij

zij
λij(x)

e
−z2ij

2λij(x) . (8)

The following figures show example scans in 1D and 2D
cases. Each pixel has intensity drawn from a Rayleigh random
variable with mode given by eq. (7).

Fig. 1. An example one-dimensional measurement scan with λt = 4, λb = 1
and s = 16. Measurements are distributed Rayleigh with intensity described
by the distance from the true target projection and the IPR.

Fig. 2. An example two-dimensional measurement scan with λt = 4, λt = 1,
and s = 16. Measurements are distributed Rayleigh with intensity described
by the distance from the true target projection and the IPR.

IV. GEODESIC FLOW FOR NON-THRESHOLDED
MEASUREMENTS

Particle flow from prior to posterior is effected by solving
the stochastic differential equation defined by eq. (3) and eq.
(5). We discuss each of these terms in turn.

A. The deterministic component of the flow, f(x, λ)

The flow (eq. 3) for non-thresholded measurements is
specified as follows. Using the identity

∂2 log p(x, λ)

∂x2
= λ

∂2 log h(x)

∂x2
+
∂2 log g(x)

∂x2
, (9)
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the flow is seen to be defined through the partials of the
likelihood h(x) and the prior g(x).

The required partials of h(x) can be found in a straightfor-
ward manner using the likelihood (eq. 8), Rayleigh intensity
(eq. 7) and IPR (eq. 6) definitions given earlier. For example
the (scalar) partials with respect variables a and b are

∂ log h(x)

∂a
=
∑
ij

(
z2ij − 2λij(x)

2λ2ij(x)

)
∂λij(x)

∂a
(10)

and

∂2 log h(x)

∂a∂b
=
∑
ij

(
z2ij − 2λij(x)

2λ2ij(x)

)
∂2λij(x)

∂a∂b
+ (11)

(
λij(x)− z2ij
λ3ij(x)

)
∂λij(x)

∂a

∂λij(x)

∂b
,

where the partials of λij(x) are scaled versions of the partials
of the IPR Iij(x), i.e.,

∂λij(x)

∂a
= (λt − λb)

∂Iij(x)

∂a
, (12)

and so on. The partials of Iij(x) come directly from eq. (6).

Finally, let µ and P be the empirical mean and covariance
of the particles used to represent the prior g(x). Under a
Gaussian approximation, we find ∂2 log g(x)

∂x2 = −P−1. This
now completely specifies the flow function f(x, λ) for the non-
thresholded model.

B. The Diffusion, Q(x, λ)

In the case of scaled-Identity diffusion, the diffusive com-
ponent of the flow is defined by the scale codified in eq. (5).
Its computation requires the specification of

∂ log p(x, λ)

∂x

∂f(x, λ)

∂x
(13)

and

∂

∂x

[
div

(
∂p(x, λ)

∂x

)
/p(x, λ)

]
. (14)

Both terms can be seen to be a function of log p(x, λ),
log g(x), log h(x) and their partials with respect to state x. A
detailed derivation of these terms is omitted because of lack
of space.

In the case of a Guassian approximation for diffusion,
we instead use P computed from the prior and an R which
approximates the measurement model. Here we use R matched
to the IPR.

V. SIMULATION

This section shows the results of a simulation comparing
the new non-thresholded Geodesic flow particle filter with a
SIR particle filter. Both trackers use the exact same temporal
prediction, measurement model, and measurements. The only
distinction between the filters is that in the Geodesic flow filter,
the particles are flowed from their prior position to a posterior
position by on solving the Geodesic flow SDE. In contrast, in
the SIR filter, particles stay at their prior position and have
weights updated via Bayes rule.

A. Illustrative Images

We first present images from a 1D simulation which
illustrate the internals of the Geodesic flow. Figure 3 illustrates
how particles flow from prior to posterior location as the SDE
is solved from λ = 0 to λ = 1. The received measurements
are shown at right. This illustrates how the relatively broad
prior is concentrated to a narrower posterior focused around
where the measurements indicate the target is.

Fig. 3. An illustration in 1D of how the Geodesic method flows particles
from their prior location to their posterior location as λ goes from 0 to 1.

Figures 4 and 5 illustrate why the Geodesic flow approach
improves performance over the SIR approach. These figures
show the broad prior/narrow observation likelihood case. We
find that the SIR approach has the well-known particle de-
generacy issue. Only the one particle that is closest to the
true location gets all of the weight. On the other hand, the
Geodesic flow method is able to move particles from the prior
to the correct posterior location.

B. On the Numerical Solution of the SDE

The SDE is solved numerically (i.e., particles are flowed
from prior to posterior location) using the Euler-Maruyama
method [21]. The implementation uses software based on the
MatLab SDE toolset [20]. Since most of the important flow
happens near λ = 0, we found it sufficient to simply space the
points logarithmically between 1e− 5 and 1. Specifically, the
SDE solution was effected by discretizing λ log-spaced with 31
points between λ = 10−5 to λ = 1 (i.e., λ = 10−5+.167δ, δ =
0 · · · 30). Selection of the SDE discretization for homotopic
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Fig. 4. An Comparison of the posteriors. Top: Measurements and the Rayleigh
mode. Mid: The prior and the Geodesic flow posterior. Bot: The prior (identical
to the geodesic prior) and the SIR posterior.

Fig. 5. Zoomed to show detail. Since there are no prior particles near the
measurement, the SIR puts full support on the closest particle. The Geodesic
method flows particles to the correct region and avoids this pathology.

flow is an active area of investigation. For example, recent
work [13] has focused on adaptively choosing the step size.

C. Simulation Result

The simulation is described as follows. A target is charac-
terized by its 2D (x, y) state. The true state simply diffuses
over time. We use a 100 time step simulation. At each time,
non-thresholded measurements are made on a 2D grid. The
Rayleigh intensity in each grid cell is given by eq. (7), i.e., it
is defined by the true target location of the target and the IPR.

The performance of the tracker is measured by the RMSE
error between true state and predicted state over the simulation
window. We compare the performance as a function of particle
count for the two approaches.

Figure 6 shows the result of a Monte Carlo simulation
comparing the RMSE performance of the Geodesic particle
filter to an SIR particle filter in terms of number of particles.
For the simulation we used IPR S = sI2×2

, with s = 32.
The sensor makes measurements on a 300 × 300 array. We

illustrate the performance of both the Gaussian and scaled-
Identity diffusions.

D. Discussion

The Geodesic approach requires solving a stochastic dif-
ferential equation (SDE) to propagate each particle. We have
chosen to discretize with 31 steps. Each step requires calcu-
lation of the flow and diffusion terms as outlined earlier. In
contrast, the SIR requires only an evaluation of the likelihood
function and a multiply for each particle and then a resample
of the entire collection. Thus, on a per-particle basis, the
geodesic flow requires significantly more computations. With
coarsely optimized MatLab code, the geodesic approach with
scaled-Identity diffusion requires ≈ 75x more computations
per particle then the SIR approach and the geodesic approach
with approximate Gaussian diffusion requires ≈ 30x more
computations per particle. Figure 7 shows the performance
curve from Figure 6 at λt = 10 now compared against CPU
time. In light of the significant RMSE improvement shown in
Figure 6, the geodesic approach still provides a computational
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Fig. 6. Monte Carlo Comparisons of the tracking performance versus number
of particles for the SIR and Geodesic flow approaches for the 2D example.
Top: λt = 10. Bottom: λt = 4. Particle diffusion during the flow is done via
either the scaled-Identity method [14] or using a Gaussian model [15]. We
find that the Geodesic approach needs about ≈ 250x fewer particles to reach
the RMSE asymptote.

advantage over the SIR method. Earlier work [5] shows that
the computational advantage grows as the dimension of the
state space.

Due to discretization of λ, there are some occasions when
the steps are too coarse and the flow is poor. In our current
implementation, we trap for such events by simply looking
at the numerical gradient of the particle position during the
solution. When this happens, the particle is re-flowed from a
prior position to its posterior state.

VI. CONCLUSION

This paper has developed and illustrated by simulation a
track-before-detect log-homotopy particle filter by reducing to
practice work by Daum. We have elected to use the Geodesic
approach to particle flow and studied both scaled-identity and
Gaussian diffusion. We have found the performance of the

Fig. 7. RMSE performance of the Geodesic flow approach as compared to
the SIR approach in terms of CPU time as measured by MatLab. The new
Geodesic flow approach provides order-of-magnitude improvement in terms
of CPU time for performance.

new filter provides order-of-magnitude tracking improvement
over SIR filtering on a per-particle basis in simulation on a
2D tracking problem. While the homotopy approach requires
more computations per particle, on balance, it still provides an
improvement per flop.
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