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ABSTRACT  

This paper considers the ubiquitous problem of estimating the state (e.g., position) of an object based on a series of noisy 
measurements.  The standard approach is to formulate this problem as one of measuring the state (or a function of the 
state) corrupted by additive Gaussian noise. This model assumes both (i) the sensor provides a measurement of the true 
target (or, alternatively, a separate signal processing step has eliminated false alarms), and (ii) The error source in the 
measurement is accurately described by a Gaussian model. In reality, however, sensor measurement are often formed on 
a grid of pixels – e.g., Ground Moving Target Indication (GMTI) measurements are formed for a discrete set of (angle, 
range, velocity) voxels, and EO imagery is made on (�, �) grids.  When a target is present in a pixel, therefore, 
uncertainty is not Gaussian (instead it is a boxcar function) and unbisased estimation is not generally possible as the 
location of the target within the pixel defines the bias of the estimator. It turns out that this small modification to the 
measurement model makes traditional bounding approaches not applicable. This paper discusses pixelated sensing in 
more detail and derives the minimum mean squared error (MMSE) bound for estimation in the pixelated scenario. We 
then use this error calculation to investigate the utility of using non-threshoded measurements.  
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1. INTRODUCTION  

This paper discusses the problem of estimating the state of an object using sensor measurements with special attention to 
“pixelization”. Pixelization refers to the fact that processed sensor data is typically provided to an estimation algorithm 
on a discrete grid of pixels, rather than as a set of point measurements of targets.  For example, Electro-Optical (EO) 
data is typically made on a 2D spatial grid, with resolution defined by the wavelength and lens diameter, among other 
things. Likewise, Ground Moving Target Indicator (GMTI) data is typically processed to set of range/angle/radial 
velocity voxels where the resolution is defined by transmit bandwidth, angle subtended during the collect, pulse 
repetition interval and so on. 

Pixelization is not typically dealt with explicitly in detection, tracking, and estimation algorithms.  Instead, the effect of 
the pixelated nature of the sensor is typically modeled as an additive error source. However, pixelization imparts two 
interesting properties that this type of approximation does not capture: First, the measurement likelihood is uniform over 
the pixel, rather than Gaussian. In other words, when a pixel is detected, the implication is that we have learned only that 
the state of the target maps into that pixel. Second, point estimators are not unbiased unless the target happens to be in 
the center of a cell. 

This paper includes two contributions. First, we derive the minimum mean square error estimator (MMSE) for a simply 
modeled pixelated sensor.  We then discuss why conventional bounding approaches face problems with this model. 
Next, we compare the difference between this bound for the case where we elect to threshold (“detect”) the data before 
performing estimation (for the purposes of minimizing communication bandwidth, for example) to the case where the 
“raw” (i.e., non-thresholded) measurements can be used. 

2. THE PIXELATED SENSOR MODEL 

Assume we desire an estimate of the state (e.g., position) of a target, �, from a series of measurements made by a 
pixelated sensor with � cells.  For the purposes of exposition, it is useful to describe the case where the target state is 1D 
and the sensor pixels are in the same units of the desired unknown �. However, the approach extends in a 
straightforward manner to the more general case. 

Signal Processing, Sensor/Information Fusion, and Target Recognition XXV, edited by Ivan Kadar, Proc. of SPIE
Vol. 9842, 98421E · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2224059

Proc. of SPIE Vol. 9842  98421E-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/19/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 
 

 

 

The measurement in cell � will be denoted �	, for cells � = 1 ⋯ �. In the standard “detection/no-detection” case, �	 ∈ [0,1], whereas in the more general “raw” case �	 ∈ �. We will use the notation �� to denote the cell that � maps 
into, and �� will denote the measurement in that cell.  

With that as background, the generic sensing likelihood model is  

������	�(�	|�) = ���(�	) � = ����(�	) � ≠ �� , (1) 

where �� is the target-present distribution and �� is the background-only distribution. 

This model is often referred to as the “point-target” model. It is only explicitly true when the target is small relative to 
the sensor pixel size and the target does not produce artifacts (e.g., sidelobes) in adjacent cells.  We will assume these 
conditions are met in this paper.  

Radar tracking is an interesting motivating example for this model. In this setting, a series of radar pulses are aggregated 
together into a coherent pulse interval (CPI). They are then processed to construct a range-Doppler map (RDM), which 
is used to provide input to a tracker. Each cell in the RDM corresponds to a hypothesized target range and radial 
velocity. A common model for the target and non-target distributions in Radar is to use Rayleigh statistics [1], i.e., 

��� (�	|�) =
!"#
"$ �	%&  ' ()*+,/./,  � = ��

�	%0  ' ()*+,/.1, � ≠ ��
. (2) 

Often times, the RDM is thresholded (i.e., only those pixels with amplitude over a threshold are preserved). This results 
in a probability of correctly detecting the target pixel, called �3, and a probability of falsely detecting a non-target pixel, 
called �4. For the thresholded case, the model is 

�&5�(�	|�) =
!#
$ �3 � = �� , �	 = 1 (1 − �3) � = �� , �	 = 0�4 � ≠ �� , �	 = 1(1 − �4) � ≠ �� , �	 = 0

. (3) 

It can be shown that the thresholded and non-thresholded models are linked under the Rayleigh assumption. If we define 

SNR = %&'/%0'  − 1, and use constant false alarm rate (CFAR) thresholding, we have �3 = �4
:;<=>:. 

Furthermore, if we define the indicator function  

?	,� = �1 � = ��0 � ≠ �� , (4) 

then these two models can be written compactly as 

��� (�	|�) = 
*+./  , ()*+,/./,?	,� + *+.1 , ()A+,B1, C1 − ?	,�D, (5) 

and 

�&5�(�	|�) = � �3?�,	 + �4(1 − ?�,	) �	 = 1
(1 − �3)?�,	 + (1 − �4)(1 − ?�,	) �	 = 0. (6) 

At this point it is useful to highlight the distinction between the pixelated model just presented and the usual method for 
modeling sensor measurements.  The typical detection-based model is that a sensor receives a set of data and first 
performs a detection process to determine which of the cells have threshold exceendances. The threshold exceendances 
are then gated, associated, and subjected to other sophisticated processing to (in the ideal case) reject all of the false 
alarms and be left with only the correct detection ��E����&. This remaining single (assumed correct) detection is then 
treated as originating from the center of the cell.  Then the model is 
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�(��E����&)~�(�, G'). (7) 

This approach approximates sensor pixelization using measurement variance G', typically matched to a function of the 
cell size. Additionally, it assumes that the uncertainty is centered around the true value of the unknown. There is 
therefore a mismatch between the assumed model and the actual measurements. Nevertheless, filtering and estimation 
approaches based on this model often work well in practice if the variance is tuned well.   

Of interest here are fundamental bounds on performance that explicitly incorporates the pixelated nature of the sensor.  
While quite simple, the boxcar models presented above have properties which prevent the direct application of the usual 
estimation theoretic techniques.   

In particular, the support of the distribution is a function of the parameter. This is a well-known situation in which the 
ordinary Cramer-Rao lower bound (CRLB) does not apply [3][5][7] because the exchange of integration and 
differentiation in the CRB derivation is no longer valid. Recently, [7] has developed and extension called the Cramer-
Rao-Leibniz lower bound (CRLLB) for parameter-dependent support. However, our case has support endpoints that are 
not differentiable with respect to the parameter. More generically applicable bounds, such as the Barankin family of 
bounds (including the Chapman-Robbins bound [4], the Bobrovsky-Zakai bound [5], and the Keifer bound [1]) are also 
not applicable with this model because it is not true under the boxcar pixelated model that �(�|�) = 0 implies �(�|� +ℎ) = 0. 

3. THE MMSE ESTIMATION BOUND 

Despite the inability to use the conventional bound techniques, we can derive the minimum mean squared error estimator 
(MMSE) as follows.  Let the prior �(�) be uniform over � ∈ (�I , �J). Then for measurement � = (��, �', ⋯ , �K), define 
the per-cell likelihood ratio  

L(�	) = ��(�	)/��(�	). (8) 

Assuming conditional independence across the cells,  

�(�|�) = ∏�(�	|�) = L(��)∏��(�	). (9) 

Using Bayes rule, we can compute the posterior given the set of measurements as  

�(�|�) ∝ L(��)/∑L(�	). (10) 

Finally, the MMSE, �P(�), is given by 

�P(�) = ∫ �L(��)R� ∑L(�	) = ∑�	L(�	) ∑L(�	) , (11) 

where �	 is the center of measurement cell i.  

The actual mean squared error (MSE) is  

S*[(�P − �&�T�)'] = ∫ �(�|�&�T�)(�P(�) − �&�T�)'R� = ∫ L(��&�T�)∏��C�UD V∑�+I(*+) ∑I(*+) − �&�T�W' R�, (12) 

where the integral is to be interpreted as the �-D  integration over the � sensor cells. As expected the MSE is a function 
of the target location �&�T�.   

We now specify the form of the likelihood ratio for the two radar cases we considered before.  These come directly from 
the earlier model definitions. For the thresholded case, we have 

L&5�(�	) = � �3/�4 �	 = 1
(1 − �3)/(1 − �4) �	 = 0 (13) 

and 

∏��C�UD = C1 − �4DX�4K)X  (14) 
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and for the non-thresholded case we have 

L�� (�	) = %0'%&'  (�� Y�	' %&' − %0'2%&'%0' [ (15) 

and 

∏��C�UD = ∏ �U%0' () *\,'.1,  (16) 

Neither of these likelihoods admit an analytic solution to the MSE.  However, both integrals can be evaluated using the 
principle of importance sampling.  When the number of sensor cells is small, we can even enumerate the 2K cases in the 
thresholded setting.  

In the thresholded case, the MSE depends on the false alarm setting, which is a free parameter.  Figure 1 shows the MSE 
as a function of SNR for different values of �4. We find that one should elect to choose small �4 so the asymptotic MSE 
is small. 

 
Figure 1. False alarm rate affects the MSE. 

In the raw (non-thresholded) case, there is no free parameter. Figure 2 compares the non-threshoded case to the 
thresholded case when �4 = 1( − 5. It shows the benefit of non-thresholded measurements in an example problem can 
be as much as 4R_. 

 
Figure 2. The benefit of not thresholding. 
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Since the MSE is a function of the target location in a cell, we also derive the average MSE. The average MSE is found 
by averaging over the (assumed uniform) prior locations of � in a cell as 

S*,�[(�P(�) − �)'] =     1�J − �I ` ` L(��)∏��C�UD a∑�	L(�	) ∑L(�	) − �b'  R�R�, (17) 

i.e., the average MSE is found by averaging the MSE over the possible target locations. 

It is informative to look at the average MSE in the special case where SNR is very high.  In the case of thresholded 
measurements, this means �3~1 and �4~0 – that is, we can identify the target cell precisely with no false alarms or 
missed detections.  In this case, we find that the average MSE as given by Eq. (17) is e'/12, where e is the cell size. 
This is identical to the variance bound derived in [7] (using the substitution e = 2f), which analyzed the special case 
where �3 = 1, �4 = 0, and the likelihood was uniform and centered on the parameter. 

4. CONCLUSION 

This paper has discussed the ubiquitous problem of estimating the state (e.g., position) of an object based on a series of 
noisy measurements.  The standard approach in the literature is to formulate this problem as one of measuring the state (or 
a function of the state) in Gaussian noise.  In many applications, however, measurements are “pixelated” – i.e., they are 
presented on an sensor array.  When a target is present in a pixel, therefore, the uncertainty is not Gaussian (instead it is a 
boxcar function) and the estimator is not unbiased (the location of the target within the pixel defines the bias of the 
estimator).  This paper has looked at this in more detail and derived an MSE bound for estimation. Particular attention has 
been given to the distinction between thresholded and non-thresholded measurements. 
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