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ABSTRACT

This paper considers the ubiquitous problem of estimating the state (e.g., position) of an object based on a ser
measurements. The standard approach is to formulate this problem as one of measuring the state (or a fun
state) corrupted by additive Gaussian noise. This model assumes both (i) the sensor provides a measuremer
target (or, alternatively, a separate signal processing step has eliminated false alarms), and (ii) The error sc
measurement is accurately described by a Gaussian model. In reality, however, sensor measurement are ofte
a grid of pixels — e.g., Ground Moving Target Indication (GMTI) measurements are formed for a discrete set
range, velocity) voxels, and EO imagery is made(oyy) grids. When a target is present in a pixel, there
uncertainty is not Gaussian (instead it is a boxcar function) and unbisased estimation is not generally poss
location of the target within the pixel defines the bias of the estimator. It turns out that this small modificatic
measurement model makes traditional bounding approaches not applicable. This paper discusses pixelatec
more detail and derives the minimum mean squared error (MMSE) bound for estimation in the pixelated sce
then use this error calculation to investigate the utility of using non-threshoded measurements.

Keywords. Estimation, Detection, Error bounds, Pixelated Sensing.

1. INTRODUCTION

This paper discusses the problem of estimating the state of an object using sensor measurements with special
“pixelization”. Pixelization refers to the fact that processed sensor data is typically provided to an estimation
on a discrete grid of pixels, rather than as a set of point measurements of targets. For example, Electro-Oj
data is typically made on a 2D spatial grid, with resolution defined by the wavelength and lens diameter, am
things. Likewise, Ground Moving Target Indicator (GMTI) data is typically processed to set of range/ang
velocity voxels where the resolution is defined by transmit bandwidth, angle subtended during the colle
repetition interval and so on.

Pixelization is not typically dealt with explicitly in detection, tracking, and estimation algorithms. Instead, the ¢
the pixelated nature of the sensor is typically modeled as an additive error source. However, pixelization im
interesting properties that this type of approximation does not capture: First, the measurement likelihood is uni
the pixel, rather than Gaussian. In other words, when a pixel is detected, the implication is that we have learne
the state of the target maps into that pixel. Second, point estimators are not unbiased unless the target happ
the center of a cell.

This paper includes two contributions. First, we derive the minimum mean square error estimator (MMSE) for
modeled pixelated sensor. We then discuss why conventional bounding approaches face problems with t
Next, we compare the difference between this bound for the case where we elect to threshold (“detect”) the ¢
performing estimation (for the purposes of minimizing communication bandwidth, for example) to the case w
“raw” (i.e., non-thresholded) measurements can be used.

2. THE PIXELATED SENSOR MODEL

Assume we desire an estimate of the state (e.g., position) of a tardetm a series of measurements made |
pixelated sensor with cells. For the purposes of exposition, it is useful to describe the case where the target s
and the sensor pixels are in the same units of the desired unknowilowever, the approach extends ir
straightforward manner to the more general case.
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The measurement in cell will be denotedz;, for cellsi =1--N. In the standard “detection/no-detection” case,
z; € [0,1], whereas in the more general “raw” case R. We will use the notatioi, to denote the cell that maps
into, andz, will denote the measurement in that cell.

With that as background, the generic sensing likeld model is

p1(z) =iy
pgeneric(zilx) = { L (1)
Po(z) I+ iy
wherep;, is the target-present distribution amgdis the background-only distribution.

This model is often referred to as the “point-tatgeodel. It is only explicitly true when the tartgis small relative to
the sensor pixel size and the target does not peoduifacts (e.g., sidelobes) in adjacent celtge will assume these
conditions are met in this paper.

Radar tracking is an interesting motivating exaniptethis model. In this setting, a series of rapalses are aggregated
together into a coherent pulse interval (CPI). Tasythen processed to construct a range-Dopplpr(RAM), which

is used to provide input to a tracker. Each celtie RDM corresponds to a hypothesized target rage radial
velocity. A common model for the target and nomgédrdistributions in Radar is to use Rayleigh stas [1], i.e.,

Y
/12
={" )
praw(zilx) - . .
Zj —z2/2% . ,
Te i/”b == Ly
b

i=1i,

Often times, the RDM is thresholded (i.e., onlysgixels with amplitude over a threshold are presd. This results
in a probability of correctly detecting the targétel, calledp,, and a probability of falsely detecting a non-tdrgixel,
calledp,. For the thresholded case, the model is

D4 =iz =1
(1_pd) l=l,Z:0
Penr (%) = s i # ii’ Z; =1 ®)

(l_pf) l';tix,Z,::O
It can be shown that the thresholded and non-tbtdsd models are linked under the Rayleigh assumplf we define
1

SNR = 22/22 — 1, and use constant false alarm rate (CFAR) threghgpl we havep, = p3VE+,

Furthermore, if we define the indicator function

1 i=i
T @
’ 0 i+#1i,
then these two models can be written compactly as
22
i ,-z?/A? i a2 5
Praw(zi|x) = ;—26 i Mtli,x + ;—26 1127(1 - Ii,x): ®)
t b
and
Palyi +pr(1—Iy;) z;=1
Penr(Zi|x) = { . (6)
A-p)lL;+(A—p)(A—-1;) z =0

At this point it is useful to highlight the distitien between the pixelated model just presentedtia@disual method for
modeling sensor measurements. The typical detebised model is that a sensor receives a settafadal first
performs a detection process to determine whichefcells have threshold exceendances. The thresixakendances
are then gated, associated, and subjected to stipdiisticated processing to (in the ideal cas&cteall of the false
alarms and be left with only the correct detectipg..... This remaining single (assumed correct) detedtothen
treated as originating from the center of the c&len the model is
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p(Zcorrect)~N(x' 0-2)- (7

This approach approximates sensor pixelizationgusieasurement varianeg, typically matched to a function of the
cell size. Additionally, it assumes that the unaietty is centered around the true value of the omkm There is
therefore a mismatch between the assumed modethendctual measurements. Nevertheless, filterimgemtimation
approaches based on this model often work weltactice if the variance is tuned well.

Of interest here are fundamental bounds on perfoceahat explicitly incorporates the pixelated nataf the sensor.
While quite simple, the boxcar models presented/alhave properties which prevent the direct appdiceof the usual
estimation theoretic techniques.

In particular, the support of the distribution ifumction of the parameter. This is a well-knowtuation in which the
ordinary Cramer-Rao lower bound (CRLB) does nothapB][5][7] because the exchange of integrationdan
differentiation in the CRB derivation is no longalid. Recently, [7] has developed and extensidleddhe Cramer-
Rao-Leibniz lower bound (CRLLB) for parameter-degemt support. However, our case has support entdypibiat are
not differentiable with respect to the parametenrdigenerically applicable bounds, such as the rikarafamily of
bounds (including the Chapman-Robbins bound [4,Bbbrovsky-Zakai bound [5], and the Keifer bou§) pre also
not applicable with this model because it is noetunder the boxcar pixelated model thét|x) = 0 impliesp(z|x +

h) = 0.

3. THEMMSE ESTIMATION BOUND

Despite the inability to use the conventional botezhniques, we can derive the minimum mean squared estimator
(MMSE) as follows. Let the prigg(x) be uniform ovew € (x;, xz). Then for measurement= (z,, z, -+, zy), define
the per-cell likelihood ratio

L(z) = p1(20)/po(2)). ®)
Assuming conditional independence across the cells,
p(zlx) = [1p(zi|x) = L(z:)[1po (2)- ©
Using Bayes rule, we can compute the posteriongikie set of measurements as
p(x|z) o< L(z,)/ZL(z). (10)
Finally, the MMSE x(z), is given by
ey = L@ Znl) 1)

YL(z) — YL(z)’
wherex; is the center of measurement éell

The actual mean squared error (MSE) is

2
E,[(2 = %irue)?] = | P(2lXirue) R(2) = %)z = [ L(zaerue)TPo(57) (e = Xerue) dz, 12)

where the integral is to be interpreted asNhP integration over th&/ sensor cells. As expected the MSE is a function
of the target locatiomw, ...

We now specify the form of the likelihood ratio fibve two radar cases we considered before. Tlase directly from
the earlier model definitions. For the thresholdade, we have

i = 1
Leny(2;) = { PalPr ‘ (13
1-py)/(1 - Pf) z;=0
and
Mro(7) = (1= py) " PP (14)
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and for the non-thresholded case we have

2

Ap A=
Lraw (ZL') = -5 exp [le (15)
2 22212

and

2
Zj

Zj 37 16
Mpo(7) = Msre 2 (0
b
Neither of these likelihoods admit an analytic sioluto the MSE. However, both integrals can belgated using the
principle of importance sampling. When the numtiesensor cells is small, we can even enumerat@heases in the
thresholded setting.

In the thresholded case, the MSE depends on the &&rm setting, which is a free parameter. Eigushows the MSE
as a function of SNR for different valuespgf. We find that one should elect to choose smako the asymptotic MSE
is small.
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Figure 1. False alarm rate affects the MSE.

In the raw (non-thresholded) case, there is no fremmeter. Figure 2 compares the non-threshodse tathe
thresholded case when = 1e — 5. It shows the benefit of non-thresholded measungsnie an example problem can
be as much a&dB.
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Figure 2. The benefit of not thresholding.
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Since the MSE is a function of the target location in a cell, we also derive the average MSE. The average MS
by averaging over the (assumed uniform) prior locationsiofa cell as

1 iL(z ’
560 -0 = [ [ 1l (B - x) dsa, an

i.e., the average MSE is found by averaging the MSE over the possible target locations.

It is informative to look at the average MSE in the special case v8NRes very high. In the case of thresholc
measurements, this meapg~1 andp,~0 — that is, we can identify the target cell precisely with no false alari
missed detections. In this case, we find that the avevi&§eas given by Eq. (17) i&§2/12, whered is the cell size
This is identical to the variance bound derived in [7] (using the substitbitter2a), which analyzed the special c:
wherep,; = 1, p; = 0, and the likelihood was uniform and centered on the parameter.

4. CONCLUSION

This paper has discussed the ubiquitous problem of estimating the state (e.g., position) of an object based or
noisy measurements. The standard approach in the literature is to formulate this problem as one of measuring
a function of the state) in Gaussian noise. In many applications, however, measurements are “pixelated” — i.e
presented on an sensor array. When a target is present in a pixel, therefore, the uncertainty is not Gaussian (il
boxcar function) and the estimator is not unbiased (the location of the target within the pixel defines the bi
estimator). This paper has looked at this in more detail and derived an MSE bound for estimation. Particular ati
been given to the distinction between thresholded and non-thresholded measurements.
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