
 

  

Abstract — Modern aircraft are capable of maneuvers exceeding 

those possible by purely aerodynamic design. This capability, 

called supermaneuverability, includes rapid changes in 

acceleration and high-G turns that are not feasible from 

traditional aircraft.  Furthermore, newer aircraft often have a 

low radar cross-section (RCS) profile and/or RCS which varies 

rapidly with look angle. This paper summarizes the results of a 

performance evaluation of several conventional and emerging 

tracking approaches for supermaneuverable targets. The 

algorithms have been evaluated with respect to target 

maneuverability, along the continuum of mild maneuvers to 

supermaneuvers and as a function of target RCS. From this 

analysis, we draw the following broad conclusions: For high-SNR 

stable RCS targets exhibiting modest maneuvering, conventional 

Kalman filter (KF) trackers work well and are computationally 

appealing. For modern targets that exhibit a low RCS profile, 

high scintillation, and/or high maneuverability, KF approaches 

fail and more sophisticated approaches are required.  While 

particle filter (PF) trackers are more computationally demanding 

than the KF, they provide a tracking capability not achievable by 

KF methods.  This paper provides several case studies that 

backup these conclusions. 

 

Index Terms—Tracking, Radar, Nonlinear Filtering, 

Supermaneuverable Targets, Particle Filtering, Kalman Filtering 

I. INTRODUCTION 

ODERN aircraft are capable of supermaneuverability, a 

term that includes actions such as extremely tight turns, 

and rapid changes in acceleration. Examples of such 

maneuvers include the Herbst supermaneuver [1] and the 

spiral and loaded turn maneuvers [2], as illustrated in Figure 1 

and Figure 2. In addition, newer aircraft often have a low radar 

cross-section (RCS) profile and/or have an RCS which varies 

rapidly with look angle. 

These traits pose problems to conventional Kalman filter 

(KF)-based trackers, which assume linearized models with 

additive Gaussian noise processes and require data to be 

processed to provide “detections.” Consequently, systems that 

use these trackers will break lock. In contrast, state-of-the-art 

tracking approaches such as the particle filter (PF) allow 

nonlinear state and measurement models, do not require 

additive Gaussian noise processes, and can use track-before-
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detect (TBD) measurement models to achieve significantly 

improved performance.  

 
Figure 1. Simulation of a loaded turn maneuver. 

 
Figure 2. Simulation of a Herbst supermaneuver. 

This paper describes an evaluation of both conventional and 

modern tracking approaches with supermaneuverable targets. 

Similar comparisons [17][4] have been made on other model 

problems in the past. We focus on single-target track 
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maintenance, which allows us to highlight the aspects unique 

to supermaneuverable targets, rather than challenges 

associated with multiple targets and track initialization.  The 

algorithms are scored in terms of tracking error and 

computational requirements. The trackers include the extended 

Kalman filter (EKF), the unscented Kalman filter (UKF), the 

standard PF with resampling (PFR), and PF with homotopy 

flow (PFH). Our simulations include targets exhibiting 

supermaneuverability, low RCS, specular scintillation 

properties, and combinations of the preceding. Target 

measurements are made using a tracking Radar simulation.  

A summary of our findings is as follows: 

1. For high-SNR stable RCS targets exhibiting with modest 

maneuvers, KF-based trackers work well and are 

computationally appealing. 

2. For modern low RCS, highly scintillating, maneuverable 

targets, KF approaches fail and more sophisticated 

tracking approaches are required.  While PF trackers are 

more computationally demanding than the KF methods, 

they provide a capability not achievable by KF methods. 

3. PFs succeed because they can more accurately model 

target motion uncertainty, as well as to more fully exploit 

target measurements through non-thresholded data. 

This paper proceeds as follows. First, Section II describes 

supermaneuverable targets and our modeling approach. Next, 

in Section III, we describe our measurement simulation. Third, 

in Section IV, we describe the tracking algorithms evaluated 

in this work. Next, Section V summarizes results of the 

evaluation both in terms of compute requirements and tracking 

performance. Finally, Section VI concludes.  

II. SUPERMANEUVERABLE TARGETS 

Our approach to supermaneuverable target simulation and 

modeling is to combine conventional kinematic models 

piecewise. We do not restrict model parameters to values 

achievable with conventional aircraft. This section defines our 

notation and reviews our base models, the constant velocity 

(CV) and coordinated turn (CT) kinematic models. 

Let xk represent the 3D state of a target at time tk, i.e., 

[ ]
T

k k k k k k kx x y y z z≡x � � �  (1) 

The CV and coordinated turn with known turn parameters 

(CTK) models are linear models of the form: 

1k k−=x Fx  (2) 

For the CV model, FCV is a concatenation of submatrices of 

the form �
�

�
�
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1 t
. For a horizontal CT in the x-y plane with 

known turn rate ω, we use the two-dimensional model given 

in [3]-[6], augmented with constant (zero) velocity motion in 

the z dimension.  To simplify our treatment, we do not 

consider out-of-plane motion or planar motion in an arbitrary 

(i.e., not oriented in the x-y plane) here. The transition matrix 

thus has the form: 
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(3) 

In the limit ω � 0, this horizontal CTK model reduces to 

the CV model. This horizontal plane CTK can be extended to 

arbitrary planar motion by specifying two additional 

parameters that define the plane of motion.  �

In the motion models used by the tracking algorithms, we 

include process noise, giving the nearly constant velocity 

(NCV) and nearly CTK models: 

1k k k−= +x Fx v , (4) 

where vk is the process noise.  If we assume the process noise 
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Nv 0 Q� , the transition density is 
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We use the continuous white noise acceleration (CWNA) 

model [4] for the process noise, with independent 

accelerations along each of the axes.  The process noise 

covariance matrix has the form: 
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(6) 

To model supermaneuverable targets, we will combine 

these primitives with appropriate parameters. The 

combinations are described in Section V. 

III. RADAR MODEL 

Our analysis of supermaneuverable target tracking uses 

simulated radar measurements to drive the trackers. This 

section briefly describes our radar measurement model.  We 

assume a pulse-Doppler tracking radar which is manipulated 

with Fourier processing to create a range-Doppler map 

(RDM).  We further assume the phased array radar has 

engaged tracking mode and steers in azimuth and elevation 

angle so as to approximately follow the target.  The tracking 

function is performed by pulsing at the target and processing 

the returns to exploit time-of-flight and Doppler shift to yield 

information about target range and range rate (radial velocity).  

For the purposes of analysis, we simulate an X-band radar 

[14] with the parameters shown in Table 1.   

 

535



 

Table 1: Modeled Radar Parameters 

Parameter Notation Value 

Center frequency  fc 8 GHz 

Wavelength l 3.75 cm 

IF bandwidth BW 5 MHz 

Pulse repetition frequency PRF 20 KHz 

Number of pulses Np 56 

Coherent Pulse Interval CPI 0.0028 s 

Range Resolution R∆  30 m 

Range Rate Resolution R∆ �  6.7 m/s 

Range Ambiguity ambR  7500 m 

Range Rate Ambiguity 
ambR�  ±188 m/s 

Beamwidth (azimuth) φ∆  60° 

Beamwidth (elevation) θ∆  60° 

Transmit Power Pt 4.7 kW 

Noise temperature T0 300°K 

Noise figure NF 2 

Denote the state of the radar platform as 

, , , , , , ,

T

p k p k p k p k p k p k p k
x x y y z z� �≡ � �x � � �  (7) 

 The target’s state relative to the platform state is defined as: 

, ,r k k p k= −x x x . (8) 

The range and range rate to the platform are given by: 

2 2 2

, , ,k r k r k r kR x y z= + +   and  , , , , , ,

2 2 2

, , ,

r k r k r k r k r k r k

k

r k r k r k

x x y y z z
R

x y z

+ +
=

+ +

� � �
� , 

(9) 

and the target’s azimuth and elevation angles are specified as: 

,
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A. Range-Doppler Maps 

The radar output will be modeled as an 
RR NN �×  RDM 

such as that shown in Figure 3.  

 
Figure 3: A Range Doppler Map 

Each pixel in the RDM corresponds to a particular 

(ambiguous) range and range rate (Doppler) and is a 

measurement of either background (noise/clutter) or 

background plus target. The RDM surface is characterized by 

its pixel spacing and extent, which are determined by the radar 

system parameters. The range and range-rate ambiguities (i.e., 

the extent of the surface in these directions) are given as [15]: 

2
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The range rate ambiguity is two-sided. The range and range 

rate resolutions (i.e., pixel spacings) are given as  
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where CPI captures the number of pulses integrated, 

p
N

CPI
PRF

=  (13) 

Let � ��� �  denote rounding up to the nearest integer. The RDM 

surface then has NR range, spaced R∆  apart, where 
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and 
R

N �  pixels in range rate, spaced R∆ � apart, where 
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R
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The target is assumed small relative to the range spacing, 

thus the target is restricted to one pixel.  Pixel statistics will 

depend on whether the pixel is a target-containing or not.  In 

pixels that do not contain a target, we assume thermal noise is 

the dominant factor entering the radar front-end.  We do not 

consider clutter targets. The statistics are modeled as 

Rayleigh. The PDF of the noise-only pixels is then given by:  

2

( ) exp
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z z
p z

η η

� �
= −	 A

B C
 (16) 

where the noise power η is the product of Boltzmann’s 

constant, the system noise temperature, the receiver noise 

bandwidth, and the noise figure, 

0kT BW NFη = ⋅ ⋅  (17) 

The PDF of the signal plus noise at the output is Rician 

[15], i.e., the PDF of the target-containing pixels is given by:  

2 2
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Where the amplitude of the pulse echo, A,  is computed 

using standard radar modeling. For a pulse transmitted with 

power
t

P , the received power is  
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where ( , )
k k

G δφ δθ  is the antenna gain in the direction of the 

target and σk is the target RCS.  Therefore, the amplitude of 

the received echo is given by: 

3 2 2

( , )

(4 )

t k k k

k

k

PG
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R

δφ δθ λ σ

π
=  (20) 

The antenna gain is specified as follows. For a radar 

pointing at (φp, θp), the difference between the pointing and 

target angles is δφk = φp-φk  and δθk = θp-θk.  For a rectangular 

Lx × Ly phased array radar, the beam pattern is given by [15]: 
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(21) 

The target RCS is specified as follows. For the non-

fluctuating case (referred to as Swerling 0), σk = σav is a 

constant.  For targets with signatures that fluctuate, σk is a 

random variable with its own probability distribution.  The 

four cases used in the literature are called the Swerling 

models.  In this analysis, we considered the Swerling I model, 

in which the RCS varies from scan-to-scan according to an 

Exponential distribution [15]: 

1
( ) exp k
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av av
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σ
σ σ
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The RDM pixels are used in one of two ways by the filters: 

Either the RDM is thresholded and the detections are passed to 

the filter, or the raw (non-thresholded) RDM is used directly. 

B. Detection Measurements 

The “detect-and-then-track” method first distills the RDM 

surface to a small set of threshold exceedances (detections).  

The trackers then use these detections in the measurement 

update.  All KF-based trackers require this operation.  The PF 

trackers can use this but are not required to. The threshold 

determines the probability of detection, PD, and the probability 

of false alarm, PFA.   

The detect-and-then-track method does not fully exploit the 

measurements because of the hard decisions.  At low SNR this 

will lead to tracker failure through the following mechanism. 

In order to achieve a low false alarm rate, the detection 

threshold must be high. In low SNR, this leads to a low 

detection probability. As such, trackers become data starved 

and fail.  However, when SNR is high and the target is not 

rapidly maneuvering, detect-and-then-track algorithms are not 

measurement starved and thus succeed in a computationally 

attractive manner. 

Assuming we have correctly identified the target pixel, we 

then have a coarse measurement of range and range rate.  

Implicitly, we also have a measurement of azimuth and 

elevation because the target is on the RDM. This implies that 

we are in the main beam of the radar in those dimensions.  The 

measurements (modulo ambiguities) are related to the target 

state by  
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The measurement error will be modeled as a zero-mean 

Gaussian random vector ( , )k kNw 0 R� , thus the likelihood 

function of the thresholded measurements is 
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We assume the covariance matrix has the form: 
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To use this nonlinear measurement model in the EKF, we 

require the 4×6 Jacobian, which has the form: 
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C. Track-before Detect Measurements 

The TBD method instead uses all of the pixels in the RDM 

as a means of updating the tracker.  Define zk(i,j) as the ijth 

RDM pixel and zk as the collection of the R R
N N �  RDM 

pixels.  The update is done by computing the probability of zk 

conditioned on the target state xk, i.e.,  

( ) ( )
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 Let pixel ( , )
k k

R R
i j �  correspond to xk. For the Rician and 

Rayleigh models here, we find 
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D ED E−
∝ F �F � F �

� � � �
z x

�
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In contrast to the detect-and-the track approach, here all the 

measurements are used, not just the threshold exceedances. In 

addition, the raw measurement value is used, not just the fact 

that it has exceeded the threshold. 

IV. TRACKING ALGORITHMS 

This section describes several tracking algorithms and their 

application to supermaneuverable targets. These include the 

standard linear KF, the EKF, UKF and the fully nonlinear PFR 

and PFH trackers. For the detection filters, we use 
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probabilistic data association (PDA) to handle missed 

detections and false alarms. 

A. Kalman Filter 

The KF assumes linear AWGN motion and thresholded  

measurements. The models are of the form: 

1

,

k k k k

k k k k

−= +

= +

x F x v

z H x w
 (27) 

where ( , )k kNv 0 Q�  and ( , )
k k

Nw 0 R� .  The initial state 

distribution is 
0 0 0

( , )Nx � P� .  The KF iterates through the 

well-known  two step motion and measurement update [3]. 

B. Extended Kalman Filter 

The EKF is a KF-based tracking algorithm that uses first-

order analytical linearization. The EKF assumes nonlinear 

AWGN motion and measurement models of the form: 
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−= +
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x f x v

z h x w
 (28) 

where ( , )
k k

Nv 0 Q�  and ( , )
k k

Nw 0 R� . The EKF linearizes 

f and h about x at each time step as 
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And 
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k
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H h x�  (30) 

and then uses the same two-step KF iteration [3].  

C. The Unscented Kalman Filter 

The UKF is a KF-based tracking algorithm that uses a small 

set of samples to compute second order statistics (means and 

covariance matrices) used in the KF.  It approximates the 

(presumed) Gaussian predicted and posterior densities by a set 

of deterministically chosen sample points that preserve the 

mean and covariance matrix through nonlinear 

transformations (up to second order).  It does not require 

evaluation or computation of Jacobians. Full details of the 

UKF can be found in [5]. 

D. Resampling Particle Filter 

In a PF [4], the distribution is represented by a set of N 

particles and weights {x
n
,w

n
}. In the motion update step, 

particles are propagated according to the motion model, while 

the weights remain fixed.  In the measurement update step, the 

particles remain fixed while the weights are updated by Bayes’ 

rule, which involves multiplying the weights by the likelihood 

function and normalizing.   

Particle degeneracy occurs when the likelihood function is 

concentrated and the particle weights are mostly zeros [7].  

The standard remedy is resampling, in which the particles with 

the largest weights are replicated in proportion to their 

weights, and the weights of the resampled particles are all set 

to be equal to 1/N.  The resampling PF can use either 

detections or the unthresholded RDM pixels as measurements.  

We report on both versions, which we refer to as particle filter 

resampling thresholded (PFRT) and particle filter resampling 

non-thresholded (PFRN).   

E. Homotopy Flow Particle Filter 

The resampling PF is a computationally intensive process 

that incurs performance degradation in many practical 

problems.  The homotopy particle flow method has been 

developed to implement the information update in a particle 

filter in an entirely different manner [7]-[13].  In the homotopy 

method, the weights remain fixed, while the particles 

themselves “flow” to the appropriate regions of the target state 

space that provide a good representation of the posterior.  

Several versions of the particle flow method have been 

developed in [7]-[13] and related papers, and remarkable 

performance and computational gains over resampling filters 

have been reported.   

Closed form solutions for the particle flow function exist 

only in a few special cases (e.g. detection measurements with 

a linear Gaussian measurement model). Practical 

implementations based on the linear Gaussian flow function 

for nonlinear models have been recently reported [7]-[13].  

We study the PFH with detection measurements and a 

nonlinear Gaussian measurement model.  The implementation 

is based on [13] for linear Gaussian measurements, but using 

second order statistics computed from the particles.   

F. Measurement Association 

In the detect-and-then-track algorithm descriptions above, 

we assumed that the detection threshold was fixed and there 

was exactly one detection measurement available to the 

tracker.  In practice there may be missed detections and/or 

false detections due to noise and clutter, and there needs to be 

some validation and association of measurements to the target.  

In this paper we use PDA [3] to perform this function. More 

sophisticated approaches which vary the threshold and/or 

provide amplitude information could also be used [3][16]. 

G. Interacting Multiple Model (IMM) Algorithms 

IMM algorithms assume that the target follows a jump 

Markov model in which the target obeys one of M motion 

models, or “modes.”  Let Mk denote the mode at time tk. The 

target is modeled to switch between modes with transition 

probabilities defined as: 

{ } { }1 1Pr | Pr |
j i

i j k k k kM M M j M iπ − −≡ = = =  (31) 

In the IMM approach, a separate filter is maintained for 

each mode and the mode probability is tracked along with the 

kinematic state.  The posterior density is expressed as a 

weighted sum of mode-conditioned posterior densities 

( ) ( )
1

|
M

j j

k k k k

j

p p M η+ +

=

=�x x  (32) 

where the posterior mode probability 
j

k
�  is defined as: 

{ }Pr |j j

k k kMη ≡ Z  

(33) 
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V. RESULTS 

This section describes our evaluation of the algorithms 

outlined above in terms of tracking ability and computational 

requirements. The simulations include targets that exhibit 

supermaneuverability, low RCS, and specular scintillation 

properties. We summarize the factors we investigated here. 

Tracking Approaches. We studied the EKF, UKF, PFH, 

PFRT, and PFRN. The PF algorithms can be adjusted to trade 

performance for computation and we have analyzed that trade.  

Motion Models. We studied both the NCV model and the 

IMM model with an NCV mode and two CTK modes. Each of 

these models are coupled with each of the tracker types. 

Target Maneuvers. We studied several types of target 

maneuvers. We present results for a maneuver which consists 

of straight line motion followed by a constant turn-rate 

maneuver followed again by straight line motion. The turn rate 

is varied from modest to supermaneuverable. 

A. The Baseline Scenario 

The baseline scenario shown in Figure 4.  It consists of a 

linear motion segment for k = 1 to 25, a horizontal plane CT 

maneuver for k = 26 to 125, and another linear motion 

segment for k = 126 to 200.  

 
Figure 4. Scenario 1: Baseline Maneuver by Target 

B. Computation Time 

The algorithms are implemented in MatLab using semi-

optimized code. As such, the timing is inherently susceptible 

to over-estimation due to imperfect implementation.  We have 

taken care to determine the main sources of time using 

MatLab’s profiler and eliminate any of those that are 

obviously optimizable. In all cases, the main computational 

drivers that remain after our optimization effort appear to be 

implemented as efficiently as possible. 

There are two basic ways to empirically measure 

computational complexity in MatLab : either simply using the 

execution time, or using MatLab’s internal CPU time. Both of 

these measures are imperfect gauges of algorithm complexity. 

Total execution time can be heavily influenced by how 

parallelized the algorithm is, and whether MatLab can 

recognize opportunities for parallelization. On the other hand, 

CPU time does not account for non-CPU activities (e.g., data 

manipulation and indexing) that are important to gauge an 

algorithm’s complexity. Fortunately, in this analysis we found 

that both metrics told the same story qualitatively about the 

relative requirements of the different trackers. As such, we 

settled on using execution time as a gauge. 

EKF. The EKF is based on estimating the mean and 

covariance. It is implemented entirely as a set of (small) 

matrix manipulations. As such, it the fastest and least memory 

intensive algorithm we studied.  The EKF algorithm runs in 

real-time even with high-rate radar measurements.  

UKF. The UKF algorithm is also based on estimating the 

mean and covariance of the target state. It differs from the 

EKF by its use of sigma points, which are an empirical 

approach to linearization. Like the EKF, the UKF is mainly a 

set of (small) matrix manipulations. The UKF algorithm takes 

about 3x as long as the EKF. This is related to the number of 

sigma-points in the implementation.  

PFs. PF algorithms use discrete samples (particles) to 

represent the target probability density. As such, they can be 

significantly more computationally complex than KF-based 

algorithms. PF algorithms involve a series of computations 

that are not just matrix manipulations like the KF-based 

algorithms.  Care has been taken to ensure that the algorithms 

are implemented efficiently so that we have provided an 

accurate estimate of their computational complexity. Tracking 

performance improves with the number of particles.   

C. Tracker Benchmarking, NCV Model 

With this as background, Figure 5 shows curves giving the 

tracking performance versus compute time for a high-SNR 

scenario using the NC tracking model. The PF algorithms are 

characterized by running with varying numbers of particles. 

The compute time is normalized to the EKF (i.e., EKF 

compute time = 1.0). The EKF performance is shown by the 

black line and the UKF is given by the green line. We find that 

the PFH algorithm has significant computation advantages 

over PFRT and PFRN algorithms. These advantages come 

directly from its efficient placement of particles which allows 

it to avoid the resampling step. 

 
Figure 5. RMSE v compute time for the tracking algorithms. 

Figure 5 illustrates several attributes of the filters: 

• In this high-SNR, modest maneuverability scenario all of 

the detection-based filters (EKF, UKF, PFH, and PFRT) 

achieve roughly the same performance. 
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• The PFH algorithm has computational requirements only 

2-3x more than the KF algorithms. 

• The PFRN and PFRT algorithms have computational 

requirements 2 to 3 orders of magnitude higher than the 

KF algorithms. 

• The PFRN is able to achieve better performance because 

it exploits the measurements more effectively.  

As a further analysis, Figure 6 shows the performance as the 

maneuverability of the target is varied from modest (1.6 

degrees/second) to extreme (16 degrees/second) and the SNR 

is varied from high (7 dB) to low (3 dB). This figure illustrates 

the following: 

• At high SNR/low maneuverability, all trackers work well 

• At low SNR/low maneuverability and high SNR/high 

maneuverability the detection-based filters degrade 

significantly but still provide some tracking performance. 

The non-thresholded filter continues to perform well. 

• At low SNR/high maneuverability all of the detection-

based filters fail catastrophically while the non-

thresholded filter continues to perform well. 

 

 
Figure 6. Algorithm Performance vs. SNR and Maneuverability 

 

D. Tracker Benchmarking, IMM Model 

In addition, we benchmarked the trackers using the IMM 

algorithm with an NCV mode (ω=0) and two CTK modes with 

fixed known turn rates, 16��� .  The IMM algorithm 

calculates the probability of each mode. Figure 7 shows 

typical mode estimates for one trial. 

  
Figure 7. Typical Mode Probabilities for PFRT IMM Algorithm 
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Figure 8 shows the performance versus compute time for 

the IMM algorithm on a high SNR (left) and low SNR (right) 

scenario. At high SNR, all algorithms track well. At low SNR, 

the detection-based algorithms degrade severely while the 

non-thresholded particle filter continues to perform well. 

 

 

 
Figure 8. RMSE vs. Computation Time for IMM Algorithms. Top: 

High SNR. Bottom: Low SNR. 

VI. CONCLUSIONS 

This report has described a Phase I evaluation of tracking 

algorithms for a low RCS supermaneuverable target. Our 

major findings are as follows: 

1. For high-SNR stable RCS targets with modest 

maneuvers, KF-based trackers work well and are 

computationally appealing. 

2. For modern targets with low RCS, high scintillation, 

and/or high maneuverability, KF approaches fail and 

more sophisticated tracking approaches are required. 

While the PF trackers are significantly more 

computationally demanding then the KF methods, they 

provide a tracking capability not achievable by the KF 

methods. 

3. The PF algorithms work because they are able to more 

accurately model the target motion uncertainty through 

non-Gaussian estimates of the target state distribution, 

as well as to more fully exploit target measurements 

through non-thresholded data. 
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