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Abstract—This paper presents an estimation procedure for 

exploiting multipath signal propagation in shallow water to 

perform passive ranging.  The scenario of interest is a pair of 

sensors receiving an underwater acoustic signal that has arrived 

via a bounce from the ocean floor.  This approach also applies in 

other situations, for example, to multiple airborne sensors 

passively receiving emissions from an airborne source with signal 

bounce off the earth’s surface.  We develop an implicitly-defined 

maximum likelihood estimator; provide a numerical scheme for 

calculating the estimate; and derive expressions for the estimator 

bias and variance.  Finally, we show that at low noise, the bias is 

negligible and the variance is equivalent to the usual Cramer-

Rao bound on unbiased estimators. 

Keywords—Estimation, Cramer-Rao bound, signal multipath, 

passive ranging. 

I. INTRODUCTION 

Passive ranging refers to the process of estimating the range 
of a non-cooperative emitter by receiving and processing its 
signal at distant location(s).  Passive ranging in acoustic 
systems (as well as RF systems) is challenging for a number of 
reasons.  A primary difficulty is that the time at which a non-
cooperative transmitter emits a signal is unknown, so 
calculating distance from the receive time is not possible. 

Approaches to this problem in acoustic settings often use a 
coherent array of receiving sensors.  In deep water, one can 
assume that the signal has traversed the direct path between the 
transmitter and each receive element and undergone either 
spherical or cylindrical spreading.  In this situation, wavefront 
curvature approaches are often successful [1][2].  These 
methods work by coherently exploiting measurements of the 
receive times across the array. The differences in receive times 
allow for measurement of the curvature of the impinging 
wavefront, which is related to the radial distance of the emitter.  
The method degrades as the total array length becomes small 
relative to the target range.  

Other authors have combined bearing measurements of the 
source over time, possibly from multiple sensors, with models 
of kinematic behavior [3]-[6].  Often these approaches are cast 
into a tracking framework, which estimates both the (2D or 
3D) position and velocity of the source [6].  It is also possible 
to gain sensing diversity by controlling receiver motion, and 
planning the path to optimize localization performance [7].  
These approaches address array length insufficiency by moving 
the sensor or waiting for the source to move. 

In this paper, we assume a shallow-water environment that 
includes bottom-bounce propagation paths rather than direct 
paths.  This approach allows operation even in cluttered 
environments, where direct propagation may be unavailable.  
We show that with two sensors at known positions, we can 
exploit the bounce to develop an estimate of range, and 
compute the bias and variance of the estimate.  We assume 
standard signal processing techniques can be used to estimate 
the time difference of arrival (TDOA) for the two paths, with 
some error.  While the details of this processing are not part of 
this paper, correlation-based techniques comprise one class of 
algorithms suitable for this task. 

The paper proceeds as follows. Section II sets up the 
multipath ranging scenario and describes our statistical 
measurement model.  Section III derives the maximum 
likelihood estimator and illustrates its performance in 
simulation.  Finally, in Section IV, we derive the analytical 
bias and variance of the estimator as a function of range and 
illustrate the agreement with the observed estimator 
performance from Section III. 

II. PROBLEM SETUP 

Figure 1 shows the model scenario for this problem.  The 
water depth is D meters.  We assume that this depth is shallow 
enough that bottom bounce energy is available to the sensor.  
An acoustic source (right) emits energy that bounces off the 
ocean bottom and arrives separately at two receivers (left).  In 
our notation, we designate the direct path distance from the 
source to the closer receiver as R. In addition, the distance 
between the receivers, projected along the bearing to the target 

(assumed known) is ΔR, so the direct distance to the second 

receiver is R+ΔR.  These quantities also specify the path 
lengths (including the bottom-bounce) from source to the two 
sensors, designated P1 and P2 respectively.  Our goal is to 
describe the performance of an algorithm which estimates the 
range R using these bottom bounces. 

Figure 1.  Multipath Ranging Scenario.
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We assume a well-behaved ocean floor, , where Snell’s 
Law requires that the incidence angle and the reflection angle 
are equal.  This is equivalent to the condition that the bottom-
bounce occurs half way between the source and each receiver.  
The figure also indicates the half path lengths P1/2 and P2/2. 

Finally, the approach assumes that we are analyzing short 
data intervals so that the target is approximately stationary 
within the duration of the signal processing. 

Given these assumptions, we can write expressions 
involving the path lengths P1 and P2 in the following two 
equations: 
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The difference in path lengths to the first and second 
receiving element is then given by 
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Dividing by the speed of sound in the medium, c, gives the 
measurable quantity called the time difference of arrival 
(TDOA) 
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We measure the TDOA τ(R) in noise.  The model we use 
here is that there are N measurements of the TDOA while the 
target remains at a constant range corrupted by independent 
identically distributed Gaussian noise, i.e.,  

 ( ) ,i iz R wτ= +  (5) 

for the N independent measurements   1,  , .i N= A  

 Let the vector 1 2, , , ,i NZ z z z z= ⎡ ⎤⎣ ⎦A A  be defined as the 

set of all measurements iz  for   1,  , .i N= A   The 

measurement likelihood can then written as 
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and the log-likelihood is 

 ( )
2

2
1

1
( , ) log ( | ) ( ) .

2

N

i

w i

Z R f Z R C z Rτ
σ =

Φ ≡ = − −∑  (7) 

where C is a constant that does not involve Z or R. 

III. MAXIMUM LIKELIHOOD ESTIMATOR 

In this section, we derive an implementation of the 
maximum likelihood estimator (MLE) [8][9] for R given the 
measurements Z and illustrate the behavior of the estimator 
with a set of simulations. 

A. Maximum Likelihood Estimator 

The MLE selects the parameter(s) that are most likely given 
the measurements.  In this case, the parameter of interest is the 
range R and the appropriate equation is 

 
ˆ arg max ( | )

R

R f Z R= . (8) 

Maximizing the log-likelihood function ( , )Z RΦ provides 

an equivalent estimator.  Refer back to Equation (7) for the 

definition of ( , )Z RΦ . 

In practice, our approach for computing the MLE involves 
finding the zeros of the derivative of the log-likelihood 
function, i.e., solving  

 log ( | ) 0 ,f Z R
R

∂
=

∂
 (9) 

or, in the notation of Equation (7), 
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∂
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We show below that with our bottom-bounce TDOA 
model, the MLE is defined only implicitly.  We address this by 
solving for the estimated range using a Newton-based iterative 
procedure [14][15].  

With this as background, we compute the MLE as follows.  
First we note 
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The MLE is defined by this expression’s zeros which are 
given by  
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Proceeding, we find  
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Multiplying both sides by the constant c
2
 and then plugging 

in expressions for P1 and P2 from Equations (1) and (2) yields 
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The expression in Equation (14) defines R implicitly.  It 
lends itself to numerical solution via a standard Newton 
approach (for example, [10]).  If we write 
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then we have cast the problem into a Newton-type root finding 

setting, where ( ) 0 .g R =   We compute the solution iteratively 

using a step that is defined by the gradient  
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The iteration then combines equations (15) and (16) to 
update from the k

th
 iteration to the (k+1)

th
,
 
as directed by the 

standard Newton approach  [11]. 
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B. Empricial Maximum Likelihood Estimator Performance 

Figure 2 through Figure 4 illustrate the empirical 
performance of the Newton iterations described in equations 

(15) - (17) as a function of the TDOA error σw by showing the 
range estimates for each of 100,000 independent, single-
measurement trials.  Each trial was seeded with the initial 

estimate of 0
ˆ 0R =  and terminated after Newton iterations k+1 

and k agree to within one meter (i.e., the iterations have 
converged). 

The simulations correspond to the scenario shown above in 
Figure 1, where we have chosen inter-element spacing of 

ΔR=100m, water depth D=100m and true range of R=5km.  
The TDOA measurements were corrupted with zero-mean 
Gaussian noise.  Figure 2 through Figure 4 show that 
increasing the TDOA noise results in an increase in MLE bias.  
Figure 2 plots 100k Monte Carlo trials for the low TDOA value 

of σw = .01µsec.  The true target range is indicated by a green 
line.  The blue dots represent individual trial MLE estimates, 
and they scatter around the true value.  The red overlay shows 
the mean value of the MLE Monte Carlo trial estimates.   

Figure 2.  Empirical Monte Carlo range estimates for low 
TDOA error, true range is R = 5km.

The figure shows clearly that the MLE bias (separation 
between the red line and the green truth line) is negligible 
compared to the MLE variance. 

Figure 3 shows the same simulation, with higher TDOA 

error of σw = 10µsec. The significantly larger span of estimates 
axis indicates the much higher variance in MLE estimates. 

Figure 3.  Empirical Monte Carlo range estimates for high 
TDOA error, true range is R = 5km.

In addition, the bias has grown significantly.  While this 
result may not be readily evident from Figure 3, Figure 4 
provides an apples-to-apples comparison (displayed with the 
same y-axis limits) of the MLEs with the two different TDOA 
parameters.  In the left-hand panel, TDOA error is small 

(.01µsec) and the bias (difference between red and green lines) 
is not detectable to the eye.  However, in the right-hand panel, 

the TDOA error has increased to 10µsec and now the bias 
(displayed with the same axes as in the left-hand panel) is 
about 75m.  Note also that the MLE variance has increased 
significantly, demonstrated by the wider extent of the blue dots 
indicating individual trial estimates. 

744



Figure 4.  Empirical Monte Carlo range estimates for high 
TDOA error, true range is R = 5km. 

In the following section, we derive expressions that 
describe the bias and variance of the estimator as a function of 

R, ΔR, D, and measurement noise σw. 

IV. ANALYTICAL ESTIMATOR PERFORMANCE 

Fessler [12] has studied the bias and variance of implicitly 
defined estimators such as that given by eq. (14).  His approach 

is to consider notionally a function “ ( )R h Z= , which provides 

the estimate of R from the random data Z.  Since h(Z) cannot 
be written explicitly, his  approach is to develop the Taylor 
series expansion of h(Z) and use the terms in the expansion to 

compute the mean and variance of the estimate “.R   In this 

section, we use his results to develop second-order expressions 
for our estimator’s bias and variance and compare them to the 
empirically observed estimator performance based on Monte 
Carlo simulations. 

A. Estimator Bias 

In our notation, the second order approximation of the 
estimator mean is given by 

 “
2

2
1

1
( ) ( ) ( ) { }

2

N

n

nn

R h Z h Z Var z
z=

∂
Ε ≈ +

∂
∑  , (18) 

where Z denotes the mean of Z, and we use the shorthand 
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In these expressions, ( )h Z  is the estimate of R in the 
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The numerical value of R
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computer the estimator bias.  Fessler shows that this expression 

depends on the partial derivatives of Φ  and h  [12].  In our 

setting, these terms are  
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and 
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This leads directly to the expression 
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Combining this expression with eq. (18) and the 

observation that trueR R=
%

, we finally have that the estimator 

bias is given by 
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The estimator is asymptotically unbiased, and bias is 

proportional to the variance of the TDOA noise 2
wσ  . 
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B. Estimator Variance 

The second order approximation of the estimator 
variance [12] is 

 “
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which is given explicitly using the results of the calculations 
given in eq. (20) as 

 “
22

( )
( ) / .w trueR

V R
N R

σ τ∂⎛ ⎞
≈ ⎜ ⎟

∂⎝ ⎠  (27) 

The variance is proportional to the TDOA noise variance 
and, as expected, decreases linearly with the number of 
measurements N. 

This variance can be seen to be equivalent to the usual 
Cramer-Rao bound (CRB) [13] on unbiased estimators as 
follows.  First, the Fisher information is defined as  
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From the definitions in eq. (20), we have 
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and the CRB is given by  
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which coincides with eq. (27).  

We can then write the bias B and standard deviation S at 
range R (to second order) explicitly by combining the results in 
equations (23) and (27) with the expressions in equations 
(24) and (25) as 
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We see that the bias to standard deviation ratio increases as 
the standard deviation of the TDOA noise. 

C. Empricial Performance 

We now compare these analytical expressions for bias and 
variance with the empirically observed estimator performance 
from Monte Carlo simulations. 

Figure 5 and Figure 6 show the model problem we use to 
illustrate estimator performance.  They highlight two potential 
spacings for the two sensors and a target at range R.  We 
consider the estimates of range from the both possible pairs of 
sensing positions illustrated in the figure, indicated as positions 
(1, 2), and positions (1, 3).  Figure 5 shows sensors placed in 
the closer configuration, and Figure 6 shows the wider sensor 
spacing. 

Figure 5.  Model problem for Sensor Positions #1 and #2. 

 

Figure 6.  Model problem for Sensor Positions #1 and #3. 

For our numerical examples, we used inter-position 

spacings of ΔR12=100m (closer spacing at positions (1, 2)) and 

ΔR23=200m (wider spacing at positions (1, 3)) and water depth 
D=100m and considered various discrete horizontal ranges R 
up to 5km.  Figure 7 shows the single-measurement standard 
deviation of the estimate with TDOA error standard deviation 

of σw=5µsec. The solid lines in Figure 7 illustrate the 
analytical estimator standard deviation for both sensor position 
pairs.  The circle symbols show the empirical estimator 
performance (Eq. (17)) averaged over 100,000 Monte Carlo 
trials.  The realized estimator performance coincides closely 
with the analytical expressions. 

Figure 8 shows the analytically computed estimator bias 
and the empirically observed bias over the same Monte Carlo 
trials.  Again, the realized performance coincides with the 
analytical expressions. 

As expected, the error indicates larger variance range 
estimation as range increases.  It is also interesting to compare 
the curves themselves.  Ranging using the wider sensor spacing 
(positions 1 and 3) represents a dramatic performance 
improvement.  This significant difference is due to the larger 
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spacing (ΔR13 vs. ΔR12) between sensor positions 1 and 3, 
relative to the smaller spacing between positions  1 and 2. 

Figure 7. Analytically computed estimator standard 
deviation (solid lines) and Monte Carlo standard deviation 

(circles). 

 

 

Figure 8.  Analytically computed estimator bias (solid lines) 
and empirically computed bias (circles).

Finally, Figure 9 shows the relationship between estimator 

bias and variance at a TDOA noise value of 5 ,w sσ µ=  

parameterized by the range R to the source.  We selected a pair 

of sensors spaced 100m apart (the smaller sensor spacing ΔR12) 

and a target at range 5km.  The agreement between predicted 
and empirical bias at the closest range displayed (1267m) 
appears poor because the bias itself is so low (see Figure 8).   

Equations (31) and (32) show that the estimator bias is 
negligible relative to estimator standard deviation for 

5w sσ µ≤ at the ranges we have considered here.  Conversely, 

bias becomes the dominant source of error at 1 ,w msσ ≥  but 

the mean squared error at that point is so large that estimator is 
not viable.  

Figure 9. The relationship between estimator bias and 
variance, parameterized by TDOA noise.
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