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ABSTRACT  

Occlusions can degrade object tracking performance in sensor imaging systems.  This paper describes a robust approach 

to object tracking that fuses video frames with RF data in a Bayes-optimal way to overcome occlusion.  We fuse data 

from these heterogeneous sensors, and show how our approach enables tracking when each modality cannot track 

individually.  We provide the mathematical framework for our approach, details about sensor operation, and a 

description of a multisensor detection and tracking experiment that fuses real collected image data with radar data.  

Finally, we illustrate two benefits of fusion: improved track hold during occlusion and diminished error.  
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1. INTRODUCTION  

The image processing community has recently shown great interest in algorithms for detecting and following objects in 

video.  Investigators [3] have adopted many object representations for tracking purposes in video data.  Tracking objects 

that have rich visual features often benefits from approaches like identifying primitive geometric shapes associated with 

the object or considering silhouette and color.  For example, the work described in [4] describes finding feature points in 

the camera image sequence and jointly associating multiple features with existing tracks via the JPDAF algorithm [5]. In 

some applications, the object must be treated as a point target [39][40], and so features cannot be exploited for tracking.  

A key requirement in many applications is performance in the presence of object occlusion. The literature addresses this 

need in several ways.  The authors in [6] use video from a single camera to segment objects into individual features and 

track them separately.  The algorithm assumes that some features will be visible and track those features.  The approach 

in [7] accumulates grayscale features and overcomes occlusion using spatiotemporal context in the vicinity of the object.  

The algorithm in [8] determines correspondence between feature points in an image sequence.  The authors deal with 

occlusions by applying their work to frames that are temporally separated.  The authors in [9] integrate estimates from 

multiple features on different timescales, using features that include user silhouette, skin color, and face-pattern. 

Other investigators address the occlusion problem by fusing data from multiple sensors. This approach is advantageous 

because it can provide more information than each individual sensor alone.  Traditionally, multisensor fusion perform 

tracking at each sensor and then associate tracks across sensors [5], [12]-[13].  A common application is associating 

tracks across multiple sensors for improved localization [14]-[19].  Because hard tracking decisions are made at each 

sensor, this track-and-then-fuse method may not achieve optimal performance, but it may be necessary in systems that 

have limited processing or communication capabilities.   

In the image processing community, multisensor fusion has focused almost exclusively on using multiple cameras. The 

approach in [26] uses multiple cameras to track features at each sensor. There are also multi-view results in [27], where 

the authors consider multiple looks at the tracked object from stationary and moving cameras.  They track object 

appearance via a color-based representation and object motion with a Kalman Filter. The work described in [28] attacks 

a similar problem.  The goal is to maintain track through occlusion and the approach includes object segmentation into 

features and tracking via a particle filter approach.  [29] considers tracking a single object with multiple sensors, where 

each sensor performs local processing and shares data about the object at a central processor.  This approach combines 

measurements via a likelihood approach and employs a particle filter to perform the tracking function.  The work 

presented in [30] also adopts a Bayesian approach to fusing data from multiple sensors.   
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The work described in this paper is based on the premise that fusing data from heterogeneous sensors can provide more 

robust detection and tracking performance than fusing data from homogeneous sensors.  For example, video may be 

severely degraded at night or by rain, whereas RF is not affected by these conditions.  Furthermore, rather than an 

approach which performs the tracking function at each sensor and then fuses the results, in this paper we advocate a 

fuse-before-track approach which performs data fusion before tracks are declared. 

Other researchers have also investigated detection and tracking from the multi-sensor perspective by employing video 

sensors from different spectral bands [31].  Our work differs from this effort in several ways, including our use of RF to 

provide more sensing diversity and our fuse-before-track approach that differs from the JPDAF approach in [31]. 

This paper presents two main contributions. First, we show how the fuse-before-track approach naturally admits 

heterogeneous sensors and supports optimal Bayesian estimation. Second, we illustrate this utility with an experiment 

using a combination of an imaging sensor and a multistiatic RF array.  The experiment includes severe sensor occlusion, 

generating a case where conventional track-and-then-fuse approaches fail.  

The paper continues as follows.  Section 2 gives a description of Bayesian filtering and its utility for multisensor data 

fusion.  Section 3 provides results from a real data set, with truth available.  Finally, Section 4 concludes the paper. 

 

2. TECHNICAL APPROACH 

Our approach is to fuse video image data with data from a multistatic RF array, for the purposes of detecting and 

tracking a moving object.  Section 2.1 begins by outlining the Bayesian approach to detection and tracking.  Next, 

Section 2.2 describes how the data fusion methodology, and its application in the case of occlusions.  Section 2.3 

continues by describing the occlusions and the behavior of our approach in their presence.  Finally, Section 2.4 discusses 

the particular sensors involved in the experiment we performed. 

2.1 Detection and Tracking Framework 

Our approach to multitarget detection and tracking is based on the PDF (“Probability Density Function”) tracker [21], 

[32].  The approach fuses heterogeneous sensor data through their likelihood function, allowing direct multisensor 

fusion. Its flexibility comes from the fact that its foundation is a rigorous mathematical framework and is also cast in a 

practical way that addresses real-world detection and tracking problems.  The remainder of this sub-section describes the 

mathematical basis behind the PDF tracker. 

In general, a tracker seeks to estimate the number of objects Nk at time k and the state of each  xn
k
, n = 1 … N.  We are 

interested in tracking ground objects, so in this application the state is object position and velocity in two dimensions, 

[x  vx  y  vy]
T
.  For the purpose of illustrating multi-modalilty fusion in the presence of occlusions, we assume a maximum 

of one object (Nk  {0, 1}).  The hypothesis H0 that no object exists in the region and the hypothesis H1 that one object 

exists span the target-detection space.  The more general multitarget treatment is treated elsewhere [33].   

The PDF tracker recursively computes p(xk, H1
k
 | Z

k
), which is the probability that an object exists and its state is x at 

time k given the observations Z
k
.  Z

k
  is the set of all measurements made up to and including the current time k, i.e., 

Z
k
 = [z

0
  z

1
  …  z

k
] and z

m
 is the (noise corrupted) measurement made at time m.  The recursive nature of this approach is 

important in some applications because it provides object state estimates quickly.  The estimated density provides details 

concerning object state.  In particular, the tracker gives the estimated number of objects (in this application, 0 or 1), their 

locations, variance, and confidence. 

Mathematically, we wish to estimate the hybrid continuous-discrete density p(xk, H1
k
 | Z

k
) for all k.  This quantity can be 

separated into an object-present component and a object state estimate by multiple applications of the conditional 

probability law and Bayes’ Theorem: 
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                          =
𝑝 𝑥𝑘 |𝐻1

𝑘 , 𝑍𝑘 𝑝 𝐻1
𝑘 , 𝑍𝑘 

𝑝 𝑍𝑘 
 

                          =
𝑝 𝑥𝑘 |𝐻1

𝑘 , 𝑍𝑘 𝑝 𝐻1
𝑘 |𝑍𝑘 𝑝 𝑍𝑘 

𝑝 𝑍𝑘 
 

                          = 𝑝 𝑥𝑘 |𝐻1
𝑘 , 𝑍𝑘 𝑝 𝐻1

𝑘 |𝑍𝑘  .  

(1) 

In this form, the expression is the product of the (discrete) object present probability p(H1
k
 | Z

k
) and the (continuous) 

object state probability p(x
k
, H1

k
 | Z

k
).  This approach separates the (still coupled) tasks of estimating the object present 

probability (“detection”), and estimating the object state density (“tracking”).  

In the real-time Bayesian approach, we assume an initial or prior estimate of the desired probabilities is present (perhaps 

completely uninformative, for example, uniform), and generate a recursive formula that relates the probabilities at each 

new time step to those from the previous time step.  This formula updates the desired probability at each time step.   

The discrete object present (detection) probability p(H1
k
 | Z

k
) recursion integrates over all possible object-present states 

to obtain the result: 

 𝑝 𝐻1
𝑘 |𝑍𝑘  = ∫ 𝑝 𝑥𝑘 , 𝐻1

𝑘  𝑍𝑘 𝑑𝑥𝑘   

                    = 𝑝 𝐻1
𝑘  𝑍𝑘−1 

𝑝 𝑧𝑘  𝐻0
𝑘 

𝑝 𝑧𝑘 𝑍𝑘−1 
  

                         × ∫
𝑝 𝑧𝑘  𝐻1

𝑘 , 𝑥𝑘 

𝑝 𝑧𝑘  𝐻0
𝑘 

𝑝 𝑥𝑘 , 𝐻1
𝑘  𝑍𝑘−1  . 

 

(2) 

The continuous object state (tracking) probability updates by recursively folding in new measurements at time k: 

 
𝑝 𝑥𝑘 𝐻1

𝑘 , 𝑍𝑘  = 𝑝 𝑥𝑘  𝐻1
𝑘 , 𝑍𝑘−1 

𝑝 𝑧𝑘  𝐻1
𝑘 , 𝑥𝑘 

𝑝 𝑧𝑘 𝐻0
𝑘 

𝑝 𝑧𝑘  𝐻0
𝑘 

𝑝 𝑧𝑘  𝑍𝑘−1, 𝐻1
𝑘 

 . 
 

(3) 

Therefore, the update for each x
k
 proceeds by predicting its probability forward according to a kinematic model and then 

updating according to the degree of agreement with new measurements via the likelihood ratio 

 
Λ 𝑧𝑘  𝑥𝑘  ≡  

𝑝 𝑧𝑘  𝐻1
𝑘 , 𝑥𝑘 

𝑝 𝑧𝑘 𝐻0
𝑘 

  . 
 

(4) 

Combining (3) and (4), we can then write 

 𝑝 𝑥𝑘 𝐻1
𝑘 , 𝑍𝑘   ∝  𝑝 𝑥𝑘  𝐻1

𝑘 , 𝑍𝑘−1 Λ 𝑧𝑘 𝑥𝑘   ,  (5) 

where the constant of proportionality doesn’t need to be explicitly calculated since the density must sum to 1.  More 

detail on this approach is available in [2], with applications similar to the one described here in [29] and [30]. 
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In our application, received data consists of pixels in the video stream and range/Doppler cells in the radar data.  Since 

we use a point target model, the likelihood ratio expression for a sensor with C cells simplifies to 

 𝑝 𝑧𝑘  𝐻1
𝑘 ,𝑥𝑘 

𝑝 𝑧𝑘  𝐻0
𝑘 

 =  
 𝑝 𝑧𝑐

𝑘  𝐻1
𝑘 ,𝑥𝑘 𝐶

𝑐=1

 𝑝 𝑧𝑐
𝑘  𝐻0

𝑘 𝐶
𝑐=1

 ∝  
𝑝 𝑧𝑗

𝑘  𝐻1
𝑘 ,𝑥𝑘 

𝑝 𝑧𝑗
𝑘  𝐻0

𝑘 
  

 

(6) 

where j is the sensor pixel to which  hypothesized target state x maps.  In situations where we need to distinguish 

multiple sensors we will expand the notation to , 0(z | )k k
s jp H . 

Both detection and tracking updates perform temporal evolution on their respective probability distributions.  For the 

object present and absent probabilities 1
1(H | )k kp Z   and 1

0(H | )k kp Z  , we use a mixing matrix approach.  Similarly, a 

model on object kinematics 1
1( | , x )k k kp x H   performs the temporal update of the object state probability. This 

relationship is expressed in discrete time k as: 

 𝑝 𝑥𝑘  𝐻1
𝑘 , 𝑍𝑘−1  =  ∫ 𝑝 𝑥𝑘−1 𝐻1

𝑘 , 𝑍𝑘−1 𝑝 𝑥𝑘  𝐻1
𝑘 , 𝑥𝑘−1 𝑑𝑥𝑘−1.  (7) 

2.2 Data Fusion Approach 

Our fusion approach is based on the principle that it is better to perform thresholded decisions as late in the processing 

string as possible.  We thus advocate a fuse-before-track approach to combining data from multiple sensors [20], which 

means that all sensor data is accumulated in a single tracker. 

Fusing data from multiple sensors adds information and results in improved performance.  Part of our approach’s 

strength is that extension to multiple sensors is straightforward.  For the case of two sensors, the new likelihood ratio 

becomes simply  

 
𝛬 𝑧𝑘  𝑥𝑘  =  

𝑝 𝑧1
𝑘 𝐻1

𝑘 , 𝑥𝑘 

𝑝 𝑧1
𝑘  𝐻0

𝑘 

𝑝 𝑧2
𝑘  𝐻1

𝑘 , 𝑥𝑘 

𝑝 𝑧2
𝑘 𝐻0

𝑘 
 , 

 
(8) 

where z1
k
 and z2

k
 are the data from sensor #1 (e.g., a video sensor) and sensor #2 (e.g, an RF sensor), respectively, and 

vector measurement z
k
 refers to the current set of measurements from all sensors.  We assume the data sources are 

conditionally independent given the object state.  This assumption on the noise statistics is reasonable here, because the 

sensors are completely different modalities, and also because they are widely separated physically. 

For P sensors, the expression extends to  

 

𝛬 𝑧𝑘  𝑥𝑘  =   
𝑝 𝑧𝑝

𝑘  𝐻1
𝑘 , 𝑥𝑘 

𝑝 𝑧𝑝
𝑘  𝐻0

𝑘 
 

𝑃

𝑝=1

 =  𝛬𝑝 𝑧𝑘  𝑥𝑘 

𝑃

𝑝=1

 

 

(9) 

This equation plugs into the Bayesian expression above in Equation (3) to allow the temporal recursion that describes the 

estimated object state over time.  Note that x
k
 lacks a sensor index because we fuse the data from all sensors to obtain our 

fused object state estimate. 

2.3 Data Fusion in the Presence of Occlusion 

We model sensor occlusion as a complete lack of information from that sensor.  We assume external factors, such as 

scene geometry (e.g., the object moving behind a known obstacle from the camera’s perspective) or knowledge of other 

movers in the scene, determine the time steps at which occlusions occur.  This model corresponds to the occluded sensor 

providing a flat (constant likelihood ratio for all hypothesized states x) update to the posterior density.  In effect, it 
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results in an update that uses only data from non-occluded sensors. 

Although not explored here, our framework allows more general occlusion modeling.  For example, we can model 

occlusions that affect only certain target locations in the surveillance region by flatting the likelihood ratio in those areas.  

Models describing this effect must be sensor-specific. 

2.4 Sensor Overview 

Our experiments show how this approach can be used to fuse data from a video camcorder with data from set of RF 

sensors in the presence of occlusion. 

We employ a commercial HD video camera and we downsample to standard resolution to reduce computational burden.  

We complement the video with a four-element multistatic RF array.  Figure 1 shows the Akela radar unit and a Yagi 

antenna.  The radar is a stepped CW type, with four ports, any of which may be used for transmit or receive.  We 

collected data bistatically (only), yielding six unique transmit/receive antenna pairs.   

  

Figure 1.  Experimental Radar.   Left: Akela radar unit.  Right: Antenna. 

The camera provides information about the object’s 2D position from the image pixels, and the radar provides 

information about the object’s bistatic range and velocity from the received electromagnetic echoes. 

We briefly review RF Doppler processing as a means of describing how the multistatic array provides information about 

target position and velocity.  Figure 2 shows a cartoon depicting the radar modality, with a radar dish sending energy to, 

and receiving energy from, a moving object. Based on timing, individual pulses give information about range. Multiple 

pulses, processed over time, give information about radial velocity. 

 
 

Figure 2.  RF Measurements.  Left: Radar dish and moving object.  Right: RF data surface. 

To formalize, the standard isotropic Radar scattering model describes a signal bouncing off a point object at range r0 and 

returning to the transmitter (monostatic operation) by 

 
𝑆 =   𝐴exp  − 

𝑗2𝜋

𝜆
 2𝑟0   , 

 

(10) 

where A is a complex reflection amplitude, 2/ is the wavenumber for the radar centered at frequency c/, and the 2
nd

 

factor of 2 accounts for the RF signals’ round trip propagation to (and from) an object at range r0. 
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If a radar emits a sequence of N pulses, separated in time by t seconds (typically referred to as the Pulse Repetition 

Interval, or PRI), at an object moving with radial velocity v with respect to the radar, the signal return at pulse n is 

 
𝑆 𝑛  =  𝐴exp  − 

𝑗2𝜋

𝜆
 2𝑟0 +  𝑛𝑣Δ𝑡   

 
(11) 

Thus, the signal phase progresses in a manner proportional to the object radial velocity as 
4

( ) ( )n v t





    .  Radar 

processing capitalizes on this phenomenon by grouping N received pulses, Fourier transforming, and producing a 

Range/Doppler Map (RDM).  In the experiment described below, each RDM corresponds to a discrete time step. 

The maximum unambiguous phase change between consecutive pulses is   .  Thus, the maximum detectable radial 

velocity is max
4

v
t





.  For an even number N of FFT bins, the Nyquist bin is the ( 1)

2

thN
  bin.  There are  

( 1) 1
2 2

N N
    intervals from the DC bin to the Nyquist bin, giving the Doppler bin resolution in units of velocity: 

/
4 2 2

bin

N
v

PRI N t

 
  


  

In our experiments, the radar operated bistatically, meaning the transmitter and the receiver were not co-located.  The 

relationship between Doppler bins and bistatic velocity is more complex, but follows similar principles [35]. 

With this as background, Figure 3 shows example input data surfaces from both the video and RF sensors.  The top panel 

is a video frame from the camcorder.  Here a moving person is evident near the bottom-right corner of the image.  It is 

also possible to see the RF antennas in the video frame (all four are in the upper half of the frame).  The bottom panel 

shows a range/Doppler surface (RDM) from one of the six bistatic RF antenna pairs. 

 

 

Figure 3.  Data for the Experiment.  Left: Single video frame.  Right: RF Range/Doppler map (RDM). 

We have artificially set the zero-velocity clutter bin to zero to avoid loss of dynamic range from the high clutter 

amplitudes.  Doppler (related to range-rate, or object radial velocity) is on the horizontal axis.  Range is on the vertical 

axis.  Note that it is very difficult to gain intuition about object location on the ground or the object velocity direction 

because the measured quantities are bistatic with respect to a pair of antennas. 
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3. RESULTS 

3.1 Experiment Description 

In the experiment described here, a person in the parking lot of a building.  Figure 4 shows a satellite image of the area 

around the experimental scene.  Relevant to the data collected are the parking stripe patterns (also seen in the top panel 

of Figure 3) and the building on the left side of the image.  The camcorder that collected video data stood on a tripod on 

the top of the building during the experiment (left side of the object scene).  The RF sensors were near the right-hand end 

of the parking lot.  Sensor areas and the object scene are marked with red text in Figure 4. 

During the experiment, a person moved along a roughly triangular path in the area of the “TARGET MOTION” label 

from Figure 4.  The four RF antennas and the camcorder simultaneously collected data during the experiment. 

 

Figure 4.  Satellite image of the scene 

 

3.2 Measurement Likelihood for Video Sensor 

The video data was used to compute a likelihood function.  Our approach first estimated the scene background and then 

detected changes on a per-pixel basis over time [34].  Complex scenes with multiple objects require more sophisticated 

approaches to addressing dynamic object backgrounds and color features.  However, in our application, we were able to 

implement a straightforward change detection, where we converted each video frame to grayscale and used the median 

pixel brightness (over time) to estimate the background image at each pixel. 

Figure 5 shows the important parts of the process.  The top panel shows the background (“Reference”) image, 

accumulated across a long sequence of individual frames.  The middle panel shows an example single frame.  A red 

arrow indicates the mover.  Consistent with the ideas reviewed in [34], we seek moving objects and we rely on the 

assumption that pixels occupied by moving objects differ significantly from (spatially) corresponding pixels in the 

background image.  We thus create a Video Moving Target Indication (VMTI) surface.  Correlation processing is a 

traditional approach to determining the similarity between corresponding regions in two images [36][37], and recent 

work has made advances in performing this computation efficiently [38].  We base our motion detection metric on this 

quantity, using a measure that is essentially unity minus the 2D cross-correlation between rectangular pixel regions in 

each frame and the each corresponding region in the reference image. 
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Figure 5.  Video image processing steps 

Figure 6 provides a cartoon example of the VMTI processing.  The figure shows two images F and G.  Each individual 

pixel (like the indicated “Pixel Under Test”) defines a local neighborhood.  In this example, a red box indicates the 

neighborhood around the test pixel.  Defining these neighborhoods as f and g, respectively, the normalized 2D 

correlation coefficient between the neighborhoods is given by: 

 
𝑣𝑚𝑡𝑖 𝑥, 𝑦  =  1 −

1

𝑁
 

 𝑓 𝑥, 𝑦 − 𝜇𝑓  𝑔 𝑥, 𝑦 − 𝜇𝑔 

𝜎𝑓𝜎𝑔
𝑥,𝑦

  

 

(12) 

where x and y are pixel coordinates in the neighborhood, f and g are the neighborhood average-values, and f  and g 

are the standard deviations in the respective neighborhoods.  Note that the circumstance of f = g (i.e., the pixel 

neighborhoods is exactly the same as the reference image neighborhood), then this equation reduces to  

 
𝑣𝑚𝑡𝑖 𝑥, 𝑦      =  1 −

1

𝑁
 

 𝑓 𝑥, 𝑦 − 𝜇𝑓 
2

𝜎𝑓𝜎𝑓
𝑥,𝑦

 =   1 −
1

𝜎𝑓
2  

 𝑓 𝑥, 𝑦 − 𝜇𝑓 
2

𝑁
𝑥,𝑦

  

                          =  1 −
1

𝜎𝑓
2 𝜎𝑓

2 =  0  
 

(13) 

 

Thus, for matching neighborhoods, the moving object metric is zero, as it should be. 
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Figure 6.  Cross-Correlation-based Motion Detection 

The bottom panel of Figure 5 shows the VMTI metric for the frame in the middle panel.  In this straightforward case, the 

VMTI metric is high in the region where the walking object is moving.  Note (from the axis labels) that the VMTI 

surface comprises fewer pixels than the images.  This difference stems from the fact that we down-sample as part of the 

correlation processing.  This procedure results in a smaller, and more computationally tractable, data surface suitable for 

fusion and tracking. 

This correlation surface is used to generate the video likelihood, described by (6), as follows.  Using a calibration 

process, we determined target-absent and target-present pixels on the VMTI surfaces and formed empirical histograms 

describing the statistics when an object was present and when an object was not present. 

We determined that the target-present correlation score histogram is well modeled by a Gaussian distribution.  Let j(x
k
)  

denote the correlation pixel into which that hypothesized target state x
k
 maps.  Then the notation zv,j(x

k
) means the 

correlation score from the video sensor (v) in the pixel x
k
 maps to j(x

k
).  The model for the pixel amplitude can then be 

written precisely as 

 
𝑝 𝑧𝑣,𝑗  𝑥𝑘   𝐻1

𝑘 , 𝑥𝑘  =  
1

 2𝜋𝜎2
exp  

− 𝑧𝑣,𝑗  𝑥𝑘 − 𝜇1 
2

2𝜋𝜎2
  

 

(14) 

where 1 is the (empirically determined) mean pixel amplitude among target-present pixels and 2
 is the variance of 

these pixels. 

Analyzing the target-absent amplitude histogram, we found that it closely resembles an exponential distribution, i.e., 

 𝑝 𝑧𝑣,𝑗  𝐻0
𝑘  =  

1

𝛽0
exp  −

𝑧𝑣,𝑗

𝛽0
   

 
(15) 

where 0 is the (empirically determined) parameter for the distribution. 

Combining these two quantities yields the likelihood ratio for the video sensor 

 

𝛬𝑣𝑖𝑑𝑒𝑜  𝑧𝑣
𝑘  𝑥𝑘  ∝

𝑝𝑣𝑖𝑑𝑒𝑜  𝑧
𝑣,𝑗  𝑥𝑘 
𝑘  𝐻1

𝑘 , 𝑥𝑘 

𝑝𝑣𝑖𝑑𝑒𝑜  𝑧
𝑣,𝑗  𝑥𝑘 
𝑘  𝐻0

𝑘 
 

                           ∝ exp  
1

2𝜎2
 𝑧𝑣,𝑗  𝑥𝑘  −   𝜇1 +

 1 
𝛽0

 

2

    . 

 

(16) 
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3.3 Measurement Likelihood for RF Array 

The multistatic RF array produces a set of bistatic RDMs (range/range-rate surfaces like those shown in Figure 3) that 

provide information about the object’s range and radial velocity.  Each potential object state vector x
k
 couples to a 

unique pixel in the RDM based on its bistatic range and range-rate relative to the transmit/receive pair.  We denote this 

pixel by m(x
k
).  Standard radar models [35] show that the statistical distribution of energy in an RDM pixel is Rayleigh 

with parameter depending on target-presence vs. background (denoted as λt and λb).  These parameters are estimated with 

a calibration process. 

By analogy with the symbol definitions above, the RF likelihood can then be written 

 

𝛬𝑅𝐹 𝑧𝑅𝐹
𝑘  𝑥𝑘  ∝  

𝑝  𝑧
𝑅𝐹,𝑚 𝑥𝑘 
𝑘

 𝐻1
𝑘 , 𝑥𝑘

 

𝑝  𝑧
𝑅𝐹,𝑚 𝑥𝑘 
𝑘  𝐻0

𝑘 
 

                         ∝  exp  
 𝑧

𝑅𝐹,𝑚 𝑥𝑘 
𝑘  

2
 𝜆𝑡

2 − 𝜆𝑏
2  

2𝜆𝑡
2𝜆𝑏

2
  

 

(17) 

 

3.4 Combined Measurement Likelihood 

The new data at time k is the vector measurement z
k
, which includes video data zv

k
 and RF data zRF

k
.  The data updates 

object state estimate through the likelihood ratio Λ(z
k
 |x

k
).  For both sensors, the algorithm computes this quantity on a 

per-pixel basis on the surveillance grid for use in both detection and tracking.  As described in Section II(B), likelihood 

ratios fuse easily, according to a product rule.  In all cases, Λ(z
k
 |x

k
) is expresses the likelihood that data z

k
 at state x

k
 

came from the object-present hypothesis (object energy) rather than the object-absent hypothesis (noise and/or clutter).  

So as the data increasingly resembles data from an object, the likelihood ratio Λ(z
k
 |x

k
) increases.  Figure 7 provides an 

example at a particular snapshot in time.  Note that the figure axes correspond to target likelihoods on the ground (not in 

measurement space), and thus the units are in meters. 

All three panels show the measurement log-likelihood ratio (simply the logarithm of the likelihood ratio), but for the 

different sensors.  Because the RF likelihoods in this case are 4D quantities, we took marginals to eliminate the velocity 

(Doppler) components for display purposes.  The top and middle panels, respectively, show the (spatial-only) log-

likelihood ratio values for the RF sensor alone, and for the EO sensor alone.  Both have an obvious region of high object 

likelihood.  Fusing this single-snapshot data requires simply computing the product of the two individual-sensor 

likelihoods (as described in Section 2.2).  The bottom panel demonstrates the fused likelihood for two-sensor operation.  

Comparing the fused likelihood with the individual sensor likelihoods shows that the fusion step reduces uncertainty 

about the mover’s position on the surveillance grid. 

In our experimental application, the RF array receives pulse data at 160 Hz.  We form a coherent RDM by combining 80 

pulses, yielding a measurement every 0.5s.  The video sensor operates at 30 Hz.  We synchronize the sources by taking 

every 15th frame of the video data.  While this does not produce perfect time alignment, the practice is easily good 

enough to illustrate the data fusion processing that is the subject of this paper. 
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Figure 7.  Individual sensor and fused log-likelihoods. 

3.5 Numerical Density Estimation Approach 

The sensor data does not couple linearly to the object state, meaning that the probability density of eq. (1) will not be 

Gaussian.  Therefore, traditional tracking methods based on the Kalman Filter are not appropriate. We instead rely on a 

discrete approach which is a combination of fixed grid filtering and particle filtering [33]. In our discrete approach, the 

target state x is initially discretized onto a regular, coarse, four dimensional grid (two position states and two velocity 

states), which we use to coarsely estimate the density before it is known that a target is actually in the surveillance 

region. Next, once the coarse grid has high confidence that a target exists in the region, we transition the density 

estimation to a particle filter. The particle filter is able to more finely estimate the target density due to the adaptive tie 

points, provided that the region of interest has been sufficiently narrowed by the coarse discrete filter. 

3.6 Experimental Results 

Fusing data from multiple sensors offers performance improvement in at least two qualitatively different ways.  Standard 

tracker metrics clearly demonstrate these improvements.  The next two sub-sections address these two areas.  First, we 

show that data fusion allows improved track hold in situations where one sensor is obstructed from the object.  Then, we 

illustrate improved tracker RMSE under the circumstance that the object is visible to both sensors for the whole 

experiment. 

Track Hold Metric 

In our experiment, the mover proceeded in a triangular pattern.  Both sensors collected data for the entire experiment.  

However, as a means of illustrating performance under obscuration, we simulated in software an obscuration blocking 

each sensor’s view of the object at different times.  These obscurations were short duration events, but their effect was to 

cause the trackers at each individual sensor to lose track.  Figure 8 demonstrates these results. 

In our experiment, we collected enough data for 62 time steps.  When the obstruction occurs, there is no longer a strong 

source of data to pull the tracker in any direction.  It therefore “coasts” with only small changes in its direction after the 

obscuration occurs.  By the time the obscuration ends, the tracker’s object position estimate is too far from the true 

object position for the tracker to recover.  In this particular experiment, the EO obscuration occurs at time step #40 (of 

the 62) and persists for the duration of the experiment.  In the top panel of the figure, the EO-only tracker loses track at 
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this point (indicated by the blue arrow) and coasts for the rest of the collection. 

The RF obscuration occurs at time step #20 (indicated by the blue arrow in the lower panel).  The figure shows that the 

RF-only tracker coasts and loses the target at the next target maneuver. 

Data fusion adds significant value because the combined value of two sensors allows the tracker to hold track even when 

one sensor or the other is obscured.  Figure 8 shows the result.  Here, the RF sensor allows the tracker to hold the object 

while the EO sensor is obscured, and the EO sensor allows the tracker to hold the object while the RF sensor is obscured.  

Together, the fused sensors hold the object in track for the entire duration of the experiment. 

   
Figure 8.  Left : Tracking with EO data only.  Middle : Tracking with RF data only.  Right : Tracking with fused data. 

Tracker RMSE Metric 

In the absence of occlusions, both modalities are able to sense the object and there is no track-drop issue.  However, 

fusing data from both sensors still provides substantial benefit by reducing tracker error (quantified by RMSE).  Figure 9 

shows the results.  In each panel, the x-axis corresponds to time (in discrete snapshots) and the y-axis shows tracker 

squared-error (computed at each snapshot).  Each figure’s title also provides the RMSE, where the mean indicates 

temporal averaging over snapshots. 

Results are consistent with expected outcomes.  The RF sensors provide the poorest spatial resolution, and thus they 

suffer the largest RMSE.  The EO sensor (videocamera) offers fine spatial resolution and thus improved RMSE over the 

RF sensors alone.  Despite the unequal performance of the EO and RF sensors, RF still can provide some improvement 

to the EO-alone situation and RMSE decreases when the processing fuses data from both modalities.  In this case, 

improvement is quantitatively about 7% reduced error. 

  
 

Figure 9.  Tracker RMSE.  Left: Video Only.  Middle: RF Only.  Right : Data Fusion. 
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4. CONCLUSION 

We have presented a mathematical approach for performing data fusion within a detection and tracking system.  This 

approach is based on Bayesian nonlinear filtering.  A major advantage of the approach is that it allows fusing data from 

heterogeneous (including temporally asynchronous) sensors in a straightforward and natural way, at the measurement 

likelihood level. 

We applied this fusion methodology to real, collected data that employs two modalities (video imaging and RF).  Our 

processing ingested data from the sensors and automatically detected and tracked a moving object in a scene.  We 

demonstrated two significant advantages offered by fusing data from the sensors prior to tracking.  First, in the event that 

one sensor or the other might be obstructed from seeing the object, fusion allows the tracking system to maintain track-

hold on the object.  Second, tracker RMSE decreases when both sensors contribute to the object localization processing. 
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