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Abstract—This paper describes a method for selecting the lo-
cation of multiple passive acoustic arrays to optimize information
collection. The passive acoustic arrays are used to localize a
contact, and our goal is to choose how to situate and orient
the arrays to optimize this localization estimate. To this end, we
derive the Cramér-Rao bound on the variance of the estimate of
a target’s location as a function of where the sensing resources
are placed. We then use this bound to select where to place the
sensors. We illustrate the method by selecting where to place and
orient 5 arrays in a region.

Index Terms—Efficient Information Collection, Sensor Place-
ment Optimization, Cramér-Rao bound, Passive Arrays.

I. INTRODUCTION

This paper describes an approach for choosing where to
place passive acoustic arrays to optimize information collec-
tion. The problem of managing sensing resources for optimal
information gathering has recently received increased interest
in the literature [1], [2]. As [2] discusses, many popular
approaches to sensor resource allocation rely on information
theoretic measures. Some important work includes methods
based on Fisher information [3], the Kullback-Leibler [4]
divergence and the Rényi entropy [5]. There are a wide variety
of applications of sensor management techniques, including
waveform selection, motion planning, and sensor placement
[1]. The techniques have been applied using acoustic, radar,
and optical sensors [2]. Particularly interesting applications in-
clude those with heterogeonous sensors or multiple modalities
which measure different types of information (e.g., classifi-
cation information and location information) where the usage
must be traded against each other [8], [9].

This paper focuses on a domain where multiple arrays
are used to localize an acoustic contact. Our goal is to
choose where to situate and orient the arrays to optimize this
localization estimate. Our approach is to compute the Cramér-
Rao bound (CRB) on the variance of the estimate of a target’s
location as a function of where the sensing resources are
placed. We then use this bound to select where to place the
sensors.

This paper proceeds as follows. First, we develop a statisical
model describing how sensor measurements couple to the
target location. Then we derive the CRB bound on estimate
variance as a function of where the arrays are placed. Finally,
we illustrate with a simulation how to select the location of
the arrays to optimize localization performance.

II. PASSIVE ACOUSTIC ARRAY SENSING MODEL

Assume an N element acoustic array is centered at (xc, yc)
with orientation ϕ and distance d between the individual
elements. The element positions can be written, for n =
0 · · ·N − 1, as

x[n] = xc +

(
2n− (N − 1)

2

)
d cos(ϕ) (1)

y[n] = yc +

(
2n− (N − 1)

2

)
d sin(ϕ).

Assume further that a single acoustic source is positioned at
(x, y) and emits at a single frequency f . The energy emitted
from the source arrives at the sensors at different times due to
the physical distance. Let r[n] denote the range from the nth

sensor (hydrophone) to the source, i.e.,

r[n] =

√(
x− x[n]

)2
+
(
y − y[n]

)2
. (2)

The N×1 vector r will denote the collection of ranges r[n].
The signal that impinges on hyrdrophones will be denoted by
s which is an N × 1 vector having elements

s[n] = e−jkr[n], (3)

where k = 2πf/c. Both s and r depend on the source
location (x, y). This will be supressed for readability. The
model assumes a unit amplitude signal and zero initial phase.
We comment on the impact of these assumptions later.

This nominal model does not include attenuation due to
spreading. A spherical spreading model [7], leads to

sspherical[n] =
α

r[n]2
e−jkr[n], (4)

and a cylindrical spreading model gives

scylindrical[n] =
α

r[n]
e−jkr[n], (5)

where α corresponds to the reference intensity.
We have chosen to ignore absorption, which means the

model is strictly applicable only at low frequencies (e.g.,
< 5kHz). The model can be generalized to include this factor
and others and the derivation which follows is only slightly
modified.
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Each sensor makes measurements of the incident energy
corrupted by additive noise. Let the noise corrupted measure-
ment at sensor n be called z[n], where

z[n] = s[n] + w[n]. (6)

Our statisical model is that w[n] is a circular symmetric
complex normal, i.e., w[n] ∼ CN(0, σ2). The collection of
noise realizations and measurements will be denoted using the
N × 1 vectors w and z in analogy with s and r.

With this as background, the model for the received data
can be compactly stated as

p(z|x, y) = 1

πNσ2N
e−(z−s)H(z−s)/σ2

. (7)

III. THE PASSIVE ACOUSTIC CRB

Assume we have an unbiased estimator of x and y from the
data z. The Cramér-Rao Bound on the variance of any such
estimator is given by the inverse of the Fisher Information
Matrix (FIM)

I = −

 E
[

∂2

∂x2 ln p(z|x, y)
]

E
[

∂2

∂x∂y
ln p(z|x, y)

]
E
[

∂2

∂y∂x
ln p(z|x, y)

]
E
[

∂2

∂y2 ln p(z|x, y)
]
 . (8)

Our derivation will follow the standard approach [6], which
was applied in the past to derive bounds in the single array
far-field angle estimation only case.

From eq. (7), we can write

ln p(z|x, y) = C +
zHs+ sHz − zHz − sHs

σ2
(9)

and

∂

∂x
ln p(z|x, y) = zHsx + sHx z − sHsx − sHx s

σ2
, (10)

where sx is shorthand for ∂
∂xs. The y partial is analogous.

From here forward, we omit explicit definition of the y terms
because they are obvious by inspection. Continuing,

∂2

∂x2
ln p(z|x, y) = (11)

zHsxx + sHxxz − sHsxx − 2sHx sx − sHxxs

σ2

∂2

∂x∂y
ln p(z|x, y) =

zHsxy + sHxyz − sHsxy − sHy sx − sHxys− sHx sy

σ2
.

sxx and sxy are shorthand for ∂2

∂x2 s and ∂2

∂x∂y s, respectively.
The expectations with respect to the random variable Z are

E
[
∂2

∂x2
ln p(z|x, y)

]
= −2sHx sx/σ

2 (12)

E
[

∂2

∂x∂y
ln p(z|x, y)

]
= −(sHy sx + sHx sy)/σ

2

We can write the expectations explicitly as a function of the
elements of s as

E
[
∂2

∂x2
ln p(z|x, y)

]
=
−2

σ2

N−1∑
n=0

∂

∂x
s[n]H

∂

∂x
s[n]. (13)

and

E
[

∂2

∂x∂y
ln p(z|x, y)

]
=

−1

σ2

N−1∑
n=0

∂

∂y
s[n]H

∂

∂x
s[n]+

∂

∂x
s[n]H

∂

∂y
s[n]. (14)

The partials of s come immediately from eqs. (3, 4, and 5).
It is clear at this point that the assumption on initial signal
phase in eqs. (3, 4, 5) has no bearing on the CRB because
each term in the FIM involves only products of s[n] and
s[n]H . The assumption of a unit amplitude signal does have
impact. If the signal had amplitude a, each expectation has
an additional factor of a2. One way to view this is that the
(known) amplitude is subsumed into the (known) σ2 which is
now to be viewed as a noise-to-signal power ratio.

For clarity, we first specialize to the no-spreading case
and later show the generalization to spherical and cylindrical
spreading. For the no-spreading case we have

∂

∂·
s[n] = e−jkr[n](−jk)

∂

∂·
r[n]. (15)

The products needed to evaluate the expectation of eqs. (13)
and (14) are

∂

∂x
s[n]H

∂

∂x
s[n] = k2

(
∂

∂x
r[n]

)2

(16)

and

∂

∂x
s[n]H

∂

∂y
s[n] = k2

∂

∂x
r[n]

∂

∂y
r[n]. (17)

We can then write the elements of I (see eq. (8)) in terms
of the partials of r in the no-spreading case as

I =
2k2

σ2


N−1∑
n=0

(
∂
∂xr[n]

)2 N−1∑
n=0

∂
∂xr[n]

∂
∂y r[n]

N−1∑
n=0

∂
∂xr[n]

∂
∂y r[n]

N−1∑
n=0

(
∂
∂y r[n]

)2
 . (18)

When spreading loss is considered, the FIM elements gen-
eralize to the forms

Ixxspherical =
2α2

σ2

N−1∑
n=0

k2r[n]2 + 4

r[n]6

(
∂

∂x
r[n]

)2

(19)

and

Ixxcylindrical =
2α2

σ2

N−1∑
n=0

k2r[n]2 + 1

r[n]4

(
∂

∂x
r[n]

)2

, (20)
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where Ixx refers to the upper left element of I . The other
elements of the FIM are analogous.

The FIM is completely specified by noting from eq. (2)

∂

∂x
r[n] =

x− x[n]

r[n]
(21)

and

∂

∂y
r[n] =

y − y[n]

r[n]
, (22)

giving, for the no-spreading case,

I =
2k2

σ2


N−1∑
n=0

(x−x[n])2

r[n]2

N−1∑
n=0

(x−x[n])(y−y[n])

r[n]2

N−1∑
n=0

(x−x[n])(y−y[n])

r[n]2

N−1∑
n=0

(y−y[n])2

r[n]2

 . (23)

A. The Single Array Bound

For compactness, we continue with the no-spreading case.
The spreading loss models are analogous. The single-sensor
CRB on position localization is given by the inverse of the
FIM,

C ≥ C0


N−1∑
n=0

(y−y[n])2

r[n]2
−

N−1∑
n=0

(x−x[n])(y−y[n])

r[n]2

−
N−1∑
n=0

(x−x[n])(y−y[n])

r[n]2

N−1∑
n=0

(x−x[n])2

r[n]2

 (24)

where

C0 =
σ2

2k2

(
N−1∑
n=0

(x− x[n])2

r[n]2

N−1∑
n=0

(y − y[n])2

r[n]2

−
(N−1∑

n=0

(x− x[n])(y − y[n])

r[n]2

)2)
. (25)

This represents the localization performance possible from
exploiting wavefront curvature. Qualitatively, it improves (is
reduced) with any of the following : (i) the noise (σ2) is
reduced; (ii) the signal frequency (k) is increased; (iii) the
range to the contact (r) is decreased; (iv) the inter-element
spacing (d) is increased. Furthermore, the bound reflects
the fact that some geometrical arrangements do not allow
bounded-variance unbiased estimation. For example, a linear
array will not be able to estimate the range of a target at
endfire. This is seen by the singularity of the FIM in this
case. For example, if the array has x[n] = 0 for all n and a
contact is located at x = 0, the determinant C0 is 0 because
each term x− x[n] becomes 0.

The trace of C is the best mean squared error (MSE) of any
unbiased estimator. As an example, Figure 1 shows the MSE
for contacts located over a 20km×20km region when a single
101 element array is placed at the origin with inter-element
spacing λ/2. The target has unit amplitude and we selected
σ = 1.
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Fig. 1. The MSE Bound of an unbiased estimator for the single-sensor no-
spreading case. The array is shown in white and is oriented vertically at the
origin. Note that contacts located directly above or below are unobservable.
This is indiacted by the blue vertical stripe at x = 0.

B. The Multiple Array Bound

For two acoustic arrays with measurement vectors z1 and
z2 (independent conditioned on x and y), we can write

p(z1, z2|x, y) = p(z1|x, y)p(z2|x, y). (26)

Which leads to the FIM I = I1 + I2. With M arrays,
we have I =

∑M−1
m=0 Im. The corresponding CRB can be

computed by inverting this sum, giving a form of the bound
analogous to that of eq. (24).

As an example, Figure 2 shows the MSE for targets located
over a 20km × 20km region when two acoustic arrays are
present. One array is centered at the origin and the other at x =
−5km. The inter-element spacing is λ/2. One array is oriented
at 0◦ and the other at 90◦. The target has unit amplitude and
σ = 1 again.
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Fig. 2. The MSE Bound For the Two-Sensor Case. One array is oriented
vertically at the origin and the other horizontally at -5km.
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C. CRB-driven Sensor Placement

We use the multisensor CRB to determine where to place
multiple passive acoustic arrays. The method proceeds as
follows. For M arrays, a potential array placement is defined
by the 3M vector [x1, y1, ϕ1, · · · , xM , yM , ϕM ]. For this 3M
vector there is a MSE map over the region of interest like
those shown in Figures 1 and 2. This map describes the
estimation MSE if the target was actually located at each
of those points. We characterize this map by the worst-case
bound over the entire region. As such, each placement of
the M arrays corresponds to a real-valued number which
characterizes its utility.

We select the location of the M sensors so as to minimize
this worst case error bound. This optimization requires a
(bounded) search in 3M -dimensional space which has no
convexity guarantees. In this study, we use a meta-heuristic
algorithm called Cuckoo Search [10] to perform the optimiza-
tion.

Figure 3 shows the optimal placement of 5 arrays in a
20km × 20km region when the no-spreading model is used.
The placement of the arrays was constrained to be inside the
region. It is intuitive that the best bound is achieved when the
sensors are placed along the edges of the region and as far
from each other as possible.
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Fig. 3. Best placement of 5 arrays, under the no-spreading model.

Figures 4 and 5 show the selected placements under the
cylindrical and spherical spreading models, respectively. In
these cases, the best bound is achieved when the sensors
are moved inward to prevent any position from having an
excessively long range. This is balanced against the desire to
spread the sensors as far apart for maximum angluar diversity.
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