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ABSTRACT
This paper describes a sparse imaging approach for estimating
change images from a multistatic radar data. In our applica-
tion, antennas are arranged around the perimeter of a surveil-
lance region. This provides large angular diversity but a very
small angular sampling over the large aperture. Furthermore,
due to application constraints, the scene is interrogated with
limited frequency diversity. We address the change image
estimation problem using a compressed sensing reconstruc-
tion method to estimate the high-dimensional signal from the
much lower dimensional measurement. We show with real
collected data the sparseness model enables excellent imag-
ing with very limited spatial and frequency sampling.

Index Terms— multistatic radar, change imaging, nar-
rowband, compressed sensing, sparse model estimation

1. INTRODUCTION

Compressed sensing, the problem of estimating a sparse sig-
nal x ∈ Cn from a much smaller number of samples b =
A x ∈ Ck, k << n, has recently received increased atten-
tion from the statistical signal processing community [1]-[2].
It is motivated by the fact that in many applications high-
dimensional signals are well described with a small number
of coefficients in an appropriate basis. This allows reconstruc-
tion of a signal from much fewer measurements than ordinary
Nyquist criteria would require.

This paper describes an application of compressed sens-
ing methods to data collected by a multistatic radar array. In
our application, we estimate a high-resolution spatial change
image from a small set of frequency response measurements.
We are interested in imaging with a small spectral footprint,
since oftentimes the frequency spectrum is occupied by other
sources, leaving only a small portion available for our use.
We employ a constellation of geometrically diverse radar as
one means of mitigating the lack of spectral diversity.

We form change images between reference and test col-
lections. This setting ensures the image will be sparse in the
XY pixel domain and motivates a sparseness model on the
estimate. Data is collected with a step-frequency radar, which
uses a gated CW pulse with low instantaneous bandwidth.

This work was supported by AFRL contract FA8650-10-C-1718.

Traditionally, such a radar is swept through a large range of
frequencies at small intervals to simulate a wide bandwidth
chirp. Our application uses a small number of random fre-
quency samples (each with a small instantaneous bandwidth)
and illustrate that the sparsity model allows for excellent re-
covery of the unknown change image.

2. SPARSE MODEL IMAGING FORMULATION

We construct a change image over an XY region from data
collected before and after a change. This section develops the
notation and mathematics describing the approach. Section 3
illustrates the algorithm on real, collected field data.

2.1. The Received Data

Our experiments use an AKELA AVMU500A radar, which
is a stepped-frequency continuous wave (SFCW) radar. A
SFCW measures the scene frequency response at a discrete
set of frequencies by sequentially stepping the transmitter
through frequency. The signal source dwells at each fre-
quency long enough to allow echoes from the scene to reach
the receiver and then mixes the return with the transmitted
signal. The resulting measurements can be viewed as a com-
plex signal representing the frequency response of the scene
at Nf discrete frequencies f1, · · · , fNf .

Fig. 1: Nominal Stepped-frequency Contnouous Wave Radar

The AKELA radar is programmable and capable of trans-
mitting between 300MHz and 3GHz. The rate at which the
individual frequencies are sampled is selectable, and set here
at 45kHz. This pulse length defines the instantaneous band-
width of the transmitter. The radar has four ports, any of
which may be used for transmit or receive; however, because
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the radar has only one transmitter and receiver, it is not pos-
sible to receive multiple ports simultaneously. Therefore the
collections transmit and receive between one pair, and then
move to transmit and receive to the next pair, and so on.

2.2. Estimate and Measurement Notation

The surveillance region is discretized into a set of pixels. For
the purpose of exposition, we assume the region is rectangu-
lar and evenly sampled, defined by x ∈ xmin, xmax, y ∈
ymin, ymax, and grid spacing δx and δy. Let Nx and Ny be
the number of grid points in the X and Y directions, respec-
tively. The surveillance region then has NxNy pixels, each of
which contains an unknown change we wish to estimate from
data collected before and after the change.

Let x denote the NxNy × 1 vector of unknowns, which
will be organized x-coordinate major, i.e.,

x↔



xmin, ymin

xmin, ymin + δy
...

xmin, ymax

xmin + δx, ymin

...
xmin + δx, ymax

...
xmax, ymax


, (1)

so the jth element (j = 1, · · · , NxNy) of x, denoted xj , cor-
responds to a cell centered at

xj = xmin + δxb(j − 1)/Nyc (2)
yj = ymin + δy rem(j − 1, Ny).

Multistatic radar measurements are made by the constella-
tion both before and after a change. Let NP be the number of
transmit/receive pairs. The raw frequency response measure-
ment vector is a set of Nf complex numbers for each of the
transmitter/receiver pair (assumed to be the same for each pair
for notational convenience). The measurements used by the
algorithm are the complex-valued, range-filtered, frequency
response differences from before and after the change.

Formally, the range-filtered received data at frequency bin
fk from pair transmit/receive p will be denoted dpk, and the
change in measurements from before and after a change at
frequency bin fk from pair pwill be denoted ∆dpk. In practice,
this value is computed by averaging over many pulses.

TheNpNf×1 measurement vector b is then the collection
of changes ∆dpk, which will be arranged transmit/receive pair
major and frequency-bin minor, i.e.,

b =
[
∆d11 · · ·∆d1k · · ·∆d1Nf · · ·∆d

P
1 · · ·∆dPNf

]T
(3)

The ith element of measurement vector b corresponds to
frequency bin κi and bistatic transmitter/receiver pair ρi as

κi = 1 + rem(i− 1, Nf ) (4)
ρi = 1 + b(i− 1)/PNfc. (5)

We note also that pair ρi corresponds to a particular trans-
mitter/receiver denoted Ti and Ri.

2.3. The Measurement Model

We now develop the model of how changes in the surveillance
region x are reflected in measurements b. The starting point is
a model of how surveillance region changes map to changes in
bistatic range, which is the Fourier transform of the measured
frequency bin vector. For this purpose, let the vector brange be
the NpNf × 1 change in bistatic range measurements which
correspond to the NpNf × 1 frequency domain measurement
vector b. They are related through theNpNf ×NpNf Fourier
matrix F , i.e., b = Fbrange.

The ith element in brange corresponds to range bin

βi = 1 + rem(i− 1, Nr). (6)

The bistatic radar range equation defines the relationship
between the unknowns x and the changes in bistatic ranges
brange. For a notional target at (xj , yj), the received power Pr

is related to the transmitted power Pt though the wavelength
λ, receiver and transmitter gains Gt and Gr, target RCS σ,
and ranges to the transmitter and receiver rT and rR:

Pr =
PtGtGrλ

2σ

(4π)3(rT )2(rR)2
, (7)

and the phase of the received signal depends on the total
bistatic range and wavelength as (rT + rR)/λ.

In our notation, surveillance region index j corresponds to
the physical location (xj , yj) and measurement index i corre-
sponds to transmitter Ti and receiverRi. Denote the transmit-
ter and receiver locations by (xTi , yTi) and (xRi , yRi). Then
the ranges between surveillance region index j and the trans-
mitter and receiver associated with i are

rTij =
√

(xj − xTi)2 + (yj − yTi)2 (8)

rRij =
√

(xj − xRi)2 + (yj − yRi)2 (9)

The total bistatic range between (xj , yj) and a transmit-
ter/receiver pair specified by i is rij = rTij + rRij .

The bistatic range rij corresponds to bin Γij = 1 +
brem(rij , ramb)/δrc, where δr is the range bin spacing given
by the speed of transmission and radar bandwidth (δr =
c/BW ) and ramb is the maximum unambiguous range, given
by the bandwidth and the frequency step (ramb = BW/∆f ).
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With this as background, we can now precisely define the
response matrix A, which is a NPNr × NxNy matrix that
maps changes at (xj , yj) locations to observed changes in
bistatic range measurements ∆rpk. The model is

brange = A x (10)

For a test cell j and transmitter/receiver pair defined by i,
the elements A

ij
reflect the gain and phase due to the bistatic

range from the test cell to the pair. It has non-zero elements
only when a spatial location implied by j maps to the bistatic
range bin defined by i in the transmitter/receiver pair defined
by i, i.e., where Γij = βi. Let r0i denote the range to scene
center for a transmit receive pair indicated by i. Then, from
this analysis, the elements of A are

A
ij

=

{
Gij

e−
√
−14πf(rij−r

0
i )/c

rTijr
R
ij

if Γij = βi

0 otherwise
(11)

Where Gij captures antenna gains, transmit power and
other constants. The values are set via a calibration collect.
In practice, (xj , yj) does not correspond precisely to a range
bin center, and so its energy will spread among neighboring
bins. This is approximated in our model by using

A
ij

=

{
αijGij

e−
√
−14πf(rij−r

0
i )/c

rTijr
R
ij

|Γij − βi| < M

0 otherwise
(12)

whereM is a gate size and αij is a weighting representing the
fraction of the energy that a scatterer at (xj , yj) puts into the
bistatic range bin Γij .

This gives the final linear model which completely
specifies the relationship between the estimatee x and the
frequency-domain measurements b as

b = F A x (13)

2.4. Sparse Imaging Estimation Algorithm

In our application, eq. (13) is an underdetermined linear sys-
tem, meaning many estimates x will explain the measure-
ments. As a means of selecting the appropriate estimate, we
note that the change image x is by its definition sparse. We
use this fact to impose a sparseness constraint on x in a basis
pursuit (BP) denoising framework to esimate a unique x, i.e.,
we solve

argmin
x
‖x‖1 s.t. ‖F A x− b‖2 < σ (14)

We use the toolset described in [3] and implemented in a
code base called SPGL1. This toolset achieves the solution
by solving a sequence of LASSO problems

min
x
‖F A x− b‖2 s.t. ‖x‖1 < τ (15)

via a spectral projected-gradient algorithm. Each of the solu-
tions generates an update to a Newton root-finding algorithm
that converges on the location where the residual ‖F A x −
b‖2 is below the noise tolerance parameter σ. The parameter
σ defines the tolerable difference between the change image
prediction of differences in bistatic range measurements and
the actual measured differences. For this reason, it is typically
referred to as the noise parameter.

3. EXPERIMENTAL RESULTS

We illustrate our approach with a field collect. Figure 2 shows
a four-element RF array where data was collected from each
of the 6 unique bistatic pairs using the AKELA SFCW Radar
described earlier. The collection used 1500 evenly spaced
frequency steps between 1 and 3 GHz. The radar hopped
frequencies every 22µs, giving each pulse approximately
45kHz instantaneous bandwidth. Therefore, although the
total bandwidth was 2GHz, significant energy was only
transmitted into 70MHz (= 1500× 45000) of the spectrum.

Fig. 2: Imaging Area, Showing 4 Antennas Forming a 40m Baseline and a 50m× 50m Surveillance Region
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Data was recorded before and after the change shown in
Figure 3, where two cylinders were added at about 30m stand-
off from the array.

Fig. 3: Top: The Region Before and After the Change.

Figure 4 shows the change images estimated on a 901 ×
601 grid. There were 6× 1500 frequency measurements col-
lected, meaning there are about 60 times as many estimatees
as measurements. The top panel shows the original collect
produces a sharp estimate of the two changes. The middle and
bottom panels show excellent imaging still results with dra-
matically fewer frequency samples. The middle panel shows
the change image with 40% of the samples discarded (in prac-
tice, these would never have been collected). The bottom
panel shows the change image with 90% of the samples dis-
carded. The image still clearly shows the change locations.

4. CONCLUSION

This paper has described and illustrated a sparse imaging ap-
proach for change image estimation using a multistatic radar
array. We’ve given an algorithm that uses a compressed sens-
ing reconstruction approach and radar signal models to esti-
mate reflectivity changes in a region. We’ve shown exper-
imentally that the scene sparsity enables recovery of useful
change images with a very small number of frequency sam-
ples. Future work includes determining the minimum number
of samples and their character required for good imaging.

Fig. 4: Top: Change Image Using 1500 Step Frequencies
from each of the 6 Unique Bistatic Pairs. Mid: Image When
Randomly Discarding 40% of the Measurements, and Which
Measurements Were Discarded. Bot: Image When Randomly
Discarding 90% of the Measurements, and Which Measure-
ments Were Discarded.
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