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Abstract—1 This paper describes a method for detecting and
tracking multiple moving targets using a multistatic narrowband
radar sensor array. We show that the appropriate model for
the sensor array measurements is non-linear and the statistics
are non-Gaussian. We use this model in conjunction with a
Bayesian estimation algorithm which constructs a probability
density on the number of targets and their states. The density
is approximated using a novel hybrid discrete grid/particle filter.
We evaluate the performance on a set of experimental data from
a 6-channel array to detect and track two targets that cross,
make sharp turns, and move nearly cross-radially to some pairs
for a significant portion of the collect.

I. INTRODUCTION

This paper describes an approach for using measurements
from a multistatic narrowband (NB) Radio Frequency (RF)
sensor array to detect and track targets. The main contribution
is the description of a non-Gaussian non-linear statistical
signal processing approach that is robust in the presence
of multiple targets, crossing targets, and targets performing
difficult-to-model behavior like sharp turns. The performance
is evaluated using data collected from a 6-channel multistatic
array with just 2% fractional bandwidth.

A NB sensor array has several benefits over a conven-
tional wideband sensor. First, commercial use has eroded the
available spectrum often leaving only a small portion for
other uses [1]. Furthermore, a NB sensor array is inexpensive
due to simple electronics and antennas, and has low power
requirements. But perhaps most importantly, an sensor array
provides geometric diversity useful for detection and tracking.

Target detection and tracking using a multistatic sensor array
has received increased attention in the literature, including [2]–
[6]. In our application, we use measurements from a multistatic
narrowband RF array, where each bistatic pair (channel) gen-
erates a pixelated range/Doppler surface. We model this return
surface with a non-linear and non-Gaussian statistical model.
We then use these measurements and the statistical model in
a Bayes-optimal estimation engine to construct a probability
density on the number of targets and their states. What results
is a robust multitarget estimation procedure that can detect and
track targets through complex maneuvers.

The paper proceeds as follows. Section II describes the
sensor array and a statistical model for its measurements. Next,
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Section III describes a Bayesian method of state estimation
which exploits measurements from this model. We highlight
our unique numerical method which uses a hybrid discrete
grid/particle filter representation of the high-dimensionality
posterior. Finally, in Section IV, we illustrate the approach
with an experiment that includes two crossing targets walking
an irregular path.

II. STATISTICAL SENSOR MODEL

In our N -element sensor array, each sensor transmits a
NB RF signal, which is reflected off targets and clutter and
received at each sensor. This process repeats N times, with
each sensor serving as transmitter, giving N2 channels. Fourier
processing on the received data generates a bistatic range/range
rate surface.

The bistatic range/range-rate surfaces are related to the xy
state of the target non-linearly, and are corrupted by noise.
Let zij(t, r) denote the envelope-detected (non-thresholded)
measurement in the (i, j)th bistatic range/range-rate cell from
transmitter t and receiver r. Each cell corresponds to a
particular bistatic range and range-rate from that sensor pair.
The number of cells Nr and Nṙ and the resolutions δr and
δṙ are determined by the radar parameters. For example, the
bistatic range resolution is given by δr = c/BW , where c is
the speed of light and BW is the radar bandwidth. Similarly,
the bistatic range-rate resolution is given by δṙ = c/fcT ,
where fc is the radar center frequency, and T is the coherent
pulse interval. The collection of measurements is the matrix

z(t, r) =

 z11 · · · z1ND

· · ·
zNr1 · · · zNrND

 , (1)

where Nd and Nr are the number of range and range-rate bins.
Let the vector x = [x, ẋ, y, ẏ] describe the true position and

velocity of a target. The statistics of the observation zij(t, r) in
cell (i, j) from transmitter t and receiver r depend on a number
of physical factors, including the proximity of cell (i, j) to
the true bistatic range and bistatic range-rate of the target; the
target impulse response; where the target is in the illumination
and receive beams; and whether the receiver is saturated with
direct-path energy from the transmitter. Given the small size of
the surveillance region and wide sensor beamwidth, we model
the pixel proximity and impulse response function only.
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We model the statistics in each cell as Rayleigh. Let
p(zij(t, r);x) denote the probability of receiving z in bistatic
range/range-rate cell (i, j) given a transmitter at t, a receiver
at r, and a target at x. The statistical model is then

p
(
zij(t, r)|x

)
= 2

zij(t, r)

λ2ij(x; t, r)
exp

(
− zij(t, r)

2

λ2ij(x; t, r)

)
, (2)

where λij(x; t, r) is a pixel-dependent Rayleigh mode which
accounts for the physical factors by specifying the energy
expected in cell (i, j). We assume that, conditioned on the
target state, noise is independent across pixels and channels
and write the joint multi-channel likelihood as

p(z|x) =
∏
t,r

∏
ij

2
zij(t, r)

λ2ij(x; t, r)
exp

(
−

z2ij(t, r)

λ2ij(x; t, r)

)
, (3)

where the notation
∏

t,r is to be interpreted as specifying a
product over all transmit/receive pairs, and z is the collection
of all measurements from all transmit/receive pairs.

In order to capture the proximity of cell (i, j) to the true
range/range-rate values, let

∆ij(x; t, r) =

(
hRij −R(x; t, r)

hṘij − Ṙ(x; t, r)

)
, (4)

where R(x; t, r) is the function that maps the target state x
to a bistatic range and Ṙ(x; t, r) is the function that maps the
target state x to a bistatic range-rate, i.e.,

R(x; t, r) =
√

(x− rx)2 + (y − ry)2 +
√

(x− tx)2 + (y − ty)2

and

Ṙ(x; t, r) =
(x− rx)ẋ+ (y − ry)ẏ√
(x− rx)2 + (y − ry)2

+
(x− tx)ẋ+ (y − ty)ẏ√
(x− tx)2 + (y − ty)2

and hRij and hṘij are functions that map (i, j) to bistatic range
and bistatic range-rate, respectively. Here, they quantize the
true range and range-rate to the sensor resolution, and wrap
around at the range and range-rate ambiguities. With these
definitions, our statistical model is then fully specified as

λij(x; t, r) = λB +
(
λT − λB

)
exp(−∆T

ijA∆ij),

where λB and λT are the background and target mode
parameters, and the matrix A specifies the range and range-
rate extent of the main lobe and the cross coupling.

III. BAYESIAN ESTIMATION APPROACH

We use the sensor array measurements to estimate the
number of targets in the region and their states (positions and
velocities) over time. Our approach is to recursively estimate
the joint multi-target probability density at time k,

p(xk1 , x
k
2 , · · · , xkT , T k|Zk), (5)

where T k is the number of targets, their states are x1, · · · , xT
and Zk represents the collection of all measurements up to
and including the time k from all channels. For shorthand, we
write this as p(Xk, T k|Zk), where the cardinality of Xk is
implied by T k. The density can be expressed as the product
of the target number density p(T k|Zk) and the target state
density p(Xk|T k, Zk), i.e.,

p(Xk, T k|Zk) = p(T k|Zk)p(Xk|T k, Zk). (6)

The target state density is updated according to the rules of
Bayesian mathematics. It is predicted forward in time via

p(Xk|T k, Zk−1) =
∑
Tk−1

∫
p(Xk, T k|Xk−1, T k−1) (7)

× p(Xk−1, T k−1|Zk−1)dXk−1,

where the integral is to be interpreted as performing the
T k−1 integrations required. The density is updated with a new
measurement at time k called zk according to Bayes rule as

p(Xk|T k, Zk) ∝ p(zk|Xk, T k)p(Xk|T k, Zk−1). (8)

Association is implicit and done by computing the likeli-
hood of the measurement given joint target state, in principle
for all multiple target states. No explicit measurement-to-target
association is performed. The probability mass function on
target number p(T k|Zk) is updated analogously.

This density is non-Gaussian due to the measurements,
which precludes conventional methods (e.g., Kalman or ex-
tended Kalman filters). It is also high dimensional due to the
joint multi-target state space. Our implementation employs a
unique hybrid discrete grid/particle filter.

In a discrete grid approach, a region is divided into a fixed,
evenly spaced, Nx×Nẋ×Ny×Nẏ grid. The primary benefit
is to generate probability estimates over a defined region of
state space, only assuming the density is zero outside of the
grid boundaries. Conversely, the main deficiencies are that the
discrete grid approach spends computational effort updating
grid cells with near-zero probability, and that the estimation
error is dictated by the grid cell size.

In a particle approach, a density is approximated using par-
ticles xkp and weights wk

p as p(xk|Zk) ≈
∑Np

p=1 w
k
pδ(x

k−xkp).
This adaptive grid approach chooses tie-points xkp online via
importance sampling. For certain classes of problems, the
particle approach provides excellent estimation performance
at a fraction of the cost of a discrete grid. Thus, its main
strengths are that computational effort is only used in areas of
high probability, and the grid adaptively changes. The main
deficiency is this sparse sampling approach is ill-suited to
represent very broad densities, such as a density which has
uniform uncertainty over a large spatial region.

For these reasons, we use a hybrid approach which inherits
the best features of the two. The density is first approximated
on a discrete grid. Once the target present probability exceeds
a threshold, a target is present and has been well localized.

146



At this point, the density is transitioned to a particle ap-
proximation by sampling from the discrete grid. This allows
sustained detection and tracking with greater precision than the
discrete grid. The discrete grid continues to be updated with
new measurements to detect the second, third, etc. targets.

An additional feature of our approach is that when multiple
targets are in close proximity, a joint multi-target particle
filter is formed and the targets are updated jointly [9]. This
means that the likelihood of the measurements received is
evaluated using the joint target state at once, rather than as
a product of the likelihoods from the single target state. This
feature ameliorates the track coalescence problem (i.e., two
crossing targets both jump on to the single strongest target)
since the joint measurement likelihood is lower when there
are unexplained measurements. It also reduces the effect a
reflection that originated from target a can have on the estimate
of target b by explicitly modeling the fact that both targets are
in the scene and that multiple reflections are expected.

This scheme makes several approximations to allow effi-
cient computation. The effects are studied elsewhere [7] and
summarized here. First, using a single-target detection surface
means that multiple closely spaced targets will take longer to
be detected than with the exact Bayesian method. Furthermore,
the spatial and velocity resolution of the detection grid limits
the prccision of the target state estimate relative to the exact
Bayesian method. The particle filter for transitioned targets
addresses this fact. Next, treating detected targets with a
particle filter introduces the diversity problems. In practice,
this problem is dealt with by using an efficient importance
density [8]. Finally, treating targets as well separated and then
thresholding to decide when they should be treated jointly
introduces the potential that targets that are close together
are inappropriately treated as well separated. In practice this
problem is not important since the threshold for close can be
set very loosely with no significant harm in treating targets
jointly that could have been treated singly.

IV. EXPERIMENTAL RESULTS

The method is illustrated using a four-antenna sensor array
while two moving targets walked in a region. We used a
commercially available AKELA AVMU500A radar and inex-
pensive omni-directional antennas. An image of the placement
of the antennas in the array is shown in Fig. 1. The layout of
the region and target path is shown in Fig. 2.

Figure 1. The Four Antennas as Placed for this Experiment.

Figure 2. A view of the scene from overhead with the antenna positions (at
left) and path points (at right) marked. Image (c) 2011 Google.

We collected data from the six unique bistatic pairs (i.e.,
Tx1ÕRx2, Tx1ÕRx3, etc.) with fc = 2.43GHz, and BW =
60MHz (about 2% fractional bandwidth).

In this stepped-chirp single-radar multiple-antenna system,
the collection proceeded as follows: First, Antenna 1 trans-
mitted a short pulse at the lowest frequency (2.4 GHz).
The returns was received by Antenna 2. Next, Antenna 1
transmitted a short pulse at the second-lowest frequency (2.043
GHz), which was received by Antenna 2, and so on, until the
highest frequency (2.46 GHz) was completed. The process was
repeated between Antenna 1 and Antenna 3 and then between
Antenna 1 and Antenna 4, and so on. The individual sweep
pulses proceeded at 45 kHz, but the overall rate was dictated
by the number of sweep pulses per pair (here chosen to be 40),
the number of bistatic pairs (here there were six pairs), and
the switching times. In this experiment, the actual complete-
cycle pulse-repetition frequency (measured between the time
the first sweep pulse was transmitted between Antenna 1 and
Antenna 2 and then repeated again) was about 100Hz.

We selected a 0.5s CPI. Combining this choice with the
radar parameters above, the resulting data had 5m bistatic
range resolution, 0.3m/s bistatic range-rate resolution, 200m
unambiguous range and 20m/s unambiguous range rate.
These parameters are encoded into hR and hṘ. Empirically,
the impulse response has σR = 2.5m and σṘ = 0.6m/s.
These parameters are encoded into the matrix A. Calibration
collects show λB = 2500 and λT = 10000 are good estimates
of the background and target modes.

The approach described in Section III was executed using
a 25m× 16m/s× 25m× 16m/s detection grid discretized to
51×21×51×21 cells and particle filters with 1000 particles.
Two targets walked the triangle path outlined in Fig. 2. One
target walked clockwise and the other counterclockwise, which
resulted in three periods where the targets crossed paths during
the 120s collection time. One of the targets carried a hand-
held GPS unit which approximately truthed the path the targets
walked (although at some points the targets deviated from
the nominal path by as much as 1m). Fig. 3 shows the
performance of the estimation algorithm by indicating the
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position estimates for each target for the entire collection.
It also gives covariance ellipses for the target state near the
crossing points.

Figure 3. Tracker Output, showing the antenna locations, two target state
estimates, and GPS truth of the path.

As mentioned above, the targets cross three times during the
collection. Figs. 4 and 5 are images taken from a video camera
showing the targets before, during, and after the crossing. The
tracker point estimate and uncertainty about target position
is projected onto the images for reference. As can be seen
from the figures, the method holds track identity through the
crossing.

Figure 4. A sequence of images showing the first crossing. The images
show the targets immediately before, during, and after the cross. The tracker
estimated position and uncertainty of the target states is drawn in for reference.

V. CONCLUSION

This paper has described a method for using a multi-channel
radar array to detect and track multiple moving targets. The
algorithm combines a non-linear non-Gaussian statistical sen-
sor model on array measurements with a Bayesian estimation
scheme. The performance of the method was illustrated with
an experiment using a 6-channel array to track two targets
that cross, make sharp turns, and move nearly cross-radially
to some pairs for a significant portion of the collect.
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