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Abstract—This paper describes a sparse imaging approach for 
estimating change images from a constellation of multistatic 
radar. In our setup, radar antennas are arranged around the 
perimeter of a surveillance region. This provides large angular 
diversity but a very small angular sampling. Conventional 
backprojection imaging techniques applied to this data 
produce sidelobes which severely limit the utility of the 
imagery. We describe an innovative change imaging method 
which enforces sparseness on the estimated image. The 
method is illustrated with collected multistatic radar data, 
showing that the sparseness model produces excellent images 
with very limited sampling of the aperture.  

I. INTRODUCTION 

This paper describes a novel method of exploiting data 
from a constellation of Radio Frequency (RF) sensors to 
image a region. In contrast to Synthetic Aperture Radar 
(SAR) imaging [1] which has small angular diversity but a 
very finely filled in aperture, in our setup we have large 
angular diversity, but the aperture is very poorly filled in 
(see Figure 1). Since the aperture is so dramatically 
undersampled (relative to the Nyquist requirement), 
traditional imaging techniques like backprojection result in a 
very poor image. 

Our approach is to form an image of the changes 
between a reference collection and a new collection. The 
change image setting ensures that the image will be sparse, 
and allows us to use a sparseness model to constrain the 
estimate. This physical model enables estimation with fewer 
measurements than conventional Nyquist criteria would 
demand. In practice, we find excellent imaging with very 
limited sampling of the aperture. 

Other authors have developed related approaches. For 
example, [2][3][4] apply sparse signal recovery techniques 
discussed in the compressed sensing literature to SAR 
imaging to deal with missing data and perform super-
resolution imaging. Other authors [5][6] have looked at 
employing multistatic radar for enhanced imaging. Our 
approach differs from these and other works in that we 
exploit an undersampled (but wide) aperture from a 
constellation of multistatic radar to perform change imaging. 

 
Figure 1. The Imaging Setting. 4 antennas give 12 bistatic pairs (6 are 

unique). This gives large angular diversity which is sparsely sampled. 

The paper proceeds as follows. First, Section II describes 
the mathematics of our sparse change image algorithm and 
its implementation. Next, Section III shows field collects 
which employ four multistatic radar units, comparing the 
performance of the proposed sparse-model imaging 
algorithm with conventional backprojection imaging. 
Finally, Section IV concludes. 

II. RANGE-DOMAIN SPARSE MODEL IMAGING  

Our approach is to create an image of the changes over 
an XY region. This is done by collecting multistatic RF data 
both before and after a change event occurs and estimating 
the change in scene content from the change in bistatic 
range measurements. This section develops the notation and 
mathematics that describe the approach. 

A. Notation 

The surveillance region is discretized into a set of pixels. 
For the purpose of exposition, we assume here that the 
region is rectangular and evenly sampled, although these 
assumptions are not a requirement of the approach.  

Formally, let the region be defined by � ∈ ����� , ���	
, � ∈ ����� , ���	
, and spacings �� and ��. Let 
	 and 
� 

be the number of grid points in the X and Y directions, 
respectively. The surveillance region then has 
	
� pixels, 
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each of which is contains an unknown change in Radar 
Cross Section (RCS) that we wish to estimate. Let � denote 

the 
	
� × 1 vector of unknowns, which will be organized �-coordinate major, i.e.,  
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,  (1) 

so the ��� element (� = 1,⋯ ,
	
�) of �, denoted � , 

corresponds to a cell in the imaging region centered at  

� = ���� + ��!(� − 1)/
�& � = ���� + ��	'()*� − 1, 
�+, (2) 

where !	̇& is the floor function and '()(-, .) is the 

remainder when - is divided by .. The index j will be used 
with the unknown x and always refer to a spatial coordinate. 

Measurements are made by the multistatic constellation 
both before and after a change. Let / be the number of 
transmitters and 0 be the number of receivers. Through 
Fourier processing, the raw measurements from each 
transmit/receive pair correspond to complex values in 
1 
bistatic range bins (assumed to be the same for all 
transmitter/receiver pairs for notational convenience). The 
complex-valued difference between observations before and 
after the change event in range bin 2 between transmitter 3	 

and receiver '	 will be denoted Δ'5�6→16. In practice, this 

value is computed by averaging over many calibrated pulses 
before and after the change event.  

The /0
1 × 1	vector . is then the collection of changes Δ'5�6→16 , arranged range-bin major and transmitter minor:  

		. = 8Δ'99→9	 ⋯Δ':;9→9	⋯Δ'99→<	 ⋯Δ'9=→>	 ⋯Δ':;=→>	?= . (3) 

The A�� element of ., denoted	.� , defines the bistatic 

range bin B�, transmitter 3	,� and receiver '	,� as 

B� = 1 + '()(A − 1, 
1),						 	3	,� = 1 + C(A − 1)/0
1D, and '	,� = 1 + '()(C(A − 1)/
1D, 0). (4) 

The index i will be used exclusively b and always refer 
to a range bin, transmitter, receiver combination. 

B. Mapping from Esimatee x to Observation b 

This section develops the model of how changes in the 
surveillance region � are reflected in the measurements ..  

From the bistatic radar equation [9], the received power H1  is related to the transmitted power H� though the 
wavelength I, receiver and transmitter gains J� and J1  and 
ranges to the transmitter and receiver '=	 and '>	  by 

H1 = H�J�J1I<(4L)M('=	)<('>	)<. (5) 

The phase depends on the total bistatic range [11] and 
wavelength as ('=	+'>	)/I. In our notation, surveillance 
region index � maps to a location (� ,� ) as defined in eq. 

(2), and measurement index A corresponds to transmitter 3	,� 
and receiver '	,� as defined in (4). Denote the transmitter 

and receiver locations by *��6,� , ��6,�+ and *�16,� , �16,�+. 

Then the range between surveillance region index � and the 
transmitter and receiver associated with A	are 

'� =	 = N*� − ��6,�+< + O� − ��P,�Q< 

'� >	 = N*� − �16,�+< + O� − �1P,�Q<, 
(6) 

and the total bistatic range between surveillance region 
index � and a transmitter/receiver specified by A is 

'� = '� =	 + '� >	 . (7) 

The bistatic range '�  corresponds to bistatic range bin 

 R� = 1 + )ST*!'� /�1&, R��U+, (8) 

where �1 is the range bin spacing given by the speed of 
transmission and radar bandwidth (�1 = V/WX) and R��U  
is the maximum unambiguous range bin, given by the 
bandwidth and the step frequency size (Y��U = WX/ΔZ). 

With this as background, we can now precisely define 

the forward model [, which is a /0
1 × 
	
� matrix that 

maps changes at (� , � ) locations to observed changes in 

bistatic range measurements Δ'5�6→16 . The model is  

 . = [�. (9)   

For a test cell � and transmitter/receiver defined by A, the 

elements [�  reflect the gain and phase due to the bistatic 

range from the pair to the test cell. It has non-zero elements 
only when a spatial location implied by � maps to the 
bistatic range bin defined by A in the transmitter/receiver 

pair defined by A, i.e., where R� = B�.  
Let '�\ denote the range to scene center for a transmit 

receive pair indicated by A. Then, from this analysis the 

elements of [ are  

[� =
]̂
_J� `a√acdefO;gha;giQ/j

1ghk61ghl6 R� = B�

0 S3ℎ('oAp(
, (10) 
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where	J�  captures antenna gains, transmit power and other 

constants. The values are set via a calibration collect. The 

matrix  [ acts as a selection operator, choosing which A� are 

non-zero by determining how ground pixels correspond to 
range measurements. 

In practice (� , � ) does not correspond precisely to a 

range bin center, so its energy will spread to neighboring 
bins. This is approximated in our model by using 

[� =
]̂
_u� J� `a√acdefO;gha;giQ/j

1ghk61ghl6 vR� − B�v < x
0 S3ℎ('oAp(

 (11) 

where x is a gate size and u�  is a weight function.  

C. Sparse Change Image Reconstruction 

The previous sections have defined the estimatee 
(change image) �, the measurements ., and specified the 

relationship . = [	�. This section describes how we 

estimate the change image � from measurements . . 

The change image, �, is by its definition sparse, having 

only a few pixels with non-zero energy that explain the 
data. We exploit this sparseness in a basis pursuit denoising 
framework to estimate �, i.e., we estimate � by solving 

 argmin	|�|9 								p. 3.						 }[� − .}< ≤ �. (12) 

 We use the toolset described in [7] and implemented in 
a code base called SPGL1. This toolset achieves the 
solution by solving a sequence of LASSO problems 

  min	 }[� − .}< 								p. 3.						|�|9 ≤ �, (13) 

via a spectral projected-gradient algorithm. Each of the 

solutions generates an update to a Newton root-finding 

algorithm that converges on the location where the residual }[� − .}<  is below the noise tolerance �.  

D. Comparison to Backprojection Imaging 

Backprojection imaging [8] is a standard approach 

which provides a useful comparison to our proposed 

sparse-model method. Backprojection applies an inverse 

model that maps from measurements . to the unknowns �,  

  � = �	., (14) 

to estimate the unknowns �, where � is another selection 

matrix. Here � selects which measurements A correspond to 

ground pixels �. This is the opposite of our forward-model 

approach (eq.  (9)), which employs a selection matrix 

defining how ground pixels correspond to measurements. 

 Backprojection corresponds to an �< minimization on � rather than an �9 minimization, i.e., it solves an equation 

of the form 

 argmin	|�|< 								p. 3.						 ��� − .�< ≤ �. (15) 

III. EXPERIMENTAL RESULTS 

The experiments we describe here employ a 
commercially available AKELA AVMU500A radar along 
with 4 SAS-510-4 antennas. The antennas are directional and 
are specified to have a 3dB point of 41 degrees by the 
manufacturer. The system was selected because its size and 
versatility demonstrate the ability of a compact, contained 
system to effectively collect the necessary data.  

The radar is a stepped CW type, capable of transmitting 
pulses between 300MHz and 3GHz. The rate at which the 
individual frequencies are sampled is selectable, set here at 
45kHz. The radar has four ports, any of which may be used 
for transmit or receive; however, because the radar has only 
one transmitter and receiver, it is not possible to receive 
multiple ports simultaneously. Therefore the collections will 
transmit and receive between one pair, and then move to 
transmit and receive to the next pair, and so on. Since this 
happens at a very fast rate compared to the dismount speed, 
the measurements are well approximated as being 
simultaneous. Figure 2 shows the AKELA unit. 

 
Figure 2. AKELA AVMU500A Radar Unit. 

A. High-RCS Cylinder Change Detection 

This first experiment shows change imager computed for 
a large RCS target. Four antennas were arranged around the 
perimeter of a surveillance region as illustrated in Figure 3. 
The antennas extended approximately 30) in the north-to-
south direction and 10) is the east-to-west direction. Their 
position was recorded with a handheld GPS and 
differentially corrected. The imaging region was offset 
about 20) in the east-west direction and about 30)�30) 
in size. An image of the scene as viewed from Antenna 3 is 
show in Figure 4. 

Two collections of the scene were taken. The first 
collection was a reference (empty) scene and the second 
(change) scene had a large cylinder at scene center, as 
shown in Figure 4. The true position of the cylinder was 
recorded using a handheld GPS, and differentially corrected. 
Each collection used 2J�� of bandwidth around a 2J�� 
center frequency with 1670 narrowband step frequencies. 
Data was collected from the 6 unique bistatic pairs (no 
monostatic data was collected). 
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Figure 3. The layout of the four antennas. 

 
Figure 4. The surveillance region, viewed from the perspective of Antenna 3 after a large cylinder (the change) was added to the scene. 

The measurement vector . was formed by first creating 

the calibrated range profile for each transmit-receive pair for 
both the reference and change collections. This is 
accomplished by Fourier transforming the raw frequency 
response data, averaging over 100 pulses and rescaling using 
the appropriate transmit/receive pair calibration scalar. Next, 
the difference data was created by coherently subtracting the 
reference data from the change data.  Since data from the 
radar starts at range 0 and goes to the unambiguous range, the 
data was further reduced by removing range bins outside the 
imaging scene. Finally, the data was ordered to conform to 
the convention defined earlier, resulting in the . vector of 

difference measurements shown in Figure 5. 
 

 
Figure 5. Calibrated, range profile difference measuremnet vector .. 

Figure 6 shows a portion of the [ matrix for transmit-

receive antenna pair 1→4 over the scene. The selection 
matrix is very sparse. It is only non-zero at locations where 
the transmitter/receiver/range bin specified by A corresponds 

to the �, � location specified by �. In practice, the matrix does 
not ever have to be actually formed in memory, only methods 
which compute the product between the matrix and an 
arbitrary vector �. 

 
Figure 6. Part of the selection matrix [ for an Isotropic Scattering Model. 

Rows correspond to measurements and columns to spatial locations. 

The SPGL1 codeset was used to find the unknown vector �.  As discussed earlier, the solver uses an iterative approach 

with a convergence criterion to determine when a solution has 
been found.  This convergence criterion is based on the 
residual error between the truth measurement vector . and the 

SPGL1 measurement vector calculated by multiplying the 

transfer function A by the x vector of unknowns.  Figure 7 

shows the truth and measurement vectors along with the 
difference between the two. Note that the measurements are 
on the order of 10

5
 whereas the differences are on the order 

10
1
. 
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Figure 7. Truth Measurements vs Reconstructed Measurements. 

The final sparse � vector of unknowns is reshaped into a 

change image. It represents the sparsest set of isotropic 
scatters required to represent the difference measurements.   

Figure 8 shows backprojection and sparse-model change 
images created from this data collection. A change was 
introduced at (0,0$. The backprojection change image is 
formed using the toolbox described in [8], modified to allow 
bistatic measurements. It shows a recognizable change at 
"0,0$, but also includes strong lines of constant bistatic range 
because of the very poor sampling in aperture. In contrast, the 
sparsity-constrained change image shows excellent location of 
the change without these artifacts.  

 
Figure 8. Backprojection (Top) and sparsity-constrained (Bottom) change 
images corresponding to a cylinder placed at (0,0). The images are scaled 
20dB down from their max. The cylinder location is circled for reference. 
The sparsity-constrained image significantly improves the change image. 

B. Dismount Change Detection  

This second experiment shows change imagery for a scene 
that has a person in it. Four antennas were arranged around the 
perimeter of the surveillance region in the configuration 
illustrated in Figure 9.  

 
Figure 9. The layout of the four bistatic antennas. 

Two collections of the scene were taken. The first 
collection was a reference (empty) scene and the second 
(change) scene had a person at scene center, as shown in 
Figure 11. An interesting property of this springtime collect is 
that a persistent change is present in the imagery – a fully 
foliated tree that blows in the wind causing changes in bistatic 
range measurements in its vicinity. Figure 10 shows two 
images of the tree taken a few seconds apart, illustrating how 
the leaves moved. 

 
Figure 10. Spatially aligned images of the tree, taken a few seconds apart 

show that the leaves have moved significantly. 

The true position of the antennas, person, and the tree were 
recorded using both hand and GPS measurements. Data was 
collected with 1GHz of bandwidth around a 1.5GHz center 
frequency with 800 step frequencies from the 6 unique bistatic 
pairs. Figure 12 shows the change image computed using 
conventional back-projection imaging and our sparsity-
constrained method. While the change regions are identifiable 
in the backprojection image, the overall utility of the image is 
very poor because of the lines of constant bistatic range. The 
sparsity constrained image, however is able to accurately 
identify just the change regions. 
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Figure 11. Image after the change. The location of the dismount and the tree are circled. 

 

 
Figure 12. Left: Back-projection change image. Right: Sparsity-constrained change image. Both are scaled 15dB down from their maximum and have the true 

location of the tree and dismount changes circled. The sparsity-constrained image gives a much sharper image of the changes without image artifacts. 

IV. CONCLUSIONS 

 This paper describes a sparse imaging approach for 
estimating change images from a constellation of multistatic 
radar. In our setup, radar antennas are arranged around the 
perimeter of a surveillance region. This provides large 
angular diversity but a very small angular sampling over the 
large aperture. Conventional backprojection imaging 
techniques applied to this data produce very large sidelobes 
and other image artifacts, severely degrading the utility of the 
imagery. We describe an innovative imaging method which 
formulates the problem of estimating the change image from 
one collection to another as a sparsity-constrained estimation 
problem. We illustrate the method with collected data, and 
show that the sparseness constraint produces excellent images 
with very limited sampling of the aperture.  
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