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Multitarget Detection and Tracking Using
Multisensor Passive Acoustic Data

Chris Kreucher and Ben Shapo

Abstract—This paper describes a Bayesian approach to de-
tecting and tracking multiple moving targets using acoustic data
from multiple passive arrays. We describe a surveillance applica-
tion, where a collection of fixed-location passive acoustic arrays
is charged with monitoring a predefined spatial region. Our
approach combines a unique hybrid discrete-grid/particle approx-
imation to the posterior with a dynamic density factorization. This
results in a novel 2-D (X/Y) multisensor multitarget tracker that
uses bearing measurements only. The efficacy of the algorithm is
illustrated both in simulation and on collected at-sea data.

Index Terms—Fuse-before-track, fusion, nonlinear filtering,
passive acoustics, tracking.

I. INTRODUCTION

HIS paper describes a Bayesian approach to detecting

and tracking multiple moving targets using acoustic data
from multiple passive arrays. We focus on a surveillance appli-
cation, where a collection of passive acoustic arrays monitors a
predefined spatial region to detect and track moving targets in
2-D. This regime presents two main challenges. First, bearing
measurements provide incomplete information about target
state and couple nonlinearly to the target state. Second, passive
acoustic sensors typically receive low signal levels. Therefore,
detect-before-track approaches which declare target detections
by thresholding received signals may have an unacceptable
false alarm/detection tradeoff [1], [2].

Traditional tracking methods [3]-[7] are based on linear (or
linearized) Kalman filters and use detections (i.e., threshold ex-
ceedances) as input. These suboptimal methods are used for a
number of good reasons in different applications. First, in some
applications (e.g., RADAR) sensor measurements occur at a
very high rate, requiring the tracker to execute very quickly.
Second, communication channels between the sensor and the
processing unit may be limited (and this is exacerbated by the
high-data rate), meaning that only summary information can be
sent to the processor and not the raw measurements. For these
reasons, Kalman techniques which are implemented by a series
of matrix operations are very useful.

In the passive sonar surveillance scenario we focus on here,
these constraints are relaxed. First, sensor measurements are
aggregated at a low rate, on the order of one Hertz. Second, in
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our application the arrays are directly cabled to a processing
center, allowing raw measurements to be transmitted faithfully.
Finally, the processing center can be equipped with high-power
computers. For these reasons, techniques which are more com-
putationally burdensome and require higher communication
requirements are viable in this application. Therefore, given
the nonlinear measurement modality and utility of using non-
thresholded data, we advocate a nonlinear track-before-detect
approach which fully models the nonlinear measurement to
target state coupling and operates with raw measurements
rather than just threshold exceedances.

In the multisensor case, conventional methods [8]-[11] de-
velop tracks at each sensor, associate tracks between nodes,
and then fuse. In contrast, the present application has the band-
width to allow data fusion from multiple nodes at the measure-
ment level, and can employ hardware with sufficient compu-
tational power to do so. Combined with the challenges of low
signal levels and nonlinear measurement to target coupling, this
again suggests measurement level nonlinear filtering. A fuse-be-
fore-track approach can increase algorithm performance over
conventional track-and-then-fuse methods by delaying hard de-
cisions about target existence and state until all of the sensor
data has been incorporated.

A number of track-before-detect approaches have been
studied in the literature. The “Unified Data Fusion” work of
Stone [12], [13], the “JMPD” approach of Kastella [14], and
the dim target tracking work of Boers [15] are all examples
of Bayesian approaches which do not require thresholding,
explicit measurement to track association, linear models, or
Gaussian statistics. They also may be used with multiple sen-
sors without using track fusion by incorporating multisensor
measurements through the likelihood function. Many others
have done important related work [16]-[25]. In particular,
Bethel and Shapo [26] apply track-before-detect to single-node
passive acoustic tracking.

The method presented in this work is a combination and ex-
tension of these and other existing techniques. It gives a novel,
bearings-only 2-D (X/Y) multisensor multitarget tracker. In
particular, we present the following main contributions. First,
we give a unique implementation which approximates the
required nonparametric probability density using a fixed grid
(discrete) method while the density is diffuse and an adap-
tive grid (particle) scheme once the density is well localized.
Second, we apply a dynamic probability density function fac-
torization method that accommodates closely-spaced targets,
modeling coupling in target state uncertainty when necessary,
but not wasting computations when such modeling is not
required. Finally, we illustrate the efficacy of the algorithm on
both simulated and real, collected at-sea data.
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The paper proceeds as follows. Section II describes the mul-
tisensor passive sonar setting and our application. Sections III
and IV describe single-target Bayesian detection and tracking
and our implementation, which is based on a novel combination
of discrete grid detection and particle filter tracking methods.
Sections V and VI describe multitarget filtering and our imple-
mentation which utilizes a unique adaptive factorization to cap-
ture important multitarget target couplings while not requiring
full estimation of the high dimensionality joint target density
for all targets. Section VII illustrates the value of the approach
on simulated and real collected passive acoustic data from a sea
test. Section VIII concludes the paper.

II. THE MULTISENSOR PASSIVE SONAR SETTING

The application we focus on here is surveillance of a large
spatial region using multiple passive acoustic arrays. This sec-
tion describes the nominal sensor layout and develops a statis-
tical signal model for the energy received by the arrays, which
is the input to our tracking algorithm.

A. The Surveillance Problem

A region of large spatial extent is to be monitored by
a collection of fixed (e.g., bottom mounted) linear passive
acoustic arrays. There are 7 hydrophone arrays where the
position of the center element is denoted {x(i), y(i)}, for array
i = {1...7}. The surveillance region is defined by its extent
{xmin xmaz ymin ymazl Jdeally, the arrays are located
conveniently with respect to the surveillance region, e.g., along
the boundaries and at right angles to each other.

Undersea and surface targets emit acoustic energy which is
received at the passive arrays. We are interested in detecting
and tracking targets in 2-D from this received energy. For loud
targets, conventional signal processing methods use this energy
to estimate target bearing relative to each array. With well sep-
arated arrays (with respect to target range) triangulation can be
used to compute target range and 2-D position. However, our
application is to low energy targets, which are not amenable to
detect before track (i.e., thresholding approaches) and so more
sophisticated methods of estimating target state are required.

B. Signal Modeling

Each of the 7 physically separated arrays consists of M
hydrophones. Energy impinges on each element m in array i
from acoustic sources, and the time series of received energy is
recorded as .S'E;L) (t). This data is processed to generate estimates
of target energy as a function of bearing from the array.

Processing is typically done according to the standard
delay-and-sum beamforming method [27]. The spatial separa-
tion of individual elements causes the propagation time from
a source to each element to differ. Denote the propagation
time delay from a source at bearing # to hydrophone m by
U™ (f). For a linear array with elements separated by A,
U™ (#) = mAcos(d)/c. For a candidate arrival angle #, the
beamformer implements appropriate delays at each element to
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force any signals arriving from that direction to add coherently,
i.e., the coherent sum at array ¢ for arrival direction £

M

Se(t) =D sih(t— U (6)) (1

m=1

is the total energy in array ¢ at bearing 6 as a function of time.
Computation is typically done in the frequency domain with
short (on the order of 1-second) time blocks of data as

M

Swolf) =3 s (fe—szmrem o), o

m=1

In practice, the beamformer performs this computation for
a set of candidate arrival directions (beams) numbered ;5 =
{1...7}. It then noncoherently aggregated across frequency
for each beam to capture all the energy in that direction, yielding
what we refer to as the measurement from array ¢ in beam j,
SORE

Under certain conditions on element bandwidth and snapshot
time, the beamformer values at individual frequencies are inde-
pendent random Gaussian variables [28]. Therefore, we model
the statistics of z(;) ; as such. The parameters of the Gaussian
random variable depend on whether or not there is a target at
direction 6.

IIT. SINGLE-TARGET DETECTION AND TRACKING

This section describes the Bayesian approach to single target
detection and tracking using data from multiple passive arrays.
For the purposes of this section, we assume there is at most one
target present. This assumption is removed in Section V.

Notation

We denote the state of a single target at time k as ¥, which for
this work refers to the target 2-D position and velocity, i.e., z* =
[x x y y]. Additionally,let H¥ denote the hypothesis that
no target is present at time k, and let Hf denote the hypothesis
that a single target is present.

The following notation describes the measurements: Z@)J
continues to denote the measurement received by array
¢ in bearing beam j at time £k; zé‘t) denotes the vector
of all measurements received by array ¢ at time k%, i.e.,

I k .k ;
Zoy = {Z(O,I e Z(i),(]}’ z" denotes measurements received

by all arrays at time %, i.e., 2¥ = {zf’l) e Zéf)}’ finally, Z*
denotes the collection of all measurements received by all
arrays up to and including time %, i.e., Z*¥ = {z1... 2"},

The Bayesian method is to estimate the joint probability a
target is present (HF is true) at each state #* given the mea-
surements. Mathematically, this means we wish to estimate the
hybrid continuous-discrete probability density function (pdf)

p (2%, Hf|Z") 3)
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for all 2, as well as the discrete probability

p (H|2¥) @)
which is simply 1 — [ p (2%, H}|Z¥) d=*.

Notice that we can write

p (" HE|ZY) = p (Hf|Z8) p (o"|HY, 2%) ()
i.e., the density is the product of the target present probability
p (H|Z¥) and the target state probability p (z*|Hf, Z¥).
Both conceptually and in implementation, we treat the problem
as separate (but coupled) tasks of estimating the target present
probability and the estimating target state probability.

In the Bayesian approach, we (1) assume an initial or prior
estimate of the desired probabilities is present (perhaps com-
pletely uninformative), and (2) generate a recursive formula that
relates probabilities at one time step with those at the next. This
is done in two steps, analogous to the Kalman Filter: the tem-
poral update, which predicts the probability distribution at time
k from that at time £ — 1, and the measurement update which
corrects the predicted probability distribution at time % given
the measurements received at time &.

A. Temporal Update

The first step in recursive Bayesian filtering is to predict the
relevant probability distributions forward in time using statis-
tical models on target kinematics. The temporal update of the
target present density is

1
= Sop (B2 aE ) p (2

i=0
(6)
where the quantity p (Hf|Z*~!, H f"fl) is a statistical model of
how targets arrive and exit the surveillance region, to be speci-
fied by studying the target arrival properties.
Similarly, the time-predicted target state density is based on
a model of how targets move

p(HY|Z51)

(117

W RGN HERNT

'>< P (:L'k71|Hffl, Zkil) da*t

p(«"HY 257Y) =

Q)

where the density p (x*, Hf |«%~1, H{ ') is a statistical model
on target kinematics specified in the particular implementation.
The normalizing term p (Hy | Z%~1) /p (Hf|Z*~1) does not
need to be evaluated, as the density can be forced to integrate to
1. In this work, we assume the nearly constant velocity (NCV)
model for the target. Other models, or even multiple models are
admissible under the Bayesian framework [29].

B. Measurement Update

The second step in Bayesian filtering is to incorporate the
measured data into the probability estimate. The measured data
comes into the picture through the likelihood ratio

p(zk Tka)
p (2% HE)

(|t HY) = ®)

where the functional form of A (z*|z*, HY) is a model specified
by sensor physics. Recall that in this approach, measurements 2
are not just threshold exceedances, but rather the full measure-
ment set consisting of beamformer outputs from all sensors at
all beams.

With this definition, the target present and target absent de-
tection probabilities are measurement-updated using the law of
total probability and Bayes’ rule, yielding

p (H}1Z51) p (4|1}, 25)

p(2*Z+ 1)
:p(HﬁZ’f*l)/A(z’c
X p (:nk|H{“7 Zk—l) da*

. P (H;)
p (k| Zk-1)

p(Hf|Z%) =

Tk,H{‘)

(€))

and

p (2F|HE)

p (H12%) = (B§12"7) x ey

(10)

These equations express the current target present and ab-
sent hypothesis probabilities in terms of the target present,
target absent, and target state probabilities predicted from
the previous time step and the conditional likelihood of
the incoming measurements. The normalization constant
P zk|H§)/p (zk Z’“‘12 does not need to be computed since
p (HE1Z¥) 4 p (HE12F) = 1.

The target state probability is updated in a similar manner

p (z*|Hy, Z%)
P (Zk: H(]f)
p (k1 HE, ZF1)

— p (| HE, 2 ) A (M, HE) (1)

again p (zk H(’f)/p (4‘ HF, Zk’l) is independent of z* and
does not need to be computed since the probability density in-
tegrates to 1.

In our multisensor passive array application, the likelihood
ratio A (zk o* HFE ) can be expressed as follows. We assume
measurements from different arrays are independent condi-
tioned on the target state, i.e.

s

p(Fl* HE) = [ » (ZFi>|5”k’Hf)
i=1

(12)
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and that the measurements a particular array takes in each beam
are independent conditioned on the target state, i.e.

o (st 1) = TTo (s o )

j=1

(13)

For each array 7, the state z* = [x % y y] corresponds
to bearing ¢,», which maps to a beam we will denote j(;). With
this notation, we write

p (Zf})lmkaﬂf) =p (ZZ)M) H o (Z?),)

J#d
( @) ))
Po ( (7)1( )) HPU (7(1) ])

=1
where p;(z) is the probability density on the received energy
in beams where the target exists (the target present density)
and po(z) is the probability density on the received energy in
beams where no targets exist (the target absent density). Thus,
this equation says that the likelihood of a scan of data zz‘l) given
target state ¥ is proportional to the ratio of the target present
probability in the beam 2¥ maps to divided by the target absent
probabilty in that same beam. We have ignored extended target
effects such as sidelobes in this simplification. If we were to
consider these, the state z* would map to a set of beams rather
than a single beam and (14) would then include a term that de-
pended on all of the cells in the mapping.
Combining (12) and (14), we see that fusing over multiple
arrays gives the multisensor likelihood ratio
7
=11,z

=1

(14)

ll (7)J<)

)0 ()J())

A (2%|2%, 1Y) (15)

IV. SINGLE-TARGET IMPLEMENTATION

If the probability density of interest p (z*|HY, Z*) is well
approximated by a Gaussian or sum-of-Gaussians, techniques
such as the extended Kalman filter, unscented Kalman filter,
or Gaussian sum filter are preferred. In the multisensor passive
acoustic case, however, the density is poorly approximated by
such parameterizations. We instead rely on two nonlinear fil-
tering approaches, the discrete grid and particle filter.

A. The Merits of Discrete Grid and Particle Representations

The numerics involved in a discrete grid approximation to
a pdf is a well studied area [29]-[31]. In the discrete grid ap-
proach, a pdf of interest is typically represented on a fixed,
evenly spaced, multidimensional grid. The main benefit of this
method is it generates probability estimates over a defined re-
gion of state space, only assuming the pdf is zero outside of
the grid boundaries. Conversely, the main deficiencies are that
the fixed discrete grid approach spends computational effort up-
dating grid cells with near-zero probability and that the number
of grid cells grows exponentially with the dimension of the state
space.
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The particle filter approach, on the other hand, uses an adap-
tive grid where the tie-points are computed online via impor-
tance sampling [32], [33]. For certain classes of problems [34]
and a well localized initial pdf, the particle approach provides
excellent estimation performance at a fraction of the cost of a
discrete grid approach. Thus, its main strengths are that com-
putational effort is only used in areas of high pdf probability,
and the grid adaptively changes size. This is important in the
present application because the shape of the spatial uncertainty
about target location varies dramatically with its position rela-
tive to the sensors. The main deficiency is this sparse sampling
approach is ill-suited to represent very broad pdfs, such as a pdf
which has uniform uncertainty over a large spatial region.

For these reasons, we advocate a hybrid approach which in-
herits the best features of the two methods. The pdf is first
approximated using a discrete grid. At some point, the target
present probability exceeds a threshold, indicating a target is
present and it has been well localized. At this point, the pdf ap-
proximation is transitioned to a particle filter. This allows sus-
tained tracking of this target with a grid that adapts to the pdf’s
shape and extent.

B. The Discrete Grid Representation

The details of the discrete grid method [29], [30], [35] are
briefly reviewed here.

1) Density Representation: The pdf of « is discretized onto a
4D grid (corresponding to the four dimensional state vector 2:*)
of N, X N3 x N, x N cells. This approximation is appropriate
here, given we wish to perform surveillance over a region of
fixed spatial extent. The effect of spatial truncation of the prob-
ability distribution will be discussed later.

2) Kinematic and Measurement Updates: The NCV model
we adopt leads to the Fokker—Plank equation [30], [36]-[38]
which says that the rate of change of the probabilty density with
respect to time can be expressed in terms of the rates of change
with respect to the parameter values x, y, ¢, and  as

dp 3p p dp a2 d?p U; ?p

o= o Voot 2o

(16)

where o; and oy are diffusion constants that model the kine-
matics of the target.

Computationally, the state probability is discretized onto the
grid and the update is computed from time k£ — 1 to % using an
implicit Euler method. This approach is always stable and has
acceptable accuracy in 6t and dx. We use Thomas’ algorithm
as a fast tridiagonal solver leading to computation linear in the
number of grid cells. For more details, see [29], [39].

The temporal evolution of the target present probability
D (H ¥z 7""1) assumes constant target arrival/removal, i.e.

p(HY|Z51)

=qp(Hy NZM) + (-9 (Hy 2R an
where q is the arrival rate parameter. As this has been cast as
a standard hypothesis test between the two point hypotheses
representing target present and target absent, we declare a
target present when the probability of target present hypothesis

p (HF|Z*) exceeds a threshold in accordance with the standard



KREUCHER AND SHAPO: MULTITARGET DETECTION AND TRACKING USING MULTISENSOR PASSIVE ACOUSTIC DATA 209

Neyman-Pearson approach. The Bayes update of the proba-
bility density (11) is approximated when using the discrete grid
representation by a pointwise multiplication of each cell in the
discrete representation by the corresponding data likelihood
ratio (15).

3) Effect of the Finite Grid Extent: The problem of interest
is surveillance over a fixed spatial region. As such, the spatially
limited discrete grid pdf approximation proposed here is a nat-
ural approach. However, (nuisance) targets which are located
off of the grid do contribute energy and this phenomenon must
be accounted for in the formulation.

The likelihood ratio derived above implicitly assumes the
probability density on z* is estimated over an unlimited spa-
tial extent. In practice, in this application we are only interested
in estimation over a finite spatial region. Hence the H; and Hy
hypotheses correspond to the event that a target is present in the
region of interest, and the event that a target is not present in
the region of interest, respectively. Therefore, the definition of
the likelihood ratio A must be modified to reflect the finite size
region over which we wish to estimate target presence by prop-
erly accounting for energy emitted by off-grid targets.

We therefore generalize the likelihood ratio to account for
the modified definitions of H1 and Hy. In particular, the target
absent hypothesis Hy is now the composite hypothesis that ei-
ther a target is not present, or that a target is present but outside
the finite grid. For the two array case and a state z* that is hy-
pothesized to not contain a target, two things can happen: the
target absent statistics are present in both arrays, or there is a real
target outside of the detector’s spatial region that concidentally
puts energy into one of the beams (but not the other). Therefore,
the target absent hypothesis is supported when both arrays re-
ceive energy from the target absent density, or one array receives
energy from the target absent density and one receives energy
from the target present density. The target present hypothesis is
supported only when both arrays receive energy from the target
present density. Concretely, we define A in the example of two
arrays using the generalized likelihood ratio as

( (1) 3(1 )p ( (2)32))

1
By (Zk'|.7,‘k,Hf) — (18)
po (), J(l))pO (2), j(o)
max ( (1), ](1))])1( (2)7](2))

Pl( (1), 3(1))1“0( (2).5¢2 ))

C. The Particle Filter Representation

An alternative method of representing the target state prob-
ability p(x*|HE¥, Z¥) is via a particle filter. Particle filtering is
an adaptive grid method of representing a pdf and numerically
updating it temporally and with measurements [32]. The details
are briefly reviewed here.

1) Density Representation: In a single target particle filter,
the density of interest is approximated by a set of Npq+
weighted samples (particles)

N part

Z wypdp (e —

p=1

p(x]2) ~ (19)

p)

where 6p represents the usual Dirac delta function.

2) Kinematic and Measurement Updates: The model update
and the measurement update are simulated by the following
three step recursion. First, the particle locations at time k& are
generated using the particle locations z,, at time £ — 1 and the
current measurements z* by sampling from an importance den-
sity, denoted ¢(z*|z* 1, 2¥). The design of the importance den-
sity is a well studied area [40], as the choice of the importance
density can have a dramatic effect of the efficiency of the par-
ticle filter algorithm. It is known that the optimal importance
density (OID) is given by p(x*|z* 1, 2¥), but this density is typ-
ically prohibitively difficult to sample from. In practice, often-
times the importance density is chosen just to be the kinematic
prior p(z¥|xz* 1), which is what we do here. A more sophisti-
cated choice of importance density may lead to better results for
a fixed computational burden, but that is not studied here.

Particle weights are updated according to the weight equa-
tion, which involves the likelihood, the kinematic model, and
the importance density [32]

k:wkfip( |T) (k|Tk 1)'
P bl )

When using the kinematic prior as the importance density, the
weight equation reduces to wfj = w" Lyp ( ) Finally,
a resampling step is used to prevent partlcle degeneracy We
have selected to resample when the number of effective particles
[32] falls below a threshold, here chosen as half the number of
particles.

(20)

D. Combined Approximation

In our approach, we represent the surveillance region via a
discrete grid at onset. Once the target present probability ex-
ceeds a threshold, indicating the density is well localized, the
approximation is transitioned to a particle representation. This
hybrid approach allows good performance when the pdf'is broad
(at onset) as well as good tracking performance once a target is
found. This transition is accomplished by sampling N, par-
ticles from the IV, x N x N, x Ny discrete grid.

V. MULTITARGET DETECTION AND TRACKING

In this section, we show the generalization of the single target
tracking algorithm to the general case where there are an un-
known and time varying number of targets.

Notation

In multitarget detection and tracking, we wish to estimate the
hybrid continuous-discrete density
k k k| ok
p (2t .. a5, TH| Z) ©3))
forall 7" and x4, . . ., . &, where T is the number of targets (T =
0,1...) and z1 . .. z7 are the states of the individual targets.
For notational convenience, we define

7] (22)
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i.e., X denotes the multitarget state vector, where the cardinality
will be clear by context.

As in the single target case (5), the joint multitarget density
can be expressed as the product of the target number density and
the target state density as

p(X*, T ZF) = p(T*|Z*)p(X*|T . Z%) (23)
A. Temporal Update
The target number temporal update is given by
p(T*|Z4Y)
= 3 pTMTE 2R T 2 Y. 24
Th-1=0
And the target state temporal update can be expressed
p(Xlek7 Zk—l)
{1 (Tk71|Zk71)
~\ p(TF|ZR )
X Z / Xk‘ Tk‘|Xl. 1 Tk‘ 1)
Thk—1
x p(XFH TR ZE Ny x kot (25)

where the density p(X*, T*| X* -1 T*~1) is a statistical model
on target kinematics and the integral over X*~1 is to be inter-
preted as performing the 7' required integrations over the do-
main of z.

B. Measurement Update

In extension of the definition given earlier (8), we define the
multitarget likelihood ratio as

p(F[TF = 0) 20

The recursive update of the target number probability is then
given in a form analogous to the single target case (9) as
p(T*|Z% 1 )p(H|T*, 24 )

p(HZF )

=p(THZ5 ) [ At T
x p(X*| T, ZF-1)dx*

p(*|T* = 0)
p(z""|Z""*1)

p(T*Z%) =

27

where the constant term p(z*|T* = 0)/p(2*|Z*~1) does not
need to be computed since the probability mass function sums
to 1.

In the multiple target situation, it is possible that more than
one target projects into the same bearing cell. 7" targets with
states 1 ...z will project into bearing cells _]1 (@) - T () -
Let Sy denote the set of all beams the hypothesmed targets
occupy in sensor ,i.e., S(;y = 51,@‘) Uj'z’(i) .. .Uj'T,(q;). Let O(})
denote the occupation number (i.e., the number of targets that
are hypothesized to exist in cell s and po(j) be the probability
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density on the measurement received in bearing cell j when
there are O targets predicted in to be in that cell. Then we can
write

p (shylak oo HE )

pom( DA
= 2fy5)- @8
Jel;lu f’“( <z)a) 1;[ (z()J)

J
Using reasoning similar to the single target case, we therefore
have
p R k
voi (4.5)
Sk
Po ("(i)j)

The target state update can then be written using Bayes’ rule
as

(29)

A
AR XF, TF) = H II

i=1 GS(>

p(XF|T*, Z%) = p(XHT*, ZF " HAR XE, T)
P(HT* = 0)
“perre 7y OV
where the constant term p(2*|T* = 0)/p(z*|T*, Z*~1) does

not need to be computed since the pdf integrates to 1.

VI. MULTITARGET IMPLEMENTATION

The dimension of the state space required to directly estimate
the joint multitarget probability grows exponentially with the
number of targets. This “curse of dimensionality” makes it im-
practical to directly estimate the full multitarget density when
there are more than 1 or 2 targets in the surveillance region of
interest [34], [41], [42].

This reality is addressed in the literature in two ways. In con-
ventional Kalman multitarget methods [3], [4], the approach is
to run a bank of single target trackers (one for each target) and
use data association to determine which measurements to give
to each tracker. This implicitly assumes the input data is thresh-
olded and can be treated by linear or linearized methods. Other
approaches [41]-[46] fully model the joint multitarget density,
but use procedures which amount to factoring the joint density
into a product of smaller dimensionality densities. Sophisticated
approaches do this adaptively at each time step, selecting which
targets are “close” and performing more intense processing to
account for the coupling of measurements on these targets.

As discussed below, we treat the problem as separate but
coupled detection and tracking stages. In the detection stage,
we employ a collection of single target fuse-before-track and
track-before-detect filters. Once a detector has accumulated
enough evidence to initiate a tracker, we use an adaptive fac-
torization method which determines which targets are close in
sensor space and treats these pairs (or triplets, etc.) jointly as
necessary. In this case, the individual particle filter approxima-
tion to the multiple targets is combined into a single multiple
target density and this density is time and measurement updated
jointly. The main effect is that the sensor modeling of (28) now
becomes relevant. In particular, the measurement likelihood for
a pair of targets where both targets project into the same beam
takes a different functional form from when they project into
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Fig. 1. Detector with four targets. At time Step 3, the detector has four peaks corresponding to the XY location of the four targets. A tracker is initiated about the
highest peak, leaving three targets in the detector at time Step 5. This continues until all targets have been initiated by time Step 10.

different beams. In practice, this high fidelity modeling pre-
vents track coalescence onto the stronger track and/or dropping
of the weaker track.

A. Detection Stage

The surveillance region is divided up into D, x D, static
spatial subregions, each of which is called a “detector.”
Each detector ¢ = 1...D,D. is defined by its extent
{x;”i"7xg’”'””?y(’i”‘i"'7 yzl"’”""} and is a represented by a single
target discrete grid. Detectors thus consist of a probability
density for each state x that maps to the detector and a target
present probability p( Hy 4) corresponding to the detector. Each
state x in the overall surveillance region maps to a unique
detector denoted 3.

Each detector is updated temporally and with measurements
according to the single target method described earlier. There
are competing desires for detector size. On the one hand, each
detector should be small to contain either 0 or 1 targets, so the
problem exactly breaks down into a collection of single target
problems. Conversely, it is also important for each region to be
large enough to allow sufficient track-before-detect updates on
the target to integrate SNR over multiple time steps before the
target moves into a different subregion.

With well separated targets, the factorization

T
p(z1, 20 27, T|Z) = Hp(l't»HL@mt Z) 31)
t=1

holds. More critically, the multitarget likelihood also factors in
this situation. By assumption, measurements in different beams
are independent conditioned on the (multitarget) state, i.e.

T
plz@l2r .. e 27) o Hp(z(i),.?,,,m) (32)
t=1

where ]A'tm is again the beam target ¢ maps to in array ¢. This is
valid when the ,}‘t,(,;) are distinct (i.e., the targets are well sepa-
rated in measurement space and map to different beams). There-
fore, with well separated targets

T

JET) X H plzgy|we).

t=1

plzgylei - (33)

B. Tracking Stage

When the detection statistic for detector d, P(H; 4) exceeds a
threshold a tentative target is declared and a “tracker” is initiated
around the target. A tracker is implemented by a particle filter.
The tracker follows the tentative target and continues to update
the estimate of target state and target present probability. We
continue to allow for the possibility new targets arrive in the
original detector subregion.

C. Closely Spaced Targets

Although targets are typically well separated, there is the pos-
sibility that multiple targets are present in a single detector, or
there is spatial overlap between a detector and a tracker, or be-
tween trackers. The consequences of this mismatch between as-
sumptions and reality must be explored.

First, each detector assumes there is either 0 or 1 target in its
spatial extent. It is possible that more than 1 target is actually
present on the detector. In this case, the likelihood ratio (8) will
become peaked at multiple points, rather than at a single point.
The detector pdf will correspondingly peak at multiple points.
This leads to the target present hypothesis computed by (9) to
grow faster than if a single target was present in the detector. In
this situation, the detector’s target present hypothesis crosses a
threshold and a tracker is first initiated around the largest peak
by sampling an area spatially close to that peak. The detector’s
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Fig. 2. The detection statistic verbs time for the example of Fig. 1. Targets are
initiated at time step 3, 5, 7, and 9.

target present hypothesis again exceeds the threshold at a subse-
quent time step and a second target is initiated around the second
peak, and so on. Figs. 1 and 2 illustrate what happens when there
are four targets in a single detector using synthetic data. First,
the detector pdf develops four peaks. In our implementation, a
tracker is launched first around the strongest peak. The target
existence probability remains high even after this target is ini-
tiated since there are multiple targets in that detector. There-
fore, shortly later a second target is initiated, and so on. As ex-
plained below, if targets are very close together, there may be
some delay in initiating the second target since we prevent mea-
surement sharing between trackers and detectors. However, the
approach typically performs well in practice.

Second, since a mobile tracker moves its position in = and y
to follow a target, there may be spatial overlap between the fixed
detectors and the mobile trackers. In this case, our approach is
to prevent both a detector and a colocated tracker from simul-
taneously updating their single target pdf with the same mea-
surements. This is done by determining when entities overlap,
and modifying the likelihood ratio computation for the detector
to omit the measurements made in the overlapping region. A
target state z* is said to be included in a tracker if the convex
hull defined by the tracker’s particles includes x* . With this, we
then define the indicator function

(2% = {(1)

and construct the logical disjunction over the It trackers as

2% maps to tracker r

34
otherwise (34)

R
I(z*) = \/ I(z*) (35)

which is 1 if z¥ maps to any tracker. Then the modified detector
likelihood, accounting for closely spaced targets, is

N (2|2, HE) = (1 — I(z")A (%)%, HE) + 1(=2%). (36)

Finally, two trackers may be close together in measurement
space. In this case, the pdfs must be updated jointly. As dis-
cussed earlier, we compute the separation between trackers and
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cluster them into groups to determine which trackers must be
updated jointly and which may be updated independently. The
clustering is performed as follows. Each track is characterized
by its state estimate, projected into each sensor’s bearing beam.
Those tracks that are close in beamspace are clustered together
and treated jointly. In the ideal situation where all targets are
well separated, each cluster contains one target. In the case
where multiple targets are close, a cluster may contain 2, 3,
or more targets. In this instance, we form the joint multitarget
density on the cluster (in 8 or 12 dimensions as appropriate)
and treat the multiple targets as a single unit for temporal
and measurement update. For computational purposes, we use
the coupled partition method of [42] to propose and weight
new joint particles. If tracks are incorrectly clustered together
when they, in fact, correspond to well separated targets the
algorithm runs slower than it otherwise would. However, the
density estimation is still done correctly. Conversely, if tracks
are incorrectly deemed separate when they are in fact close, the
coupling is not correctly preserved. Therefore, we choose this
threshold conservatively to err on the side of over clustering.

VII. RESULTS

This section illustrates the proposed technique on simulated
and real collected passive acoustic data. Section VII-A starts
with a synthetic experiment which illustrates the performance
of the algorithm by directly comparing it to (simulated) truth.
Section VII-B shows results of the tracking approach when ap-
plied to a set of real collected data.

A. Results on Synthetic Data

The following simulation illustrates the utility of the ap-
proach. Three targets were simulated to move according to the
NCV model of Section IV. The surveillance region (shown in
Fig. 3) covered x = —1200 - - - 1200 and ¥ = 500 - - - 2900. The
initial location of the three targets is (900,1000), (1200,500),
and (—1000,1700). The sensor arrays are located at (0,0) and
(700,0). All units are nominally in meters.

The surveillance region was implemented with a 4 x 4 set of
overlapping detector grids. Overlapping grids are used to allow
quicker detection of targets that start close to the edge of one
detector and then move onto another.

Synthetic input data was created as follows. Simulated
bearing time records (BTRs), which are profiles of the quan-
tized target bearing versus time, were created according to the
model of Section II-B. The BTR surfaces, shown in Fig. 4, are
the input to the tracker. The simulation used 1 degree bearing
beams. The sensor model we employ to describe how the
measured data couples to the target state under estimation is
the nonlinear pixelated model described in (14).

The method described in this paper was evaluated using
this input data. Each detector grid was chosen to have
26 x 21 x 26 x 21 cells with spatial and velocity resolu-
tions of 25 m and 1 m/s, respectively. Each single target
detector was measurement and time updated according to
the method of Section IV. When a detectors’ estimate of the
target present probability p( H1|7) exceeds the threshold (here
set at 7 = 0.8), the target is transitioned to a particle filter
representation according to the description in Section IV-C.
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Fig. 3. Surveillance region for the synthetic experiment.
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Fig. 4. Synthetic BTRS from two sensors with three targets.

Detector thresholds were crossed (resulting in a target transi-
tion from fixed grid to particle filter) at time steps 4, 6, and 9.
Target initializations at time step 4 and 9 came from the same
detector. Two targets were close together for a portion of the
tracking and were clustered and treated jointly by the algorithm
between time steps 146 and 188.

At each time step, this particle filter representation of the
probability density was used to compute the minimum mean
square error estimate of target state. Fig. 5 shows the position
component of this state estimate over time in comparison to the
truth.
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Fig. 5. XY point estimates (circles) produced by the method, as compared to
truth (dashed line) for the three targets in this simulated scenario. Tracker point
estimates are only shown every 10 s for clarity.
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Fig. 6. Surveillance region for the synthetic experiment, with true target tracks
(dashed lines) and estimated target tracks (circles) drawn in.

The tracker estimates and target truth are shown with respect
to each other, the surveillance region, and the sensors in Fig. 6.

Fig. 7 shows the estimated tracks projected back on to the
BTRs. Note the tracker operates in XY but these XY tracks can
be reprojected onto the input surfaces to show algorithm effi-
cacy, as is done here.
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Fig. 7. XY point estimates from the tracker projected back on to the BTRs.

B. Results on the Shallow Water Array Performance Array

This subsection illustrates the proposed technique on a set
of real collected passive acoustic data. The shallow water array
performance (SWAP) array is located off the eastern cost of
Florida near Ft. Lauderdale. The SWAP array has four linear
segments, each of which are approximately 200 m long and
contain 125 hydrophones. The hydrophone locations are known
with high accuracy. A small number of the hydrophones did not
operate during the collection, but these elements are known have
been excluded from the beamforming process. The 4 segments
are labeled 1, 2, 3, and 4 with segment 1 closest to shore (west-
ernmost) and segment 4 farthest from shore (easternmost). The
elements in each segment run approximately west-to-east. Seg-
ment | is oriented approximately 0.6 ° (relative to east), and
Segment 4 is oriented approximately —0.4°. All hydrophones
are approximately 265 m deep.

The environment has heavy commercial and recreational
traffic. The experiments shown here use data collected by
segments 1 and 4 on August 9, 2007 starting at 1115 local
time. The data was recorded as part of a four-day sea test. We
selected a time segment with two targets of opportunity. This
data includes a challenging situation where the two targets
cross in sensor space, therefore the adaptive algorithm must
temporarily treat the joint target state to prevent target coales-
cence or removal.
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Fig. 8. Input data surfaces (BTRs) that were used to evaluate the method. Top:
Segment 1. Bottom: Segment 4.
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Fig. 9. Surveillance region, and the 2 x 2 grid of single-target detectors used
to tile the region. The four detectors are each 51 x 13 x 51 x 13 grids updated
using the methods of Section IV.

The raw sensor data was prepared according to the process
described in Section II. This is briefly summarized as follows.
Each hydrophone sampled and recorded raw acoustic data. This
raw data was decoded and interpolated to obtain 1000 sam-
ples per second at equal intervals, time synchronized at all hy-
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Fig. 10. Input data surfaces, with hand-truthed traces in each segment.

drophones. A conventional beamformer, followed by integra-
tion over frequency, was used to produce BTRs at 1 Hz. The
sensor model we employ to describe how the measured data
couples to the target state under estimation is again the nonlinear
pixelated model described in (14). The target present and ab-
sent distributions p; and pg are assumed Gaussian by appealing
to the analysis of [28]. The target present probability threshold
used to elevate a target to detected status was fixed at 7 = 0.8.
Fig. 8 shows the input data surfaces.

The surveillance region is defined as shown in Fig. 9. It was
implemented using a 2 x 2 set of overlapping detector grids.
Notice that the finite spatial extent of surveillance region means
that only that portion of the BTR data corresponding to the
surveillance region will be used. For example, measurements
in bearing cells directly to the left of the segments do not map
to the surveillance region and are thus not used in updating the
system at onset.

Each detector grid has 51 x 13 x 51 x 13 cells with spatial
and velocity resolution of 50 m and 2 m/s, respectively. Each
single target detector is measurement and time updated ac-
cording to the method of Section IV. When a detectors’ estimate
of p(H1|7Z) exceeds the threshold, the target is transitioned to
a particle filter representation according to the description in
Section IV-C.

Here we illustrate the benefit offered by our target space
tracking method (XY) over traditional measurement domain
methods, which track on the individual data surfaces and then
fuse the results (the track-fusion approach). The track-fusion
approach proceeds as follows. First, a measurement domain
tracker is used on each BTR to generate bearing estimates.
Kinematics are enforced on the data surface, rather than the
XY space in which the target actually operates. Next, the tracks
are associated between sensors and the targets’ XY position
are computed using trigonometry. We have simulated that
method here by hand-truthing the traces in the BTR as shown
in Fig. 10. Note that in the hand-truthing, the beams of the
individual traces are known exactly and correctly.

Whether done by hand or with an automated tracker that oper-
ates independently at each node, this approach does not take into
account kinematic models operating in XY space, but instead
only enforces kinematics on the bearings. As a consequence,
the XY tracks associated with this hand truthing may be non-
physical in the XY domain. Fig. 11 shows the noisy tracks that
result from tracking in bearing and then associating the tracks,
characterized by nonphysical jumps in X and Y. Note that the
figure also indicates the locations of the two sensor arrays near
the bottom center, with labels “SEGMENT 1” and “SEGMENT
4,” respectively. The error seen in the target XY estimate is due
entirely to the fact that the estimate of the target bearing is the
center of the (correct) beam, but it does not have subbeam accu-
racy. If, for example the target is actually in the center of both
beams, the tracker estimate of target XY is perfect. If, on the
other hand, it is at the edge of the beam, the error is larger.
The wild oscillations are a manifestation of the target moving
through a beam and having its bearing poorly estimated, then
estimated well, and then poorly estimated again.

In contrast, the tracker proposed here constructs a pdf on the
region by combining XY kinematic models with the measure-
ments. Although the input data has the same resolution as the
track fusion approach, the performance is much better because
the tracker enforces plausible kinematics, and this provides ad-
ditional information which ensures that the tracks are smooth in
XY.

The complete nonparametric target pdf it estimates can be
used to produce both point estimates and covariance ellipses,
although the internal representation is much richer than this.
Fig. 12 shows the tracker point estimates of target XY in this
scenario. Note that these targets were automatically detected
and initiated according to the methodology of Section III. The
trackers are deemed closely spaced from time steps 1639 to
1693 and thus treated jointly by the method during that time
period.

Since this was a controlled experiment, we also have latitude
and longitude truth sources from the automatic identification
system (AIS) for some of the contacts in the collection. One
of the targets in our surveillance region during the period of
interest was an AIS equipped vessel, and its truth track (dashed
gray line) is shown in the plot for comparison to the tracker
output. The system runs at about 1.5 s per update on a standard
off the shelf 2.83 GHz Linux machine running MatLab™.

As can be seen by comparing the track fusion results (see
Fig. 11) with the output of the tracker proposed here (see
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Fig. 13. Detection statistic calculated by each of the four detectors. Two targets are initiated near the beginning of the trial. The detection statistic never rises

above the threshold again.

Fig. 12), utilizing physical kinematic models in the target’s
natural coordinate system provides significant value.

Further detail on the tracker performance is as follows. Two
tracks are initiated automatically by the 2 x 2 detector grid.
Fig. 13 shows the detection statistic p (H kZz k) (9) for each of

the four detectors over time. Notice that at the beginning of the
test, two detectors have detection statistic that grows past the
threshold. Trackers are initiated from these detectors. For the
rest of the experiment, there are no detectors that have detection
statistic which grows past the threshold. There is a brief period
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Fig. 14. One track, with tracker estimated covariance ellipses plotted every 16 s.
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Fig. 15. Input data surfaces, with tracker estimates projected into measurement
space.

where one detector begins to accumulate evidence of a target
but it never reaches the decision threshold.

Fig. 14 shows one of the tracks and the associated covariance
ellipses at equally spaced time steps. As can be seen from the
figure, the main axis of the uncertainty ellipse is in the range
direction with respect to the (bearings-only) sensors. For ex-
ample, when the target is northwest of the sensors, uncertainty is
predominately in the north-west direction. Likewise, when the

target is northeast of the sensors, uncertainty is oriented in the
north-east direction.

Fig. 15 shows the tracker estimates projected back onto the
two original input surfaces. Some contacts visible in the BTRs
do not have associated tracks. As discussed earlier, this is be-
cause the XY locations corresponding to the bearing traces are
outside the specified surveillance region and thus do not map
to any detector and are therefore not initiated. The surveillance
region size is a choice made by the operator.

VIII. CONCLUSION

This paper has described a Bayesian approach to multiple
target detection and tracking using multiple passive acoustic
arrays. It included the development of a novel method of ap-
proximating the required multitarget probability density which
combines a fixed grid (discrete) method for target detection and
an adaptive grid (particle) scheme for tracking and a dynamic
factorization method to deal with closely spaced targets. The
method was illustrated on real collected multinode passive
acoustic data. The method was shown to provide a benefit over
track fusion, in terms of the smoothness of the track estimate.
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