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Abstract
1
 — This paper presents a nonlinear filtering 

approach to detecting and tracking moving targets 

from a constellation of narrowband radio frequency 

sensors. The methodology optimally fuses bistatic 

range and range-rate measurements made by a 

collection of sensors without thresholding or 

linear/Gaussian assumptions. We illustrate the 

efficacy of the algorithm with an experiment where a 

moving person is detected and tracked from a 

constellation of 4 sensors using measurements of 

bistatic range and range-rate. We use a narrowband 

radar because of its practical benefits and illustrate 

successful tracking of a moving dismount with just 5 

meters of range resolution. 
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1 Introduction 

This paper describes a method of detecting and 

tracking moving targets by exploiting a constellation of 

bistatic narrowband (NB) Radio Frequency (RF) 

sensors positioned in and around a surveillance region. 

We give a Bayes-optimal method for fusing the received 

bistatic range/range-rate measurements from the 

constellation of sensors to effectively locate the moving 

target. We illustrate the efficacy of the method 

experimentally by showing how a moving person is 

tracked in a surveillance region interrogated by four NB 

sensors. 

A constellation of narrowband sensors has a number 

of benefits over conventional wideband sensors in this 

application. First, commercial use has eroded the 

available spectrum often leaving only a small portion 

available for other use [1]. Furthermore, NB sensors are 

inexpensive due to their simple electronics, require low 

energy consumption, are easy to maintain, and it is easy 

to communicate their data to a centralized processing 

point. But perhaps most importantly, a constellation of 

NB sensors provide geometric diversity. By exploiting 

                                                           
1
 This work was supported by Air Force Research Labs contracts 

FA8650-09-M-1549 and FA8650-10-C-1718. 

bistatic returns with advanced signal processing 

techniques like those described here, this trades costly 

spectral diversity for cost-efficient spatial diversity, 

while providing performance improvement. 

The contributions of this paper are the description of a 

Bayes optimal nonlinear filtering method which admits 

the nonlinear and non-Gaussian measurements made by 

the sensors, and a validation of its assumptions using 

real, collected data from a 4 antenna bistatic radar setup. 

Standard approaches use two sequential phases: 

detection and tracking. One algorithm is responsible for 

generating threshold exceedances (detections) at each 

time epoch and then these detections are passed to a 

separate (typically Kalman-based) tracking algorithm.  

In contrast, the nonlinear filtering approach performs 

track-before-detect and fuse-before-track. A number of 

other authors have done important related work [2]-[7]. 

The important distinction of the techniques is that there 

measurement thresholding is avoided. Furthermore, the 

non-Gaussian measurement statistics and non-linear 

measurements are modeled directly rather than by 

linearization.  

Target tracking using multistatic range and range-rate 

measurements has received some attention in the 

literature. [8]-[10] approach the problem using a direct 

measurement model with Gaussian error, rather than the 

pixelated Rayleigh model we use here. [9][10] use 

extended Kalman filter type approaches, rather than the 

nonlinear filtering approach we use. [11] treats the 

problem with a nonlinear filtering approach, but in a 

active sonar setting, which requires a very different 

physical model.  

The paper proceeds as follows. Section 2, describes 

the bistatic range and range-rate signal model. In 

Section 3, we show how the model is combined with a 

nonlinear filter to provide a tractable Bayes optimal 

tracking approach. In Section 4, we describe a set of 

experiments where we collected narrowband bistatic 

range and range-rate data from a four-antenna 

constellation, and the measurements were used to 

validate the tracking algorithm and modeling approach. 

Finally, section 5 concludes. 
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2 The Sensor Model 

We assume a constellation of N sensors, all of which 

act as both transmitters and receivers, although this is 

not required. A sensor transmits a narrowband RF 

signal, which is reflected off the target and received at 

each sensor. This process repeats N-1 times, with each 

sensor serving as transmitter. There are then N
2
 bistatic 

pairs.  

After a CPI of pulses has been transmitted, Fourier 

processing is used to translate the received samples into 

a (bistatic) range/range-rate surface for each 

transmit/receive pair. This surface contains energy at the 

target bistatic range/range-rate bin (and perhaps 

surrounding bins) and is corrupted by various types of 

noise, including clutter, measurement noise, and 

quantization noise.  

We employ the following statistical model to describe 

the measurements. First, let zij ),( rt  denote the 

magnitude in the (i,j)
th

 bistatic range/range-rate 

resolution cell between transmitter t and receiver r. 

Resolution and the number of cells (denoted Nr and Nd 

here) are determined by the number of pulses, 

bandwidth, CPI and PRF [17]. The collection of 

measurements is then the matrix of bistatic range/range-

rate correlations in each cell, i.e.,  
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Next, let the vector x = [x xꞌ y yꞌ] describe the true 

2D position and velocity of the target. The statistics of 

the measurement in bistatic range/range-rate cell (i,j) 

depend on its proximity to the true bistatic range and 

range-rate of the target. Other factors such as the range 

to the target, the illumination and receive pattern of the 

antenna may also play a role, but are not important in 

our experiments, which use a close-in target with large 

beamwidth antennas, so these effects are not modeled 

here. 

The location of the transmitter t will be denoted (tx, 

ty), and the location of receiver r will be denoted (rx, ry). 

Then the true bistatic range and range-rate is computed 

as 
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This true bistatic range/range-rate maps to a particular 

cell, which we will denote (î(t,r), ĵ(t,r)). We use a point-

target model, which ignores extended target effects such 

as sidelobes, the range-rate smearing which will happen 

in applications with a long CPI, and range extent which 

will happen with fine range resolution (high bandwidth). 

Since our application uses a short CPI and a small 

bandwidth, the point target assumption is warranted. 

The extension to non-point target models is 

straightforward but is not necessary in this application. 

The physical model we employ says the statistics of 

the target cell are Rayleigh with a target parameter and 

the statistics of the background cells are Rayleigh with a 

background parameter:  
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Where λβ and λτ are the target and background modes. 

This model is verified empirically in Section 4.  

In general, we allow the background and target mode 

parameters to vary with t and r, but for the sake of 

notational clarity we show them fixed here. Continuing 

with the point target model, which assumes 

measurements in different pixels are independent, we 

write 
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as the probability of a Nr x Nd range/range-rate surface 

given the true state x. We further assume range/range-

rate surfaces are statistically independent across 

transmit/receive pairs and write the probability of all of 

the bistatic range/range-rate measurements from a 

constellation of transmit/receive antennas as 
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3 Bayesian Detection and Tracking 

This section describes a Bayes-optimal single target 

tracking algorithm that fuses measurements from a 

constellation of narrowband radar.  

3.1 Notation 

Denote the state of a target at time k as x
k
, which for 

this work refers to the targets’ 2D position and velocity, 

i.e., x
k
 = [x xꞌ y yꞌ]. Additionally, let H

k
0 denote the 

hypothesis that no target is present at time k, and let H
k
1 

denote the hypothesis that a target is present.  

Measurements continue to be described as follows:  

▪ The envelope-detected value in range/range-rate 

cell (i,j) at CPI k from transmitter t and receiver r 

is denoted zij
k
(t,r), 

▪ The collection of all zij(t,r) made at a particular 

CPI is denoted z
k
(t,r), i.e., z

k
(t,r)={z11

k
(t,r),…, 

zNrNd
k
(t,r)};  

▪ The collection of all measurements made at a 

particular CPI k (i.e., from all transmit receive 

pairs) is denoted simply z
k
, i.e., z

k
 = {z

k
(1,1), …, 

z
k
(T,R)}. 

▪ Finally, Z
k
 will denote the collection of all 

measurements received up to and including time k, 

i.e., Z
k
 = {z

1
,…, z

k
}.  

3.2 Approach 

The Bayesian method is to estimate the joint 

probability a target is present (H
k
1 is true) at each state 

x
k
 given the measurements. Mathematically, this means 

we wish to estimate the hybrid continuous-discrete 

probability density function (PDF) 
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for all x
k
, as well as the discrete probability  

 
kkkkkk

xdZHxpZHp ∫−= )|,(1)|( 10  (8) 

 

Notice we can write 
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i.e., the density is the product of the target present 

probability p(H1
k
|Z

k
) and the target state probability 

p(x
k
|H1

k
,Z

k
). Both conceptually and in implementation, 

we treat the problem as separate (but coupled) tasks of 

estimating the target present probability and the 

estimating target state probability. 

In the Bayesian approach, we (i) assume an initial or 

prior estimate of the desired probabilities is present 

(perhaps completely uninformative), and (ii) generate a 

recursive formula that relates probabilities at one time 

step with those at the next. This is done in two steps, 

analogous to the Kalman Filter: the temporal update, 

which predicts the probability distribution at time k 

from that at time k-1, and the measurement update 

which corrects the predicted probability distribution at 

time k given the measurements received at time k. 

The first step in recursive Bayesian filtering is to 

predict the relevant probability distributions forward in 

time using statistical models on target kinematics. The 

temporal update of the target present density is 
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where the quantity p(H1
k
|Z

k-1
,Hi

k-1
) is a statistical model 

to be specified by studying the target arrival properties. 

Similarly, the time-predicted target state density is 

based on a model of how targets move 
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where the density p(x
k
,H1

k
| x

k-1
,H1

k-1
)  is a statistical 

model on target kinematics to be specified in the 

particular implementation. The normalizing term does 

not need to be 

evaluated as the density can be forced to integrate to 1. 

In this work, we assume the nearly constant velocity 

(NCV) model for the target. Other models, or even 

multiple models are admissible under the Bayesian 

framework [12]. 

3.3 Measurement Update 

The second step in Bayesian filtering is to 

accommodate measured data into the probability 

estimate. The measured data comes into the picture 

through the sensor model p(z
k
|H1

k
,x

k
), where the 

functional form of is the model specified by sensor 

physics from Section 2.  

The target present and target absent probabilities are 

measurement updated using the law of total probability 

and Bayes rule, yielding 
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This equation expresses the current target present and 

absent hypothesis probabilities in terms of the target 
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present, target absent, and target state probabilities 

predicted from the previous time step and the 

conditional likelihood of incoming measurements. The 

normalization constant does not need to be computed 

since p(H1
k
|Z

k
)+p(H0

k
|Z

k
)=1. 

The target state probability is updated similarly, 
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Again, constants independent of x
k
 do not need to be 

computed. 

In our application which exploits bistatic pixilated 

range/range-rate measurements, the model developed in 

Section 2, eq. (6) provides p(z
k
|H1

k
,x

k
). 

3.4 Implementation 

If the probability density of interest is well 

approximated by a Gaussian or sum-of-Gaussians, 

techniques such as the Extended Kalman Filter or 

Gaussian Sum Filter are preferred. In the bistatic RF 

case we study here where we make measurements of 

bistatic range and range-rate, however, the density is 

poorly approximated by such parameterizations. We 

instead rely on a discrete grid approximation to the 

probability density.  

The details of the discrete grid implementation are 

briefly reviewed here. For more detail, see [12][13][14]. 

1) Density Representation: The PDF of x is discretized 

onto a 4D grid (corresponding to the four dimensional 

state vector x
k
) of Nx*Nx’*Ny*Ny’ cells. The spatial 

extent of this grid dictates the overall region where 

targets may be detected. This  approximation is 

appropriate here, given we wish to perform surveillance 

over a region of fixed spatial extent.  

2) Kinematic and Measurement Updates: The temporal 

evolution of the probability density on x
k
 can be 

expressed in continuous time using a partial differential 

equation. For dismount tracking, the so-called nearly 

constant velocity model (NCV) is appropriate, and leads 

to the Fokker-Plank Equation [15][16] 
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Computationally, the state probability is discretized 

onto the grid and the update is computed from time k-1 

to k using a backward Euler method. This approach has 

nice stability properties in both δt and δx. We use 

Thomas’ algorithm as a fast tridiagonal solver leading to  

computation linear in the number of grid cells. For more 

details, see [12][13]. The temporal evolution of the 

target present probability assumes constant target 

arrival/removal.  

New measurements are incorporated by updating the 

time-predicted grid approximation using the likelihood 

of the measurements. Practically, the discrete grid 

probability is updated simply by pointwise 

multiplication of each cell in the discrete representation 

by the corresponding data likelihood. 

4 Experimental Results 

This section describes an experiment to validate the 

nonlinear filtering algorithm described in Section 3. The 

experiment consists of a set of four geometrically 

diverse antennas which measure information about 

bistatic range and range-rate of a moving dismount. We 

show with this experimental data that our algorithm is 

able to detect and track the dismount as it moves though 

the surveillance region using just 60MHz of bandwidth 

(5m bistatic range resolution). 

4.1 Test Hardware 

The experiment we describe here employed an 

AKELA AVMU500A radar along with 4 SAS-510-4 

antennas.  The antennas are directional and are 

specified to have a 3dB point of 41 degrees by the 

manufacturer. The system was selected because its size 

and versatility demonstrate the ability of a compact, 

contained system to effectively collect the necessary 

data.  

 The radar is a stepped CW type, capable of 

transmitting pulses between 300MHz and 3GHz. The 

rate at which the individual frequencies are sampled is 

selectable, but typically set here at 45kHz which is the 

maximum rate where good data was collected. The radar 

has four ports, any of which may be used for transmit or 

receive, however, because the radar has only one 

transmitter and receiver, it is not possible to receive 

multiple ports simultaneously. Therefore the collections 

will transmit and receive between one pair, and then 

move to transmit and receive to the next pair, and so on. 

Since this happens at a very fast rate compared to the 

dismount speed, the measurements are well 

approximated as being simultaneous. 

Figure 1 shows one of the antennas as-deployed and 

the AKELA unit. 
 

  
Figure 1. L: A Yagi log-periodic Antenna. R: The Akela Unit. 
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4.2 Experiment Setup  

 Four antennas were arranged along a 35m line as 

illustrated in the image of Figure 2. GPS measurements 

of the antenna locations were measured with a hand-

held unit, but there may have been an error as much as 

½m in placing the GPS units. 
 

 
Figure 2. The Four antenna configuration used in this experiment. 

 Figure 3 is an image of the surveillance region with 

the relevant experimental information superimposed. 

The four antennas were located at y=0 and x=0, 10, 20, 

and 35m as indicated by the red circles and associated 

numbers. The antennas were pointed at the scene center 

(indicated by a green circle). The path walked by the 

dismount during this experiment is indicated by a 

dashed green line. 
 

 
Figure 3. A view of the surveillance region with the four antennas 

denoted by red circles. All antennas point at scene center (denoted by 

the green circle). This dismount walks the dashed green path. 

 We collected bistatic measurements using antenna 3 

as the transmitter and the other antennas (1, 2, and 4) as 

receivers. We chose to use 60MHz of bandwidth 

centered around 2GHz with 20 sample frequencies (i.e., 

pulses spaced 3MHz in frequency) in the collect. These 

choices determine the range resolution, the 

unambiguous range, and indirectly the range-rate 

resolution. 

 In this stepped chirp single-radar multiple antenna 

system, the collections proceeded as follows: First, 

antenna 3 transmitted a short pulse at the lowest 

frequency (1.97GHz) which was received by antenna 1. 

Then antenna 3 transmitted a short pulse at the second 

lowest frequency (1.973GHz), which was received by 

antenna 1, and so on until the highest frequency 

(2.03GHz).was completed. Once the final pulse between 

antenna 3 and antenna 1 was completed, the process was 

repeated between antenna 3 and antenna 2, and then 

between antenna 3 and antenna 4. The individual sweep 

pulses proceeded at 45kHz, but the overall rate is 

dictated by the number of sweep pulses per pair (here 

20), the number of bistatic pairs (here there are 3 pairs), 

and the switching times. In this experiment, the actual 

complete cycle PRF (measured between the time the 

first sweep pulse is transmitted between antenna 3 and 

antenna 1 and then repeated again) was 150Hz. 

4.3 Collected Data 

RF data was collected while a dismount moved 

through the surveillance region over about a 40s period. 

The path was truthed with a handheld GPS unit. Figure 

4 shows an image of the dismount walking during the 

experiment. 

 
Figure 4. An image of the dismount walking. 

 Data was collected between the transmitter (antenna 

3) and the three receivers (antennas 1, 2, and 4). The 

received complex frequency returns were blocked up 

into a 0.25s CPI, and Fourier transformed into a 

range/range-rate matrix as described in Section 2. The 

resulting input data surface had 20 range bins spanning 

example of the input data surface is shown in Figure 5.  
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Figure 5. An example collected range/range-rate surface from 

Transmitter 3 to Receiver 1. The dismount is visible at range bin 10, 

and a second, transient, mover is visible at range bin 18. 

 Figure 5 shows the collected data when it is only 

compressed in the range direction (i.e., it is not blocked 

up into CPI and compressed in the range-rate direction).  

 
Figure 6. The 40s of collected data from each of the bistatic pairs. 

Visible is direct path energy, electronic noise, and the effect of 

ambiguous range. 

 Figure 7 (right) shows the statistics in the background 

pixels (non-target containing pixels) and in the target 

pixel are both Rayleigh. This experimentally verifies the 

assumption we made in Section 2. 

 
Figure 7. Background and target statistics of a measured surface. 

We employed the nonlinear filter based target tracker 

described in Section 3 above. We used a 31x21x31x21 

grid and a 60m x 16m/s x 60m x 16m/s region. Tracking 

results using 5m of range resolution are very successful 

as illustrated in Figure 8, which compares the tracker 

estimate of dismount position with GPS recordings of 

the path location. Notice the very close agreement 

between the tracker point estimate and the GPS value of 

path location. Although the tracker computes a complete 

4D PDF on target state, the uncertainly can be 

summarized using covariance ellipses. In this figure, we 

have chosen to show covariance ellipses at the start, 

middle, and end of the vignette. Note that the GPS 

measurements were not differentially corrected so there 

is some error the estimate of path truth and of the 

transmitter/receiver locations. 

 
Figure 8. Tracking results using 3 bistatic pairs and 5m range 

resolution. Tracker covariance ellipses at the start, middle, and end of 

the path are shown. GPS truth is shown in green. 
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 An illustration of the richness with which the tracker 

estimates the target state is given in Figure 9, where we 

show the XY marginal of the posterior. 

 
Figure 9. The XY marginal of the posterior shows the tracker 

uncertainty about target location at a particular instant. 

The probability of target existence, )|( 1
kk ZHp  

grows quickly to 1 and stays as illustrated in Figure 10. 

 
Figure 10. The tracker probability that there is a target in the 

surveillance region very quickly goes to 1 and stays there. 

5 Conclusion 

This paper has presented a nonlinear filtering 

approach to detecting and tracking moving targets using 

a constellation of narrowband radio frequency (RF) 

sensors. We use a narrowband radar because of a 

number of practical benefits discussed in the paper. 

The nonlinear filtering methodology optimally fuses 

bistatic range and range-rate measurements made by a 

collection of sensors without thresholding or 

linear/Gaussian assumptions, thereby improving the 

detection/false alarm tradeoff and lowering tracking 

error.  

 We have illustrated the efficacy of the algorithm using 

real data experiments, where a moving person is 

detected and tracked from a constellation of 4 sensors 

using measurements of bistatic range and range-rate. 

The method shows successful tracking of a moving 

dismount with just 5 meters of range resolution. 
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