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Abstract
1
 - This paper describes a Bayesian fuse-before-

track approach to detecting and tracking moving targets 

by fusing data from multiple passive acoustic arrays. We 

describe a surveillance application, where a collection of 

fixed location arrays are charged with monitoring a 

spatial region. Each array provides information only 

about target bearing relative to the array. The 

conventional approach is to track bearing at each array 

and then fuse the tracks to estimate XY position. 

Instead, in fuse-before-track, we fuse measurements 

before creating tracks. The fusion is done using a 

nonlinear filter, where non-thresholded measurements 

corrupted by non-Gaussian noise which are related non-

linearly to the desired target state are combined from all 

arrays in one tracker. We illustrate the algorithms’ 

efficacy on real, collected at-sea data. 

 

Keywords: Tracking, nonlinear filtering, fuse before 

track, passive acoustics. 

 

1 Introduction 

This paper describes a Bayesian approach to detecting 

and tracking multiple moving targets by fusing acoustic 

data from multiple passive arrays. We focus on a 

surveillance application, where a collection of passive 

acoustic arrays are charged with monitoring a fixed spatial 

region to detect and track moving targets in 2D. This 

regime presents two important challenges. First, bearing 

measurements provide incomplete target state information 

and couple nonlinearly to the target state. Second, because 

of target distance and acoustic propagation, the received 

signal levels are not conducive to approaches which 

declare target detections by thresholding signals before 

tracking. 

Traditional tracking methods [1]–[2] are based on linear 

(or linearized) filters and use detections (threshold 

exceedances) as input. These sub-optimal methods are 

used for a number of good reasons in different 

applications. First, in some applications (e.g., RADAR) 

measurements occur at a very high rate, requiring the 

tracker to execute very quickly. Second, communication 

channels between the sensor and the processing unit may 
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be limited (and this is exacerbated by the high data rate), 

meaning that only summary information can be sent to the 

processor and not the raw measurements. For these 

reasons, Kalman techniques which execute as a series of 

matrix operations are very useful.  

In the passive sonar surveillance scenario, these 

constraints are relaxed. First, measurements are aggregated 

at a low rate (on the order of 1 Hertz), and the data is a 

vector of only a small number of bearing cells. Second, in 

our application, arrays are cabled to a processing center, 

allowing raw measurements to be transmitted faithfully. 

Finally, we can exploit processing capabilities that permit 

more computation than Kalman approaches require. Given 

the nonlinear measurement modality and need for an 

approach that uses non-thresholded data, we advocate a 

nonlinear track-before-detect approach to accurately model 

the measurement to target state coupling and operate with 

raw data. 

In the multisensor case, conventional methods [3]-[5] 

develop tracks at each sensor, associate tracks between 

nodes and then fuse. The track-and-then-fuse approach is 

taken for many of the same reasons cited earlier. In 

contrast, our application has the bandwidth and compute 

power to allow data fusion from multiple nodes before 

tracking. Combined with low signal levels and nonlinear 

measurement to target coupling, this again advocates for 

measurement level nonlinear filtering. This fuse-before-

track approach increases algorithm performance by making 

hard decisions about target existence and state only after 

all of the data has been aggregated. 

Related approaches to multitarget tracking have been 

studied in the literature. The “PDF Tracker” work by 

Bethel [6], the “Unified Data Fusion” work of Stone, [7], 

and the “JMPD” approach of Kastella [8], and other 

related work [9]-[13] are all examples of Bayesian 

approaches which do not require thresholding, explicit 

measurement to track association, or linear models and 

Gaussian statistics. In particular, Bethel and Shapo [14] 

apply these ideas to single node passive acoustic tracking.  

Our work differs from past efforts as it uses Bayesian 

filtering for detection and tracking in a 2D (X/Y) state 

space using non-thresholded measurements from multiple 

passive acoustic arrays. The paper proceeds as follows. 

Section 2 describes the multisensor passive sonar setting 

and our application. Section 3 describes the Bayesian fuse-
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before-track approach and our implementation, which is 

based on a novel combination of discrete grid detection 

and particle filter tracking methods. Section 4 describes 

the multitarget generalization and our implementation. 

Section 5 illustrates the value of the approach on real 

collected passive acoustic data from a sea test. Finally, 

Section 6 concludes. 

2 Multisensor Passive Sonar  

The application we focus on is region surveillance using 

multiple passive acoustic arrays. This section describes the 

problem and develops a statistical signal model for the 

energy received by the arrays.  

2.1 The Surveillance Problem 

A region of large spatial extent is to be monitored by a 

collection of fixed passive acoustic arrays. There are I 

hydrophone arrays and the position of the center element is 

denoted {x(i), y(i)}, for array i={1, …, I}. The surveillance 

region is defined by its extent {x
min

; x
max

; y
min

; y
max

}. 

Ideally, the arrays are located and orientated conveniently 

with respect to the surveillance region, e.g., along the 

boundaries and at right angles to each other. 

Undersea and surface targets emit acoustic energy which 

is received at the passive arrays. We are interested in 

detecting and tracking 2D position and 2D velocity of the 

targets from this received energy. Received energy can be 

used to estimate target bearing relative to each array. For 

well separated arrays (with respect to target range) this 

allows triangulation to compute target range and 2D 

position. Tracking over time results in variance reduction. 

Our application involves low energy targets not amenable 

to detect before track (i.e., thresholding) approaches. 

2.2 The sensor model 

Each of the I physically separated arrays consists of M 

hydrophones. Energy impinges each element m in array i 

from acoustic sources. The time series of received energy 

is recorded as s(i),m(t), which is used to generate estimates 

of target energy as a function of bearing from the array.  

Processing is typically done according to delay-and-sum 

beamforming method [15]. The spatial separation of 

individual elements causes propagation times from a target 

source to each element to differ. Denote the propagation 

time delay from a source at bearing θ to hydrophone m by 

Ψm(θ). For a linear array with elements separated by ∆, 

Ψm(θ)=m∆cos(θ)/c. For candidate arrival angle θ, the 

beamformer imparts appropriate delays at each element to 

force signals arriving from that direction to add coherently, 

i.e., the coherent sum at array i for arrival direction θ  as a 

function of time is 

( )∑
=

−=
M

m

mii mΨtstS
1

),(),( )()( θθ  (1) 

Computation is typically done in the frequency domain 

with short (on the order of 1-second) time blocks of data as 

∑
=

−
=

M

m

fΨj

mii

m
efsfS

1

)(2

),(),( )(~)(
~ θπ
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In practice, the beamformer proposes a set of candidate 

arrival directions (beams) numbered j={1,…,J}. For each 

beam, energy is non-coherently aggregated across 

frequency yielding what we refer to as the measurement 

from array i at beam j, z(i),j. 

Under certain conditions on element bandwidth and 

snapshot time, the beamformer value at individual 

frequencies are independent random Gaussian variables 

[16]. Therefore, we model the statistics of z(i),j as such. The 

parameters of the Gaussian random variable depend on 

whether or not there is a target at direction θj. 

3 Single Target Tracking 

This section describes Bayesian single target detection 

and tracking using multiple passive arrays. For the 

purposes of this section, we assume there is at most one 

target present. This assumption is removed in Section 4. 

3.1 Notation 

Denote the state of a target at time k as x
k
, which for this 

work refers to the targets’ 2D position and velocity, i.e., x
k
 

= [x x’ y y’]. Additionally, let H
k
0 denote the hypothesis 

that no target is present at time k, and let H
k
1 denote the 

hypothesis that a target is present.  

The following notation describes the measurements: z
k
(i),j 

continues to denote the measurement received by array i in 

bearing beam j at time k; z
k
(i) denotes the vector of all 

measurements received by i at k, i.e., z
k
(i) ={z

k
(i),1, …, z

k
(i),J}; 

z
k
 denotes measurements received by all arrays at time k, 

i.e., z
k
 = {z

k
(1),…, z

k
(I)}; finally, Z

k
 denotes the collection of 

all measurements received by all arrays up to and 

including time k, i.e., Z
k
 = {z

1
,…, z

k
}. 

3.2 Approach 

The Bayesian method is to estimate the joint probability 

a target is present (H
k
1 is true) at each state x

k
 given the 

measurements. Mathematically, this means we wish to 

estimate the hybrid continuous-discrete probability density 

function (PDF) 

)|,( 1
kkk ZHxp  (3) 

for all x
k
, as well as the discrete probability  

kkkkkk xdZHxpZHp ∫−= )|,(1)|( 10  (4) 

Notice we can write 

),|()|()|,( 111
kkkkkkkk ZHxpZHpZHxp =  (5) 

i.e., the density is the product of the target present 

probability p(H1
k
|Z

k
) and the target state probability 

p(x
k
|H1

k
,Z

k
). The problem is thus treated as the separate 

(but coupled) tasks of estimating the target present 

probability and the estimating target state probability. 

In the Bayesian approach, we assume a prior probability 

(perhaps completely uninformative), and generate a 
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recursion that relates probabilities at time k-1 to those at 

time k. This is done in two steps, as in the Kalman Filter: 

the temporal update, which predicts the distribution 

forward in time, and the measurement update which 

corrects the prediction given new received measurements. 

3.3 Time Update 

The first step in recursive Bayesian filtering is to predict 

the relevant probability distributions forward in time using 

statistical models on target kinematics. The temporal 

update of the target present density is 

)|(),|()|(
11

1

0

11
1

1
1

−−

=

−−− ∑= kk
i

i

k
i

kkkk
ZHpHZHpZHp  (6) 

where the quantity p(H1
k
|Z

k-1
,Hi

k-1
) is a statistical model to 

be specified by studying the target arrival properties. 

Similarly, the time-predicted target state density is based 

on a model of how targets move 

( )
( )

111
1
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1

1
1

1
1

11
11
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ZHp
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where the density p(x
k
,H1

k
| x

k-1
,H1

k-1
)  is a model on target 

kinematics specified in the particular implementation. The 

normalizing term does not need to be evaluated as the 

density can be forced to integrate to 1. In this work, we 

assume the nearly constant velocity (NCV) model for the 

target. Other models, or even multiple models are 

admissible under the Bayesian framework [17]. 

3.4 Measurement Update 

The second step in Bayesian filtering is to accommodate 

measured data into the probability estimate. The measured 

data comes into the picture through the likelihood ratio 

)|(

),|(
),|(

0

1
1 kk

kkk
kkk

Hzp

xHzp
xHz ≡λ  (8) 

where the functional form of λ(z
k
|H1

k
,x

k
) is a model 

specified by sensor physics. Recall measurements are not 

just threshold exceedances, but rather a vector of 

beamformer outputs from all sensors at all beams.  

With this definition, the target present and target absent 

probabilities are measurement updated using the law of 

total probability and Bayes rule, yielding 

kkkkkkk

kk

kk
kkkk
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Zzp
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These express the current target present and absent 

hypothesis probabilities in terms of the target present, 

target absent, and target state probabilities predicted from 

the previous time step and the conditional likelihood of 

incoming measurements. The normalization constant does 

not need to be computed since p(H1
k
|Z

k
)+p(H0

k
|Z

k
)=1. 

The target state probability is updated similarly, 










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),|(

)|(
),|(),(   

),(

1
1

0
1

1
1|

1|

kkk

kk
kkkkkk

kkk

ZHzp

Hzp
HxzZHxp

ZHxp

λ
 (10) 

 Again, constants independent of x
k 

do not need to be 

computed. In the multisensor passive array application, the 

likelihood ratio λ(z
k
|H1

k
,x

k
) is computed as follows. We 

assume measurements from different arrays are 

independent conditioned on the target state, i.e. 

∏
=

=
I

i

kkk
i

kkk HxzpHxzp

1

1)(1 ),|(),|(  (11) 

and the measurements a particular array takes in each 

beam are independent conditioned on the target state, i.e., 

∏
=

=
J

j

kkk
ji
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 For each array i, the state x
k
 corresponds to a bearing, 

which maps to beam ĵ(i) (here we ignore extended target 

effects such as sidelobes). With this notation, we write 

( )
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where p1(z) is the probability density on received energy in 

beams where the target exists ( the target present density) 

and p0(z) is the probability density on the received energy 

in beams where no targets exist (the target absent density). 

Therefore, the likelihood ratio with multiple arrays is 

( )
( )∏

=

=
I

i
k

iji

k

ijikkk

zp

zp
Hxz

1 )(ˆ),(0

)(ˆ),(1

1 ),|(λ  (14) 

3.5 Implementation 

If the probability density of interest is well approximated 

by a Gaussian or sum-of-Gaussians, techniques such as the 

Extended Kalman Filter or Gaussian Sum Filter are 

preferred. In the multisensor passive acoustic case, 

however, the density is poorly approximated by such 

parameterizations. We instead rely on two nonlinear 

filtering approaches, the discrete grid and particle filter. 

Discrete grid details [17][18] are briefly reviewed here: 

1) Density Representation: The PDF of x is discretized 

onto a 4D grid (corresponding to the four dimensional 

state vector x
k
) of Nx*Nx’*Ny*Ny’ cells. This method is 

appropriate here, given we wish to perform surveillance 

over a region of fixed spatial extent.  

2) Kinematic and Measurement Update: The NCV model 

we adopt leads to the Fokker-Plank Equation [18][20] 

2

22

2

22

22 y

p

x

p

y

p
y

x

p
x

t

p yx

&&

&&
&

∂

∂
+

∂

∂
+

∂

∂
−

∂

∂
−=

∂

∂ σσ
 (15) 

Computationally, we discretize the probability onto a 

grid and the update is computed with a backward Euler 
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method. This approach has nice stability properties in both 

δt and δx. We use Thomas’ algorithm as a fast tridiagonal 

solver giving computation linear in the number of cells 

[19][21]. The temporal evolution of the target present 

probability assumes constant target arrival/removal. The 

discrete grid probability is updated with measurements by 

pointwise multiplication of each cell in the discrete 

representation by the corresponding data likelihood ratio. 

An alternative method of representing p(x
k
|H1

k-1
,Z

k
) is 

via a particle filter. Particle filtering is an adaptive grid 

method of representing and numerically updating a PDF 

temporally and with measurements [22]. The details are 

briefly reviewed here. 

1) Density Representation: In a single target particle filter, 

the density of interest is approximated by a set of Npart 

weighted samples (particles):  

∑
=

−≈
partN

p

pDpZ xxwxp
1

| )()( δ  (16) 

where δD represents the usual Dirac delta function. 

2) Kinematic and Measurement Updates: The model 

update and the measurement update are simulated by the 

following three step recursion. First, the particle locations 

at time k are generated using the particle locations xp at 

time k-1 and the current measurements z
k
 by sampling from 

an importance density, denoted q(x
k
|x

k−1
,z

k
). The design of 

the importance density is a well studied area, as the choice 

of the importance density can have a dramatic effect of the 

efficiency of the particle filter algorithm. 

Particle weights are updated according to the weight 

equation, which involves the likelihood, the kinematic 

model, and the importance density [22]. 

),|(

)|()|(
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1

kk
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 When using the kinematic prior as the importance 

density, the weight reduces to wp
k
=wp

k-1
*p(z

k
|xp

k
). Finally, 

a resampling step is used to prevent particle degeneracy. 

We represented the region by a discrete grid at onset. As 

this has been cast as a hypothesis test between the target 

present and absent hypotheses, we declare a target present 

when p(H1
k
|Z

k
) exceeds a threshold in accordance with the 

standard Neyman-Pearson approach. Once the target 

present probability exceeds a threshold, indicating the 

density is well localized, the approximation is transitioned 

to a particle representation by sampling particles from the 

Nx*Nx’*Ny*Ny’ discrete grid. This hybrid approach 

allows good performance when the PDF is broad (at onset) 

as well as good tracking performance once a target is 

found.  

4 Multitarget Tracking 

4.1 Approach  

In multitarget detection and tracking, we wish to 

estimate the hybrid continuous-discrete density 

)|,,...,( 1
kkk

T
k ZTxxp  (18) 

for all T and x1,…, xT , where T is the number of targets (T 

= 0, 1, …) and x1,…,xT are the states of the individual 

targets. For notational convenience, we define 

],...,[ 1
k
T

k xxX =  (19) 

i.e., X denotes the multitarget state vector, where the 

cardinality will be clear by context.  

As in the single target case, the joint multitarget density 

can be expressed as the product of the target number 

density and the target state density as 

),|()|()|,( kkkkkkkk ZTXpZTpZTXp =  (20) 

The target number temporal update is given by  
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And the target state temporal update can be expressed 
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where p(Xk,T
k
| Xk-1,T

k-1
) is a statistical model on target 

kinematics and the integral over Xk−1 is to be interpreted as 

performing T integrations over the domain of x. 

The recursive update of the target number probability is 

given in a form analogous to the single target case as 

∫
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− ×
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where the constant term does not need to be computed 

since the probability mass function sums to 1. 

Furthermore, in extension of the definition given earlier, 

we define the multitarget likelihood ratio as 












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=
≡
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In multiple target situations, it is possible more than one 

target project into the same bearing cell. T targets with 

states x1,…,xT will project into bearing cells ĵ1,(i),…, ĵT,(i). 

Let S denote the set of all beams the hypothesized targets 

occupy, i.e., S= ĵ1,(i)U ĵ2,(i) U …U ĵT,(i). Let O(ĵ) denote the 

occupation number (i.e., the number of targets that are 

hypothesized to exist in cell ĵ). Then we have 

∏
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The target state update is then written as 
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where the constant term does not need to be computed 

since the PDF integrates to 1. 
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4.2 Implementation 

The dimension of the state space required to directly 

estimate the joint multitarget probability grows 

exponentially with the number of targets. This “curse of 

dimensionality” makes it impractical to directly estimate 

the full multitarget density when there are more than 1 or 2 

targets in the surveillance region of interest [23][24]. 

This is addressed in the literature in two ways. In typical 

Kalman multitarget methods [1], [2] the approach is to run 

a bank of single target trackers (one for each target) and 

use data association to determine which measurements go 

into each filter. This assumes input data is thresholded and 

can be treated by linear or linearized methods. Other 

approaches [24]–[26] fully model the joint multitarget 

density, but use procedures which amount to factoring the 

joint density into a product of smaller dimensionality 

densities. Sophisticated approaches do this adaptively at 

each time step, selecting which targets are “close” and 

performing more intense processing to account for the 

coupling of measurements on these targets. 

We take a similar approach which adaptively determines 

which targets are close in sensor space and treat these pairs 

(or triplets, etc.) jointly. In this case, the individual particle 

filter approximation to the multiple targets is combined 

into a single multiple target density and this density is time 

and measurement updated jointly. The main effect is that 

multitarget sensor modeling now becomes relevant. In 

particular, the measurement likelihood for a pair of targets 

where both targets project into the same beam takes a 

different functional form from when they project into 

different beams. In practice, this high fidelity modeling 

prevents track coalescence onto the stronger track and/or 

dropping of the weaker track. 

5 Experimental Results 

This section illustrates the proposed technique on a set 

of real collected passive acoustic data. The Shallow Water 

Array Performance (SWAP) array is located off the eastern 

cost of Florida near Ft. Lauderdale. The SWAP array has 4 

linear segments, each of which are approximately 200m 

long and contain 125 hydrophones. The hydrophone 

locations are known with high accuracy. A small number 

of the hydrophones did not operate during the collection, 

but these elements are known and have been excluded 

from the beamforming process. The 4 segments are labeled 

1, 2, 3, and 4 with segment 1 closest to shore 

(westernmost) and segment 4 farthest from shore 

(easternmost). The elements in each segment run 

approximately west-to-east. Segment 1 is oriented 

approximately 0:6 degrees (relative to east), and Segment 

4 is oriented approximately -0.4 degrees. All hydrophones 

are approximately 265m deep. 

The environment has heavy commercial and recreational 

traffic. The experiments shown here use data collected by 

segments 1 and 4 on 9 August 2007 starting at 1115 local 

time. The data was recorded as part of a four day sea test. 

We selected a time segment with two targets of 

opportunity. This data includes a challenging situation 

where the two targets cross in sensor space and therefore 

the adaptive algorithm must temporarily treat the joint 

target state to prevent target coalescence or removal. 

The raw sensor data was prepared according to the 

process in Section 2. This is briefly summarized as 

follows. Each hydrophone sampled and recorded raw 

acoustic data. This raw data was decoded and interpolated 

to obtain 1000 samples per second at equal intervals, time 

synchronized at all hydrophones. A conventional 

beamformer, followed by integration over frequency, was 

used to produce bearing time records at 1Hz. BTRs 

describe the received energy versus bearing and time, and 

constitute the input to the tracker. This is consistent with 

Navy standard processing and is representative of the input 

surface a fielded tracker will see. Figure 1 shows the input 

data surfaces. 

 
Figure 1. The input surfaces to the tracker. 

The surveillance region is defined as the 5km x 5km 

region shown in Figure 2. It was implemented using a 2x2 

set of overlapping discrete grids. Each discrete grid is 

fixed spatially and is made up of 51x13x51x13 cells with 

spatial and velocity resolution of 50m and 2m/s, 

respectively. Each single target detector is measurement 

and time updated according to the method of Section 3. 

When a detectors’ estimate of the target present probability 

p(H1|Z) exceeds a threshold, the target is transitioned to a 

particle filter representation according to the description in 

Section 3. Note that the figure also indicates the locations 

of the two sensor arrays near the bottom center, with the 

labels “SEGMENT 1” and “SEGMENT 4,” respectively. 
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Figure 2. The surveillance region. 

Here we illustrate the benefit offered by our target space 

tracking method (XY) over traditional track-fusion 

methods, which create tracks on individual data surfaces 

and then fuse the results. The track-fusion approach 

proceeds as follows. First, a tracker is executed on each 

BTR separately, which produces a bearing track for each 

sensor. The tracker enforces kinematics on the individual 

data surfaces, rather than the XY space in which the target 

actually operates. Next, the tracks from each BTR are 

associated between sensors and the targets’ XY position 

are computed using trigonometry. We have simulated the 

track-fusion method here by hand-truthing the traces in the 

BTR as shown in Figure 3. We have also hand-associated 

the tracks. This non-casual hand-truthing and hand-

association is an upper bound of the potential performance 

of an automated track-fusion method. 

 
Figure 3. Hand-truthed tracks on the input BTRs. 

Whether done by hand or with an automated tracker that 

operates independently at each node, this approach does 

not take into account kinematic models operating in XY 

space, but instead only enforces kinematics on the 

bearings. As a consequence, the XY tracks associated with 

this hand truthing are non-physical in the XY domain. 

Figure 4 shows the noisy tracks that result from tracking in 

bearing and then associating the tracks, characterized by 

non-physical jumps in X and Y.  

 
Figure 4. Track-fusion estimated XY positions. 

In contrast, the proposed tracker constructs a PDF by 

combining XY kinematic models and measurements. The 

complete nonparametric target PDF it estimates was used 

to produce XY point estimates and covariance ellipses for 

display purposes in Figure 5. Targets were automatically 

detected and initiated according to the methodology of 

Section 3. Since this was a controlled experiment, we also 

have latitude and longitude truth sources from the 

Automatic Identification System (AIS) for some of the 

contacts in the collection. One of the targets in our 

surveillance region during the period of interest was an 

AIS equipped vessel, and its truth track (dashed gray line) 

is shown in the plot for comparison to the tracker output. 

The tracks are color coded to distinguish the traces. 

 
Figure 5. Fuse-before-track estimated XY positions. 
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A comparison of the track fusion results (Figure 4) with 

the fuse-before-track result (Figure 5), shows that using 

physical kinematic models in the target’s natural 

coordinate system provides significant value. 

Figure 6 shows a track and the tracker estimated 

covariance ellipses at equally spaced time steps. The main 

axis of uncertainty is in range direction with respect to the 

(bearings-only) sensors. For example, when the target is 

northwest of the sensors, uncertainty is mainly in the north-

west direction. Likewise, when the target is northeast of 

the sensors, uncertainty is oriented in the north-east 

direction. Furthermore, as time progresses (the target 

moves left-to-right), the tracker covariance ellipse tightens. 

 
Figure 6. Fuse-before-track estimated XY positions of a 

track, with associated covariance ellipses. 

Figure 7 shows the tracker estimates projected back onto 

the two original input surfaces.  

 
Figure 7. The fuse-before-track estimates projected back 

onto the input surfaces. 

Note the tracker operates in XY but these XY tracks can 

be reprojected onto the input surfaces to show algorithm 

efficacy, as is done here. Some contacts visible in the 

BTRs do not have associated tracks. This is because the 

XY locations of those contacts are outside the surveillance 

region.  

6 Conclusion 

This paper has presented a Bayesian fuse-before-track 

approach for detecting and tracking multiple moving 

targets by fusing data from multiple passive acoustic 

arrays. The method uses a nonlinear filter, where non-

thresholded measurements corrupted by non-Gaussian 

noise which are related non-linearly to the desired target 

state are synthesized optimally. We have illustrated the of 

algorithm on real, collected at-sea data and compared its 

performance to a track-fusion approach. 
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