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Abstract

1
 - In tracking applications, data fusion involves 

combining data from multiple sensors to produce lower 

error target state estimates than were possible from 

using data from individual sensors alone.  The main 

focus of this paper is performance modelling and 

evaluation for two different fusion paradigms: the track-

before-fuse (or track fusion) approach and the fuse-

before-track approach. Track-before-fuse is often 

required in distributed, low-bandwidth environments, 

while fuse-before-track is an option when centralization 

is possible. It is anticipated that fuse-before-track will 

provide superior performance over track-before-fuse 

because it postpones hard decision making until the 

most data is received, analogous to track-before-detect. 

This paper computes approximate error bounds for a 

track-before-fuse approach and verifies them via 

simulation.  It also shows that a fuse-before-track 

approach out-performs a standard track-before-fuse 

method. 

 

Keywords: Fusion performance modeling, nonlinear 

filtering, track-before-fuse, fuse-before-track, passive 

acoustics. 

 

1 Introduction 

Automated target tracking is an important task in many 

civilian and military systems.  Fusing data from multiple 

sensors has the potential to improve tracking performance 

in many of these systems.  The traditional approach for 

fusing data involves performing tracking functions locally 

at each sensor, followed by fusing these tracks.  An 

alternative approach is fuse-before-track [1], in which a 

centralized processor combines data from each sensor 

prior to processing.  This paper compares these two 

approaches, focusing on the passive acoustics tracking 

scenario where the only measurements available are target 

bearings. 

Traditional fusion systems (e.g., [2]-[4]) execute their 

fusion steps by associating tracks that have been formed 

locally (at each sensor).  While this approach is sub-

optimal, it is sometimes required due to system limitations 
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(such as limited communications between sensors).  In the 

application presented here, required communication bit 

rates are low because the data comprises only a collection 

of amplitudes for a small number of bearing measurements 

at each update.  Furthermore, applying this approach to 

two sensors on the same vessel requires only that the two 

sensors be connected on the vessel.  Thus, full fuse-before-

track approaches are feasible in our scenario. 

The literature contains other fusion approaches that do 

not require explicit track association.  Included are 

Bethel’s PDF Tracker [5], Stone’s Unified Data 

Fusion [6], Kastella’s JMPD [7], and others [8]-[10]. 

Papers specific to track-before-fuse approaches are also 

common.  Examples include [11]-[16].  In these papers, 

the authors investigate techniques for both associating 

tracks across different sensors, and target state estimates 

given the (associated) individual-sensor tracks. 

This work contains two main contributions. First, we 

derive an analytic formulation for tracking error from a 

track-before-fuse approach.  Second, we compare these 

bounds with a fuse-before-track method and illustrate the 

latter’s benefit.  Its main innovations are thus providing 

analytical error predictions for track-association and 

comparing these to a fuse-before-track method. 

This paper proceeds as follows.  Section 2 describes the 

notional passive sonar scenario and localization equations.  

Section 3 derives the performance models for our scenario.  

Section 4 compares these results to a fuse-before-track 

method.  Finally, we conclude in Section 5. 

2 The Passive Sonar Scenario 

This section outlines the notional scenario for the work 

presented in the following sections, and provides an 

example simulated data surface. 

2.1 Notional Scenario 

Figure 1 defines the notional scenario for our 

experiment.  Here, a ship platform points local north.  The 

ship has access to two sensing arrays, a Hull Array and a 

Towed Array (both indicated by text and arrows in the 

figure).  The ship tracks a target (also indicated by a text 

label in the figure).  For convenience (but with no loss of 

generality in a 2D scenario), we place the coordinate 
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system origin at the Hull Array (“HA”).  The x-axis is 

local east, and the y-axis is local north.  In our rigid body 

model, the Towed Array (“TA”) phase center is T meters 

behind the boat, thus its coordinates are (0,-T).  The target 

is at an external point (x, y).  The angles θHA and θTA are 

defined from the sensors to the target counter-clockwise 

from the x-axis. 

 
Figure 1:  Geometric scenario for Fusion Algorithm 

Because we model the passive sonar scenario, inputs to the 

tracker are bearings-only measurements, over time.  Thus, 

one of the well-known challenges in sonar signal 

processing is estimating target range from passive sensors 

(“passive ranging”). 

2.2 Data Surface 

Figure 2 gives an example of the data surfaces from the 

Hull Array (left-hand panel) and the Towed Array (right-

hand), respectively.  In both cases, the horizontal axis 

corresponds to bearing (relative to the sensor) and the 

vertical axis corresponds to time (most recent time at the 

bottom).  Dark regions indicate low intensity pixels, and 

white pixels indicate areas with significant energy.  Red 

arrows indicate the target position (bearing) on both 

surfaces.  In the current figure, we see a single trace on 

each data surface, indicating a single target’s trajectory 

over time.  

The hydrophones on the HA are linearly spaced in angle 

around the array’s surface, so the natural coordinate 

system for this array’s bearing axis linearly spans the space 

from zero to 360°.  In contrast, the hydrophones on the TA 

are linearly spaced in a straight line, so the natural 

coordinate system for this array is sin(θTA) [17]. 

Given these geometries, zero degrees on the HA 

corresponds to a target directly east of the HA sensor, 90° 

on the HA represents a target north of the ship, and so on.  

On the TA, sin(θTA) of -1 indicates a target to the south of 

the TA and sin(θTA) of 0 shows a target east of the TA. 

 
Figure 2:  Input Data Surfaces for Fusion & Tracking 

See Figure 3 for examples (with reduced numbers of 

beams for clarity).  The left-hand panel shows the HA 

beam configuration, with beams uniformly spaced in 

azimuth.  The right-hand panel shows the TA beam 

configuration, with uniform beam spacing in sin(θ), 

therefore non-uniform beam spacing in θ. 

  
Figure 3:  Uniformly distributed HA beams (LHS),  Cosine 

spaced TA beams (RHS) 

In the current problem, we assume we have estimates of 

target bearing from both the Hull Array (“HA”) and the 

Towed Array (“TA”) from the data.  Of course, perfect 

bearing estimates at both sensors will yield perfect 2D 

localization via geometry.  As mentioned above, one of the 

challenges in passive sonar is obtaining good estimates of 

target range.  The work presented here helps us better 

understand the impact of bearing measurement error on 

estimated target range. 

First, from the geometry (Figure 1) the 2D target 

position must satisfy the following relations: 

 
HAHAHA xxyy θθ tantan =+=  (1) 

 .tan TATA xyy θ+=  (2) 

Thus we can solve for the two unknowns x and y by 

using this equation: 
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In the situation where θHA and θTA are measured, we can 

thus write the estimated contact position as a function of 

the measured angles 
HAθ̂  and 

TAθ̂  as: 
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and the estimated range as: 
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3 Baseline Approach and Analytics 

This section describes our analytical approach to 

estimating localization error from scene geometry. 

3.1 Analytic Derivation of Range Error 

Sensitivity 

With the previous equation describing target range as a 

function of measured target bearings, we can directly 

compute estimated passive ranging error as a function of 

the measurements 
HAθ̂  and 

TAθ̂ .  Define the error in range 

estimate as: 

 ,ˆ
trueerr rrr −=  (8) 

and note  

 .
ˆ

θθ ∂

∂
=

∂

∂ rrerr  (9) 

We compute the expected range error r̂∆  using a first 

order Taylor series.  In the HA case, the relationship is: 
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This linearized relationship means that we can estimate 

range error if we know the derivative of the estimated 

range with respect to azimuth and if we know the likely 

azimuthal error (i.e., uncertainty on the sensor data 

surface).  The analytic relationship we have between 

estimated range and measured bearings allows us to take 

the continuous partial derivative.  The process is 

straightforward and yields the rate of change of the range 

error (i.e., the sensitivity) with respect to the estimate 
HAθ̂ , 

under the assumption that TAθ  is correct: 
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A similar pair of relationships holds for the TA: 
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3.2 Range Error for the Model Problem 

We begin estimating range error with a simple case.  We 

assume all measurement bearing error derives from the HA 

data surface (no error from TA).  We further make the 

assumption that the error is on the order of a beamwidth.  

In other words, we assume that target azimuth is known 

within the highest amplitude beam on the HA data surface, 

but that target azimuth is unknown within that beam.  

Recall from Figure 3 that, in the case of the HA, beam 

widths (in radians or degrees) are uniform.  However, the 

analytic derivative of estimated range with target azimuth 

still depends on target location via the trigonometric 

quantities in the target range expression. 

Our goal is a 2D estimate of range error as a function of 

target location.  This computation requires selection of 

parameters.  In Figure 4, the array phase centers are 

separated by 2000 feet.  Assume 400 beams on the HA 

(spaced linearly) and 801 on the TA.  From Figure 3, these 

beams are spaced linearly in sin(θΤΑ). 

The horizontal and vertical axes of the figure represent 

target position in real space (e.g., East and North) in 

meters.  The legend indicates the symbols that represent 

the HA and TA positions (separated by 2000 feet).  The 

color at each pixel represents error amplitude at that target 

location in 2D (x, y) space, and the color bar on the 

figure’s right side shows the relationship between colors 

and error absolute value. 
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Figure 4:  Range error due to  

Hull Array azimuthal Error 

The figure is in agreement with basic intuition that 

localization of near-range broadside targets has the lowest 

error, with error smoothly increasing at greater ranges and 

closer to endfire.  Note that endfire performance is worse 

for at least two reasons in this scenario.  First, TA beams 

are widest in this direction (refer back to the RHS of 

Figure 3), providing the poorest azimuthal resolution 

(greatest ∆θTA in terms of the symbols above).  In addition, 

endfire has the smallest effective aperture for the two 

incoherently combined arrays (the triangulation), and 

therefore the most sensitivity. 

Figure 5 shows a comparable figure for TA error.  All 

parameters are the same, except here the azimuthal error is 

now ∆θTA instead of ∆θHA, i.e., the error source is now one 

beamwidth on the TA.  Here we see the same characteristic 

behavior of best performance at broadside and worst 

performance at endfire.  Comparing to Figure 4 shows that 

broadside performance for 1-beam TA error is better than 

that for 1 beam HA error.  This is as expected because the 

TA has more aperture and therefore better resolution at 

broadside (which fully utilizes the whole TA aperture) than 

the HA. 

 
Figure 5:  Range error due to  

Towed Array azimuthal Error 

These calculations allow us to make some comments 

about the region of applicability of passive ranging 

techniques.  Under the physical assumptions here of a 

2000 foot displacement between array phase centers, and 

assumed 0.9° beamwidth on the HA, and assumed 0.3° 

beamwidth (at broadside) on the TA, we see that the 

localization error from a 1-beam HA error exceeds 500m 

at about 3km of target range and then grows dramatically 

with increasing range. 

This error can be reduced by finer estimation of target 

bearing, e.g., by techniques that use temporal averaging 

and kinematic modeling.  Therefore we can judge the value 

of a particular passive localization algorithm by measuring 

its improvement with respect to the analytic analysis of a 

measurement-only track fusion (i.e., track association 

algorithm), assuming the 1-beam error presented here. 

3.3 Verification via discrete differencing 

Model 

To verify the procedure above, we have computed 

discrete approximations to the derivatives for both the TA 

and the HA.  We seek to determine an estimate for range 

error given a one beam bearing error on each sensor.  

Figure 6 illustrates the procedure.  Here, black text 

indicates the two sensors.  Solid blue lines show HA beam 

boundaries, and solid green represents TA beam 

boundaries.  A black dot shows a hypothesized target 

location (for example, a point in the (x,y) space of Figure 4 

or Figure 5). 

Our target location falls into a beam pair for the HA and 

TA BTRs.  The yellow, shaded region indicates all the 

area in (x,y) space that falls inside these beams.  To 

approximate the error in range estimate for a one-beam 

error on the HA, we compute the difference in range for 

the two points at the center of the target’s TA beam that 

intersect the HA beam boundaries.  Red dots and red text 

labels indicate these two points (and the corresponding 

ranges from the HA origin).  The range error for a one-

beam HA error at this TA beam bearing is the difference 

between the ranges indicated by the red arrows R2 and R1. 

 

Figure 6:  Approximation to error Estimate 
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Performing this computation over all the (x, y) points 

from Figure 4 and Figure 5 yields a discrete approximation 

to the errors represented in those figures.  Figure 7 shows 

the results.  Comparing these results to Figure 4 and Figure 

5 shows excellent agreement, providing evidence that 

supports the validity of our analytic approach. 

  

 
Figure 7:  Range error due to HA (top) and  

TA (bottom) bearing Error  

4 Comparison to Fuse-Before-Track  

This section compares the performance of a fuse-before-

track method to the track-before-fuse approach modeled 

earlier.  We continue to use the passive acoustic scenario 

given in Section 2.  We start by considering the 

performance of the two approaches against the single 

hypothetical target trajectory shown in Figure 8.  In this 

example, a two-sensor platform moves north towing a 

rigidly attached array and a simulated target moves north-

east.  Refer back to Figure 2 to see the simulated data for 

the two sensor arrays. 

4.1 Track-before-fuse Performance 

Track-before-fuse methods estimate target bearing at 

each sensor independently using a single-sensor tracker, 

and then use geometry (specifically, Equation (5) and 

Equation (6)) to compute the target geo position.  Perfect 

estimation of the bearing from the HA and TA, coupled 

with perfect association of tracks, results in perfect 

reconstruction of the target trajectory through geometry.  

However, in practice, estimates of single-sensor bearings 

are imperfect due to a number of factors, including closely 

spaced targets, false energy distracting a single-sensor 

tracker, and the beam size at each sensor (which is related 

to the element spacing). 

 

Figure 8:  Simulated Ship, Towed Array, 

and Target Trajectory 

Here we ignore the effects of both closely spaced targets 

and false energy distracting a single-sensor tracker and 

continue to focus on how the accuracy of track association 

fusion approaches are influenced by accuracy of the 

bearing estimate inside a beam.  In our notional scenario, 

we assumed that the HA has 0.9° bearing beams and the 

TA has 0.3° bearing beams at broadside.  A notional 

single-sensor that is at most 1 beam off in its estimate 

(“within 1 beam”) can be described as having a worst case 

error of 1.35° in the HA (1.5 beams) and 0.45° in the TA 

at broadside.  Likewise, consider a single-sensor tracker 

that perfectly estimates the correct bearing beam (“correct 

beam”), but is unable to determine the bearing with any 

more precision than within that beam.  Such a tracker 

always estimates the target bearing as the center of the 

correct beam, and will have a worst-case error of 0.45° in 

the HA and 0.15° in the TA (at broadside).  A higher-

fidelity single-sensor tracker that is able to estimate with 

sub-beam accuracy to the half-beam (“1/2 beam accuracy”) 

will have worst case-errors of 0.225° in the HA and .075° 

in the TA at broadside, and so on.  A single-sensor tracker 

may achieve sub-beam accuracy through temporal 

integration or sidelobe models.  However with a single-

sensor tracker, models must operate in the measured data 

domain and so achieving significantly better than single-

beam accuracy is optimistic. 

Figure 9 parameterizes the RMS range estimation error 

of the track association algorithm in our notional scenario 

as a function of the accuracy of the measurements of the 

single-sensor bearing.  In this computation, the “mean” 

refers to averaging over points on the target’s trajectory 

over time.  The x-axis indicates the accuracy of the single-

sensor trackers in units of beams (finer accuracy to the 
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right), and the y-axis shows RMSE.  As tracker accuracy 

improves (estimates good to a smaller fraction of a 

beamwidth), RMSE decreases. 

 

Figure 9:  Range Error (Track-fusion Algorithm) 

4.2 Track-before-fuse error vs. analytic 

Prediction 

The analytic predictions of Section 3.1 are spatially 

varying and provide an estimate of the error if a single-

sensor tracker is exactly one beam in all of its bearing 

estimates.  Figure 10 compares the analytically predicted 

error estimates as a function of time in our simulation 

(since the position of the target in Figure 8 varies with 

time) with the actual range error achieved from our 

implementation of a track-association fusion algorithm.  In 

this implementation, we assumed the single-sensor trackers 

were able to estimate the correct beam for the target.  It 

shows that the analytic predictions are in close agreement 

with the actual track fusion results. 

 

Figure 10:  Track fusion error on target Postion 

In the figure, the solid black line shows the predicted 2D 

tracker estimation error based on a one-beam single-sensor 

tracker error at the HA.  Similarly, the solid blue line 

shows the predicted tracker error for a one-beam error at 

the TA.  The red line shows the error for a track-

association based fusion tracker, running on the simulated 

data from Figure 2 (which was derived, in turn, from the 

scenario in Figure 8). 

The track fusion estimate error is highly oscillatory.  At 

times where the actual target is close to the center of the 

HA and TA beams, the error is very low.  Error increases 

rapidly as target bearing progresses towards the edge of 

the beam.  This behavior is magnified as range increases, 

for example, near the end of the simulation.  The analytic 

computations always assume a 1-beam error in one sensor 

and perfect estimation in the other sensor, which means 

they are approximations to the error found in practice with 

the tracker operating on synthetic data. 

4.3 Fuse-before-track Performance 

Fuse-before-track is expected to outperform track-

before-fuse by delaying hard decisions until all information 

is received. The fuse-before-track algorithm we 

employed [1] on this data used the same inputs as those 

used in the track-before-fuse evaluation, where we again 

assume that the HA has 0.9° bearing beams and the TA has 

0.3° bearing beams at broadside.  Since a fuse-before-track 

approach is able to exploit a kinematic model in the 

coordinate system of the target (East/North) rather than 

being restricted to the coordinate system of the 

measurements, and is also able to use information from 

both sensors before making a target state estimate, it can 

provide higher fidelity results than the track association 

approach. 

Some details concerning the fuse-before-track approach 

are as follows.  We estimate the joint probability of target 

presence and the target’s state using a two-step 

recursion [5].  The first step is a Bayesian measurement 

update, in which new measurements update the current 

density on target state via a likelihood ratio 

formulation [6].  The second is a (Markov) kinematic 

prediction that employs target motion models to project 

current densities to the next discrete time.  When new data 

arrives at the next time, we perform the measurement 

update again, and this process continues recursively. 

To implement these densities on target state, we need a 

numerical scheme to propagate spatial probabilities over 

time.  We employ a fixed, evenly spaced, multidimensional 

grid [18], with discrete samples of the density at each grid 

point.  The grid points span a 4D space, corresponding to 

position and velocity in the XY (or East/North) plane: 

[x vx y vy]
T
.  The Bayesian update refines the probabilities 

at the grid points as a function of the incoming 

measurements, and the kinematic prediction propagates the 

grid-sampled density to the next time step. 

Note that inputs to the fuse-before-track approach are 

amplitudes from the data surfaces of Figure 2 at each time 

epoch.  (This contrasts with the track-before-fuse method, 

which ingests single-sensor tracker outputs before fusing 

them via geometry.) 

Figure 11 shows the track-error improvement of the 

fuse-before-track approach over the track-fusion method in 

our notional problem.  Note that the range error from fuse-

before-track processing (green line) is significantly less 

than the track-fusion error (red line) on average, and that 

we have left the analytic error predictions (black line and 

blue line) on the plot for reference.   

Figure 12 shows fuse-before-track RMS range error 

compared to that achieved by track fusion as a function of 

single-sensor error (discussed in Section 4.1).  The axes 

are the same as in Figure 9 (RMSE versus single-sensor 

tracker error).  The green line indicates the RMSE of our 

fuse-before-track approach.  Note this is a fixed quantity 
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and does not depend on single-sensor tracking accuracy 

because the inputs to the fuse-before-track method are the 

energy surfaces of Figure 2, and not the single-sensor track 

outputs (thus, the fidelity of the single-sensor trackers does 

not impact track fusion performance).  The red line shows 

RMSE for the track-fusion approach. 

 

Figure 11:  Fuse-before-track error vs. Time 

 

 
Figure 12:  Fuse-before-track range Error 

The figure shows where track fusion techniques that use 

a pair of single-sensor trackers (one for the HA and one for 

the TA) achieve the same performance as our fuse-before-

track approach (intersection of the green line with the red 

line).  The conclusion is that the track-fusion single-sensor 

trackers would have to estimate the target bearing with 

better than ¼ beam accuracy on each array to achieve the 

same performance as the proposed fuse-before-track 

technique. Therefore, a fuse-before-track method 

implicitly generates performance equivalent to single-

sensor trackers with ¼ beam accuracy. 

4.4 Monte Carlo Comparison  

We extended the simulations above by running a series 

of Monte Carlo trials over target trajectories.  In particular, 

we allowed the target trajectory to vary in East/North 

space over trials.  With this approach to computing error 

statistics, we are now able to determine the expected 

ranging error as a function of space (like in Figure 7 

above).  This accumulation requires that we run a very 

large number of trials to guarantee that the target traverses 

all discrete cells in space at least once. 

Figure 13 shows a Monte Carlo comparison of the track-

before-fuse and fuse-before-track approaches, where we 

perform error averaging over target trajectories.  In the top 

panel, we see the track-before-fuse error.  We expect this 

to be a blend of the HA-error and the TA error (both from 

Figure 7).  Comparing the results in Figure 13 with Figure 

7 shows that Figure 13 does have the expected behavior 

(ranging error generally between that of the HA-only case 

and the TA-only case).   

The bottom panel shows ranging error from our fuse-

before-track approach.  We see that the errors are much 

smaller over most cells in the surveillance region. 

 

 

Figure 13:  Monte Carlo comparison of (top) 

track-before-fuse and (bottom) fuse-before-track 

approaches 

5 Conclusion 

Traditional track fusion techniques operate by running 

trackers separately at each sensor and then fusing these 

single-sensor tracks for associated targets via a geometric 

localization step.  In this paper, we have derived analytic 

expressions (based on scene geometry) that describe the 

state estimation errors that characterize such track-fusion 

methods.  Comparing those results to outputs of a track-

fusion implementation with simulated data produced 

strong agreement. 

We also outlined a Bayesian fuse-before-track approach 

for tracking moving targets.  The approach differs from 

traditional fusion methods because it fuses data from 

multiple sensors prior to tracking.  Finally, we executed a 

fuse-before-track algorithm for comparison with the track-

fusion approach.  The fuse-before-track method out-

performs the track-fusion method in terms of RMSE for 

realistic single-sensor tracker performance. 
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