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The problem of detecting, locating, and tracking dismounts 
(moving people), using a distributed collection of simple and cheap 
narrowband (and, hence, low-resolution) radar devices, is an 
extremely challenging problem. It has been a topic of considerable 
research for the past several years. In particular, system perform­
ance is dependent upon both the positioning of the devices and the 
detection/tracking algorithms applied to the raw radar data. This 
month's Measurements Comer paper describes a novel 8ayes­
optimal nonlinear filtering technique for the latter. It demonstrates 
that reasonable dismount tracking can be accomplished with 5-
10m bistatic range-resolution systems. 
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Abstract 

This paper describes a statistical signal-processing method for exploiting narrowband bistatic RF measurements to detect and 
track moving people (hereafter referred to as "dismounts"). In our approach, RF measurements are made by a constellation of 
narrowband radar units, arranged around a surveillance region. There are several benefits of narrowband radar in this 
application, which we describe in the paper. However, the narrow bandwidth means that individual measurements only yield 
coarse information about target state. We show that by fusing measurements from multiple bistatic sensors over time with a 
Bayesian nonlinear-filtering algorithm, we can effectively estimate dismount position and velocity using as little as 5-10 m 
bistatic range resolution. We illustrate the algorithm's efficacy with an experiment where a moving person is detected and 
tracked from a constellation of four narrowband bistatic sensors. 
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1.  Introduction 

This paper describes a method for detecting and tracking mov­
ing targets using measurements from a constellation of inex­

pensive bistatic narrowband RF sensors. Measurements are made 
using a commercial step-frequency radar in a cluttered environ­
ment. These measurements couple nonlinearly to the state we wish 
to estimate, and are corrupted by non-Gaussian noise. We present a 
Bayes-optimal method for fusing these measurements to effec­
tively locate the moving target. We illustrate the efficacy of the 
method using bistatic measurements with 5-\ 0 m range resolution 
to track a moving target. 

A constellation of narrowband sensors has a number of bene­
fits over conventional wideband sensors in this application. First, 
commercial applications have led to an erosion of the available 
spectrum, meaning often only a small portion is available for other 
use [I]. Furthermore, narrowband sensors are inexpensive, due to 
their simple electronics, require low energy consumption, are easy 
to maintain, and it is easy to communicate their data to a central­
ized processing point. However, perhaps most importantly, a con­
stellation of narrowband sensors provides geometric diversity. By 
combining bistatic measurements with advanced signal-processing 
techniques such as those described here, this trades costly spectral 
diversity for cost-efficient spatial diversity, while providing per­
formance improvement. 

The main contributions of this paper are the description of a 
Bayes-optimal nonlinear-filtering method, which admits nonlinear 
and non-Gaussian measurements made by the sensors, and a vali­
dation of its assumptions using measurements from a four-antenna 
bistatic radar setup. 

Standard methods [2] address the tracking problem in two 
sequential phases: detection and tracking. In particular, one algo­
rithm is responsible for generating threshold exceedances (detec­
tions) at each epoch. These detections are then passed to a separate 
(typically, Kalman-based) tracking algorithm. In contrast, our 
approach performs track-before-detect and fuse-be fore-track, i.e., 
there is no thresholding (or other hard decision) on received meas­
urements, and all measurements are incorporated softly into a 
probabilistic estimate. Furthermore, our method directly models 
non-Gaussian measurement statistics, such as those received after 
signal processing, which generates a pixilated data cube. Finally, 
the nonlinear-filtering method also directly models indirect nonlin­
ear measurements of the quantities of interest. 

This problem has received some attention in the literature. Of 
particular relevance is [3], which recently appeared in this column. 
In that interesting work, a collection of wideband radars made 
measurements of a dismount in a see-through-the-walls applica­
tion. In contrast, the work we report on here uses narrowband 
measurements, and employs a tracker to synthesize measurements 
over time. Multi-static range and range-rate tracking have also 
received some attention. References [4-6] approached the problem 
using a direct-measurement model with Gaussian error, rather than 
the pixilated Rayleigh model we use here. References [5, 6] used 
extended Kalman-filter-type approaches, rather than the nonlinear­
filtering approach we use. Reference [7] treated the problem with a 
nonlinear-filtering approach, but in an active-sonar setting, which 
required a very different physical model. 

The paper proceeds as follows. Section 2 describes a statisti­
cal model for the measurements. Section 3 briefly describes how 
the model is combined with a nonlinear filter to provide a tractable 
Bayes optimal estimation. Section 4 describes an experiment 
where we collected narrowband bistatic range and range-rate 
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measurements from a four-antenna constellation, and validated the 
tracking algorithm and modeling approach. Finally, Section 5 pro­
vides some concluding remarks. 

2. The Sensor Model 

We assume a constellation of N sensors. To simplify the 
notation, we assume each sensor is both a transmitter and a 
receiver, although this assumption is not a requirement. A sensor 
transmits a narrowband RF signal, which is reflected off the target 
and received at each sensor. This process repeats N -\ times, with 

each sensor serving as transmitter. There are then N2 bistatic 
pairs, which use Fourier processing on the received data to gener­
ate a bistatic-rangelbistatic-range-rate surface [8]. This surface is 
nonlinearly related to the state of the target, and is corrupted by 
various types of noise. The aim of this section is to describe a 
physics-based statistical model of the observables. 

Let zij denote the envelope-detected value in the (i,})th 

bistatic range/range-rate resolution cell. The number of cells and 
the cell resolution are determined by the number of pulses, the 
pulse-repetition frequency (PRF), the coherent processing interval 
(CPI), and the bandwidth (BW) of the radar [9]. The collection of 
measurements is then the matrix of bistatic range/range-rate corre­
lations in each cell, i.e., 

[ZII
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z

(
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zNrl 
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Z NrNd 

(
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where Nr and Nd are the number of bistatic range and range-rate 

cells. Figure I shows an example processed measurement for a 
0.5 s coherent processing interval. 

Let the vector x = [x X y y] describe the true two­

dimensional position and velocity of the target. The distinction 
between scalar x and vector x will be clear by context. The statis­

tics of the measurement in bistatic range/range-rate cell (i,}) 
depend on its proximity to the true bistatic range and range-rate of 

Figure 1. An example the collected range/range-rate surface. 
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the target. Other factors, such as the range to the target, the illumi­
nation, and the receiving pattern of the antenna may also play a 
role. However, these are not important in our experiments, which 
use a close-in target with large-beamwidth antennas, so these 
effects are not modeled here. 

The location of the transmitter, t ,  will be denoted (tx,ty), 

and the location of receiver r will be denoted (rx,ry). With this 

notation, the true bistatic range and range-rate is computed as 

and 

This true bistatic range/range-rate maps to a particular cell, which 

we will denote l(t,r),}(t,r). We use a point-target model, which 

ignores extended target effects such as sidelobes, the range-rate 
smearing that will happen in applications with a long coherent 
processing interval, and range extent that will happen with fine 
range resolution (high bandwidth). Since our application uses a 
short coherent processing interval and a small bandwidth, the 
point-target assumption is approximately valid. The extension to 
non-poi nt-target models is straightforward, but is not necessary in 
this application. 

The physical model we employ says the statistics of the tar­
get cell are Rayleigh with a target parameter, and the statistics of 
the background cells are Rayleigh with a background parameter: 

zij(t,r) [ z3(t,r) ] A A 

2--2 -exp ---2 - i,j'* i (t,r ),j(t,r) 
A,b A,b 

(4) 

In general, we allow the background and target mode 
parameters to vary with t and r, but for the sake of notational clar­
ity we show them fixed here. Continuing with the point-target 
model - which assumes that measurements in different pixels are 
independent - we write 

Nr Nd 
p[z(t,r)lx J= TITIp[zij(t,r)lx ] ' (5) 

i=1 j=1 

and simplify successively as 

p[z(t,r)lx J= p[zi(l,r),}(I,r)(t,r)lx ] 

100 

Nr Nd 
TITIp[zij(t,r)lxJ 
i=1 j=\ 

i,f*i(l,r),}(I,r) 
(6) 

as the probability of an Nr xNd range/range-rate surface given the 

true state, x. We further assume range/range-rate surfaces are con­
ditionally independent across transmitted/received pairs. We write 
the probability of all of the bistatic range/range-rate measurements 
from a constellation of transmitting/receiving antennas as 

p(zlx) 

A,b [ (Ar2 
-A,l) 2 1 = ITITp[z(t,r)lx Joc ITIT-;- exp 

A,2Ar2 Zi(l,r),}(I,r) (t,r) 
Ir I r ''1 b 

(8) 

3. Bayesian Target Detection and Tracking 

This section describes a Bayes-optimal single-target tracking 
algorithm that employs the model from Section 2 to fuse measure­
ments over bistatic pair and time. 

3.1 Notation 

Denote the state of a target at time k as xk, which for this 
work refers to the two-dimensional position and velocity, i.e., 

xk = [x X y y]. Additionally, let H� denote the hypothesis 

that no target is present at time k, and let Hf denote the hypothe­

sis that a target is present. Measurements will continue to be 
described as follows: 

The envelope-detected value in range/range-rate cell 

(i,j) at coherent processing interval k from transmit-

ter t and receiver r is denoted zt (t, r) ; 

The collection of all zt (t,r) made at a partiCUlar 

coherent processing interval is denoted zk (t, r), i.e., 

zk (t,r) = {41 (t,r ), ... ,ztrNd (t,r)} ; 

The collection of all measurements made at a particular 
coherent processing interval k (i.e., from all transmit-

ting/receiving pairs) is denoted simply zk, i.e., 

zk = {zk (l.l), . . . ,zk (T,R)}; 

Finally, Zk will denote the collection of all measure­
ments received up to and including time k, i.e., 

Z = z ,"',Z . k {I k} 
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3.2 Approach 

The Bayesian method is to estimate the joint probability a 

target is present (Hlk is true) at each state xk given the measure­
ments. Mathematically, we estimate the hybrid continuous-discrete 
probability density function (PDF) 

(9) 

for all xk, as well as the discrete probability 

(10) 

Notice that we can write 

i.e., the density is the product of the target-present probability, 

p(Ht Izk), and the target-state probability, p(xk,Ht IZk). 
Both conceptually and from an implementation standpoint, we 
treat the problem as separate (but coupled) tasks of estimating the 
target-present probability and estimating the target-state probabil­
ity. 

In the Bayesian approach, we assume that a prior estimate of 
the desired probabilities is present, and generate a recursion relat­
ing probabilities at one time step with those at the next. This is 
done in two steps, analogous to the Kalman Filter (but this is not a 
Kalman Filter): the temporal update, which predicts the probability 
distribution at time k from that at time k -I , and the measurement 
update, which corrects the predicted probability distribution at time 
k given the measurements received at time k . 

The first step in recursive Bayesian filtering is to predict the 
relevant probability distributions forward in time, using statistical 
models based on target kinematics. The temporal update of the tar­
get present density is 

where the quantity p(Ht I Zk-I ,H{-I) is a statistical model to be 

specified by studying the target-arrival properties. 

Similarly, the time-predicted target-state density is based on a 
model of how targets move: 

p( xk I Ht ,Zk-I) 

(Hk-I I Zk-I ) 
= P I 

fp(xk Hk Ixk-I Hk-l
)p(xk-IIHk-1 Zk-I'Wyk -1 

( k k-I) 
'I ' I  I' r 

pHllZ 
(13) 

where the density p (xk ,Ht I xk-I ,Ht-I) is a statistical model of 

target kinematics to be specified in the particular implementation. 
The integral is to be interpreted as performing the multidimen­
sional integral required. The normalizing term does not need to be 
evaluated, as the density can be forced to integrate to one. In this 
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work, we assume the nearly constant velocity (NCV) model for the 
target. Other models, or even multiple models, are admissible 
under the Bayesian framework [10]. 

3.3 Measurement Update 

The second step in Bayesian filtering is to accommodate 
measurements into the probability estimate. The measured data 

comes into the picture through the sensor model, p (zk I Ht ,xk ) , 

where the functional form of the model is specified by sensor 
physics, as in Section 2. 

The target-present and target-absent probabilities are 
measurement-updated using the law of total probability and the 
Bayes rule, yielding 

(14) 

p(Hk I Zk-I) 
p(Hlklzk)= 

(
� 

k-I) 
fp(Zk IHlk,xk)p(xk I Ht,zndxk. 

p z IZ 
(15) 

These equations expresses the current target-present and target­
absent hypothesis probabilities in terms of the target-present, tar­
get-absent, and target-state probabilities predicted from the previ­
ous time step, and the conditional likelihood of incoming meas­
urements. The normalization constant does not need to be com-

puted, since p( Hlk I Zk)+ p( H� I Zk) = 1. 

The target-state probability is updated similarly: 

( k I k Hk) 
( k k k) (k k k-I) 

p z x, I pxlHI,Z =pxIHI,Z 
(k k k

_I)
· (16) 

p z IHI ,Z 

Again, constants independent of xk are not computed. 

In our application, which exploits bistatic pixilated 
range/range-rate measurements, the model developed in Section 2, 

Equation (8), provides p (zk I xk ,Ht ) . 

3.4 Implementation 

If the probability density of interest is well approximated by 
a Gaussian or sum-of-Gaussians, techniques such as the Extended 
Kalman Filter or Gaussian Sum Filter are preferred. However, in 
the bistatic RF case we study here, where we make measurements 
of bistatic range and range-rate, the density is poorly approximated 
by such parameterizations. We instead rely on a discrete-grid 
approximation to the probability density. 

The details of the discrete-grid implementation are briefly 
reviewed here. For more detail, see [10, II]. 
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3.4.1 Density Representation 

The PDF of x is discretized onto a four-dimensional grid 

(corresponding to the four-dimensional state vector, xk) of 
Nx x Nx x Ny x Ny cells. The spatial extent of this grid dictates the 

overall region where targets may be detected. This approximation 
is appropriate here, given that we wish to perform surveillance 
over a region of fixed spatial extent. 

3.4.2 Kinematic and 
Measurement Updates 

The temporal evolution of the probability density on xk can 
be expressed in continuous time using a partial differential equa­
tion. For dismount tracking, the so-called nearly constant velocity 
model (NCV) is appropriate, and leads to the Fokker-Plank Equa­
tion [2]: 

ap . ap . ap 0'; a2 p 0'; a2 p -=-x--y-+ ---+ ---. 
at ox Oy 2 ox2 2 ay2 (17) 

Computationally, the state probability is discretized onto the grid 
and the update is computed from time k -1 to k using a backward 
Euler method. This approach has nice stability properties in both 
/).t and 8x. We use Thomas' algorithm as a fast tridiagonal 
solver, leading to computation that is linear in the number of grid 
cells. For more details, see [12]. The temporal evolution of the tar­
get-present probability assumes constant target arrival/removal. 

New measurements are incorporated by updating the time­
predicted grid approximation using the likelihood of the measure­
ments. Practically, the discrete-grid probability is updated simply 
by point-wise multiplication of each cell in the discrete representa­
tion by the corresponding data likelihood. 

4. Experimental Results 

This section describes a set of measurements to validate the 
nonlinear-filtering algorithm described in Section 3. The experi­
ment consists of a set of four geometrically diverse antennas that 
measure information about bistatic range and range-rate of a mov­
ing dismount. We show with this experimental data that our algo­
rithm is able to accurately detect and track the dismount as it 
moves though the surveillance region using just 60 MHz of band­
width (5 m bistatic range resolution). 

4.1 Test Hardware 

The experiment we describe here employed a commercially 
available AKELA AVMU500A radar, along with four SAS-510-4 
antennas. The antennas were directional, and were specified to 
have a 3 dB point of 410 by the manufacturer. The system was 
selected because its size and versatility demonstrated the ability of 
a compact, contained system to effectively collect the necessary 
data. 
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The radar was a stepped-CW type, capable of transmitting 
pulses between 300 MHz and 3 GHz. The rate at which the indi­
vidual frequencies were sampled was selectable, but was typically 
set at 45 kHz, which was the maximum rate where good data was 
collected. The radar had four ports, any of which could be used for 
transmitting or receiving. However, because the radar had only one 
transmitter and receiver, it was not possible to simultaneously 
receive multiple ports. Therefore, the collections were transmitted 
and received between one pair, and then moved to transmit and 
receive to the next pair, and so on. Since this happened at a very 
fast rate compared to the dismount speed, the measurements were 
well approximated as being simultaneous. 

Figures 2 and 3 show one of the antennas as deployed, and 
the AKELA unit. 

4.2 Experimental Setup 

Four antennas (numbered 1, 2, 3, and 4) were arranged along 
a 35 m line and pointed toward the interior of the surveillance 
region, as illustrated in Figure 4. GPS measurements of the antenna 
locations were made with a hand-held unit, but there may have 
been an error of as much as 25 cm in placing the GPS units. GPS 
measurements were not differentially corrected. This error was not 
ideal, but not significant compared to the 5 m to 10 m bistatic 
range resolution of the measurements. 

Figure 5 shows the surveillance region. The four antennas 
were located at y = 0 and x = 0 ,  13, 22, and 36 m. The antennas 
were pointed at the scene's center (indicated by a green circle). 

4.3 Collected Data 

A dismount walked a zigzag pattern in the surveillance 
region. Bistatic measurements were collected using Antenna 1 as 
the transmitter, and the other antennas (2, 3, and 4) as receivers. 

In this stepped-chirp single-radar multiple-antenna system, 
the collection proceeded as follows: First, Antenna I transmitted a 
short pulse at the lowest frequency (1.925 GHz). Returns were 
received by Antenna 2. Antenna I transmitted a short pulse at the 
second-lowest frequency (1.928 GHz), which was received by 
Antenna 2, and so on, until the highest frequency (2.075 GHz) was 
completed. Once the final pulse between Antenna 1 and Antenna 2 
was completed, the process was repeated between Antenna I and 
Antenna 3: and then between Antenna I and Antenna 4. The indi­
vidual sweep pulses proceeded at 45 kHz, but the overall rate was 
dictated by the number of sweep pulses per pair (here chosen to be 
50), the number of bistatic pairs (here there were three pairs), and 
the switching times. In this experiment, the actual complete-cycle 
pulse-repetition frequency (measured between the time the first 
sweep pulse was transmitted between Antenna I and Antenna 2 
and then repeated again) was 140 Hz. 

Measurements were made on the moving dismount over 
about a 60 s period. The true path was determined with a handheld 
GPS unit, which was not differentially corrected. Figure 6 shows 
an image of the dismount walking during the experiment. 

We chose to collect data with 150 MHz of bandwidth cen­
tered around 2 GHz, with 50 sample frequencies (i.e., pulses 
spaced 3 MHz in frequency). This bandwidth implied a bistatic 
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Figure 2. The Akela unit. 

Figure 3. A Vagi log-periodic antenna, as deployed. 

Figure 4. The four-antenna configuration used in this experi­
ment. 

4 

Figure 5. The surveillance region. All antennas pointed at the 
scene's center (denoted by the green circle). 

Figure 6. An image of the dismount walking during the 
experiment. 
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Figure 7. An example of the collected range/range-rate surface 
from Transmitter 1 to Receiver 3. The dismount is at range bin 
30. 
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Figure 8. The tracker estimate of the dismount's position with 
2 m of bistatic range resolution (150 MHz bandwidth), as com­
pared to the GPS estimate. Tracker covariance ellipses are 
shown at three points during the collection for reference. 
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Figure 9. The tracker estimate of the dismount's position as 
compared to the GPS estimate of position and velocity. 
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Tracking Results, 150MHz BW -- 2m range resolution 
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Figure 10. The tracker estimate of the dismount's position as 
the bandwidth was reduced. 

range resolution of c/ B W = 2 m. In the results section, we show 

that we could decimate the collected data (by simply discarding 
data) to a bandwidth of as little as 30 MHz (10 m bistatic range 
resolution) and still perform credible tracking. 

The received complex-frequency returns were blocked up 
into a 0.5 s coherent processing interval, and Fourier transformed 
into a range/range-rate surface, as described in Section 2. The 
resulting input-data surface at 150 MHz of bandwidth had 50 range 
bins with 2 m resolution. An example collected during this 
experiment is shown in Figure 7. 

4.4 Results 

We employed the nonlinear-filter-based target tracker 
described in Section 2 above. We used a 51 x 3 I x 5 I x 3 I grid, and 
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a 35 m x 6 m/s x 35 m x 6 mls surveillance region. Tracking 
results using 2 m of range resolution are illustrated in Figure 8 and 
Figure 9. Figure 8 shows the tracker point estimate and selected 
covariance ellipses with respect to the GPS recordings on an xy 
map. Figure 9 shows the individual state-component estimates 
(position and velocity) as compared to the GPS estimates. Note 
that the GPS measurements were not differentially corrected, so 
there is some error in the estimate of path truth and in the trans­
mitter/receiver locations. 

We systematically reduced the bandwidth of the collected 
data by discarding measurements. This showed the utility of the 
tracking approach as the bandwidth was reduced. Figure 10 shows 
the tracker estimate of the target's state as the bandwidth was 
reduced from 150 MHz to 30 MHz (and the bistatic range resolu­
tion was changed from 2 m to 10 m). 

5. Conclusion 

This paper has presented a statistical signal-processing 
method for using RF measurements to detect and track moving tar­
gets from a narrowband constellation. Using a set of measure­
ments, we have shown that the algorithm is able to detect and track 
a dismount with on the order of a range resolution of 5 m. The 
nonlinear-filtering approach optimally fuses bistatic range and 
range-rate measurements made by a collection of sensors without 
thresholding or linear/Gaussian assumptions, thereby improving 
the detection/false-alarm tradeoff, and lowering tracking error over 
conventional methods. 
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