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a b s t r a c t

This paper presents a new approach to the real time single and multiple target detection

and tracking problems with measurement input data. The new approach addresses the

measurement uncertainty-of-origin issue by capturing all measurement input data

information in the Bayesian conditional probability density function (PDF), used in the

recursive propagation of the posterior target detection and tracking information PDF

over time via Bayesian and Markov PDF updates. The application of Bayes’ formula over

time resolves measurement association ambiguities. Under linear, Gaussian assump-

tions, the posterior PDF is a repeating Gaussian mixture. This leads to computational

simplifications and efficiencies in implementation. Simulation results demonstrate

operation and performance.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction and overview

The primary purpose of many systems is detection,
localization, and classification of targets of interest. This
paper is concerned with a real time solution for the first
two: detection and localization, or tracking a time-varying
target parameter state such as position and velocity. To
achieve these purposes, data from sensors, usually energy
either reflected or emitted by a target, is collected and
exploited.

The standard architecture for a detection and tracking
system may be considered to have three high level
functional blocks: (1) sensors (2) signal processing (3)
detection and tracking. The first function is the collection
of sensor data over time. The signal processing function
accepts sensor data as input. It interrogates the computed
sensor data observation space for the presence of
potential targets and produces ‘‘measurements’’ at poten-
tial target detection locations over time as output. This
process may be thresholding of energy peaks.
ll rights reserved.

: +1 703 983 6708.
Measurements are the input data to the last function,
system level detection and tracking, which provides the
system outputs, the number of detected targets and the
target parameter state of each detected target, over time.
This paper focuses on the detection and tracking function
and presents a new approach.

A major issue is measurement ‘‘uncertainty-of-origin’’.
A measurement may either be due to (‘‘associated’’ with)
a target of interest but with a random observation error or
may be unwanted random ‘‘clutter’’ (false alarm). Even for
the former desired case, there is uncertainty-of-origin
with respect to multiple targets of interest. Additionally,
targets may be ‘‘missed’’, or not detected in the measure-
ment input data.

A target parameter state cannot be deterministically
found due to this uncertainty and randomness in the
measurement input data. Even if a target parameter state
were known with certainty at a time, a future target
parameter state cannot be found with certainty due to
random target time-varying behavior. These statements
assume target presence and can also be applied to the
target detection problem itself, the determination of a
target detection state: target absent or target present.

The standard accepted approach to address the ill
effects of uncertainty and randomness for this or any
problem is to statistically characterize the input data and
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also for this problem, the time-varying, or dynamic, target
behavior. Then, the desired target information (current
target detection and parameter states) is statistically
characterized using applied statistical inference. I.e., the
probability density function (PDF) of the desired target
information conditioned on knowing all available input
data (current and past) is found and is the posterior target
information PDF, which contains all target knowledge.
This is our basic approach.

The standard accepted approach to achieve this is the
recursive propagation of the posterior target information PDF
over time via Bayesian and Markov PDF updates. The
completely general Bayes–Markov filter is presented in [1]
and is beyond any question as the correct and preferred
approach. The development is the incorporation of the input
data (measurements here) observation model into the
Bayesian conditional PDF and the target dynamic model into
the Markov transition PDF. They are required in the Bayesian
and Markov PDF updates. Then, algebra can be performed in
the general Bayes–Markov filter to proceed to a solution.

The Kalman filter [2,3] is the prime example for this
fundamental approach and is a special case of the more
general and complex problem here. The goal is to repeat
this success. The strict adherence to the general Bayes–
Markov filter is what sets this paper apart from the major
existing approaches, probabilistic data association (PDA)
[4], joint probabilistic data association (JPDA) [5],
and multi-hypotheses tracking (MHT) [6], which explicitly
enumerate association hypotheses. This paper is related
to our previous work [7–16]. Comprehensive treatments
of this field are [17–23]. Specific applications include
[24–26].

This paper presents solutions for both the single and
multiple target detection and tracking problems. The
single target solution is presented in two levels of
specificity. The first level is the general single target
detection and tracking solution, presented in Section 2, as
a special case of the general Bayes–Markov filter. This
solution is realized as simultaneous interdependent
detection and tracking solutions and was developed in
[9]. The final level of specificity, presented in Section 3, is
the incorporation of the standard uncertainty-of-origin
measurement observation model and the standard target
dynamic model both with linear, Gaussian assumptions
(i.e., the Kalman filter conditions) [17–23] into the general
solution in Section 2. This solution is optimal in that it
identically achieves the correct posterior PDF solution,
which contains all detection and tracking information,
and is necessary and sufficient to optimally compute any
desired detection and tracking output.

The straightforward joint extension to the multiple
target problem is, in general, not computationally feasible.
A single target solution depends only on its correctly
associated measurements. They are identified as part of
the solution and can be efficiently excluded from all other
single target solutions. The resulting single target solu-
tions are all mutually orthogonal. They do not ‘‘share’’
measurements. This is also the underlying basis for all the
major existing approaches. These single target solutions
are independent with each solution optimal. Then, the
optimal joint multiple target posterior PDF solution is the
product over all these single target solutions. The multiple
target solution, presented in Section 4, consists of
interactive parallel single target solutions, or detector-
trackers, with each tracking its ‘‘ own’’ target. The basis of
this approach was developed in [10].

2. General single target detection and tracking solution

In this section, we develop the optimal general single
target detection and tracking solution. We cast the
problem of estimating target presence and its parameter
state conditioned on its presence as one of probabilistic
inference. Using statistical models on input data and
target kinematics, we show how these probabilities can be
recursively computed from the actual received data.

2.1. Setup

Input data are received over time at discrete proces-
sing time intervals, or scans. Let zk be all input data at
scan k occurring at time tk and is general. Let Zk be all
input data through scan k and is the union of all current
and past input data zk.

Zk ¼ zk [ zk�1 [ zk�2 [ � � � ¼ zk [ Zk�1 ð1Þ

Let Xk be the time varying total state of all target
information at scan k. For the single target detection and
tracking problem, the observable total target state Xk is
the joint state of discrete target detection state hk and
general continuous target parameter state xk. Target
detection state hk has two possible values: target absent
and present hypotheses H0,k,H1,k. Target parameter state
xk is not observable for target absent, only for target
present. Posterior total target state PDF pðXkjZkÞ is

pðXkjZkÞjhk ¼ H0;k
¼ pðhk;xkjZkÞjhk ¼ H0;k

¼ pðH0;kjZkÞ ð2Þ

pðXkjZkÞjhk ¼ H1;k
¼ pðhk;xkjZkÞjhk ¼ H1;k

¼ pðH1;k;xkjZkÞ ð3Þ

Total target state conditional PDF pðzkjXkÞ is

pðzkjXkÞjhk ¼ H0;k
¼ pðzkjhk;xkÞjhk ¼ H0;k

¼ pðzkjH0;kÞ ð4Þ

pðzkjXkÞjhk ¼ H1;k
¼ pðzkjhk;xkÞjhk ¼ H1;k

¼ pðzkjH1;k;xkÞ ð5Þ

Posterior total target state PDF pðXkjZkÞ in (2) and (3) is
a mixed discrete and continuous PDF. In (2), probability
pðH0;kjZkÞ is the posterior target absent probability. In (3),
PDF pðH1;k;xkjZkÞ is the continuous joint posterior target
present and target parameter state xk PDF and is an
improper PDF in that its total integral is one only for
certain target presence. The joint posterior probability of
target present and target parameter state xk occurring in a
region is the integral of posterior target parameter state
PDF pðH1;k;xkjZkÞ in (3) over that region. Detection and
tracking information in input data zk is only available
through (4) and (5), determined by observation models.

Posterior target present probability pðH1;kjZkÞ irrespec-
tive of any target parameter state xk value is the total
probability in posterior target parameter state PDF
pðH1;k;xkjZkÞ in (3).

pðH1;kjZkÞ ¼

Z
pðH1;k;xkjZkÞdxk ð6Þ
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Together, target absent and target present hypotheses
H0,k,H1,k have a two state discrete posterior detection PDF
pðH0;kjZkÞ;pðH1;kjZkÞ. From (2), (3), and (6),Z

pðXkjZkÞdXk ¼ pðH0;kjZkÞþ

Z
pðH1;k;xkjZkÞdxk ¼ 1 ð7Þ

¼ pðH0;kjZkÞþpðH1;kjZkÞ ¼ 1 ð8Þ

The tracking only case is target parameter state xk

conditioned on target present hypothesis H1,k true.
Continuous tracking only posterior tracker PDF
pðxkjH1;k;ZkÞ is a normalized version (forced to integrate
to 1) of posterior target parameter state PDF pðH1;k;xkjZkÞ

in (3).

pðxkjH1;k;ZkÞ ¼
pðH1;k;xkjZkÞR

pðH1;k;xkjZkÞdxk
¼

pðH1;k;xkjZkÞ

pðH1;kjZkÞ
ð9Þ

pðH1;k;xkjZkÞ ¼ pðxkjH1;k;ZkÞpðH1;kjZkÞ ð10Þ

In (9) and (10), posterior tracker PDF pðxkjH1;k;ZkÞ and
posterior target parameter state PDF pðH1;k;xkjZkÞ are
related by posterior target present probability pðH1;kjZkÞ.
Data Zk as a conditional in this section generalizes to other
conditionals.

2.2. Methodology overview

Posterior detection PDF pðH0;kjZkÞ;pðH1;kjZkÞ and pos-
terior tracker PDF pðxkjH1;k;ZkÞ, respectively, contain all
detection and tracking information. They are required for
the system outputs in Section 1. Also, independent
dynamic models are defined on target presence and the
target parameter state conditioned on target present. For
these reasons, both posterior detection PDF pðH0;kjZkÞ;

pðH1;kjZkÞ (see Section 2.3) and posterior tracker PDF
pðxkjH1;k;ZkÞ (see Section 2.4) are recursively propagated
over scans. For clarity, we give an outline of the step-by-
step derivation of this process.

Assume the existence of prior detection PDF
pðH0;kjZk�1Þ;pðH1;kjZk�1Þ and prior tracker PDF pðxkjH1;k;

Zk�1Þ at scan k. First, find prior target parameter state PDF
pðH1;k;xkjZk�1Þ from (10). That and prior target absent
probability pðH0;kjZk�1Þ constitute prior total target state
PDF pðXkjZk�1Þ in (2) and (3).

Next, find posterior total target state PDF pðXkjZkÞ in
(2) and (3) via Bayes’ formula but utilizing unnormalized
PDFs and likelihood ratios (LRs) to simplify the develop-
ment and implementation. Unnormalized posterior total
target state PDF p0ðXkjZkÞ in (2) and (3) is

p0ðH0;kjZkÞ ¼ pLRðzkjH0;kÞpðH0;kjZk�1Þ ð11Þ

p0ðH1;k;xkjZkÞ ¼ pLRðzkjH1;k;xkÞpðH1;k;xkjZk�1Þ ð12Þ

The LRs in (11) and (12) are normalized likelihood
functions (LFs) pðzkjH0;kÞ;pðzkjH1;k;xkÞ from (4), (5).

pLRðzkjH0;kÞ ¼
pðzkjH0;kÞ

pðzkjH0;kÞ
¼ 1 ð13Þ

pLRðzkjH1;k;xkÞ ¼
pðzkjH1;k;xkÞ

pðzkjH0;kÞ
ð14Þ

LR pLRðzkjH1;k;xkÞ in (14) is the relative likelihood of
target presence at target parameter state xk with respect
to target absence and contains all input data zk detection
and tracking information. Unnormalized posterior target
absent probability p0ðH0;kjZkÞ and posterior target para-
meter state PDF p0ðH1;k;xkjZkÞ in (11) and (12) are
normalized, satisfying the identity in (7), to find posterior
total target state PDF pðXkjZkÞ in (2) and (3).

pðH0;kjZkÞ ¼
p0ðH0;kjZkÞ

p0ðH0;kjZkÞþ
R

p0ðH1;k;xkjZkÞdxk
ð15Þ

pðH1;k;xkjZkÞ ¼
p0ðH1;k;xkjZkÞ

p0ðH0;kjZkÞþ
R

p0ðH1;k;xkjZkÞdxk
ð16Þ

Next, posterior detection PDF pðH0;kjZkÞ;pðH1;kjZkÞ

and posterior tracker PDF pðxkjH1;k;ZkÞ are found using
(6) and (9). To complete the cycle, prior detection PDF
pðH0;kþ1jZkÞ;pðH1;kþ1jZkÞ and prior tracker PDF
pðxkþ1jH1;kþ1;ZkÞ are found for scan kþ1 from these
posterior PDFs based on their dynamic model.

This methodology depends on the equivalent reversi-
ble transformation from the detection and tracker PDFs to
the total target state PDF in (2) and (3) with no loss of
information, and vice versa.

2.3. Detection solution

Collapsing the steps in Section 2.2, the unnormalized
posterior detection PDF Bayesian update is

p0ðH0;kjZkÞ ¼ pLRðzkjH0;kÞpðH0;kjZk�1Þ ð17Þ

p0ðH1;kjZkÞ ¼ pLRðzkjH1;kÞpðH1;kjZk�1Þ ð18Þ

Target absent LR pLRðzkjH0;kÞ in (17) is one from (13).
Target present LR pLRðzkjH1;kÞ in (18) is

pLRðzkjH1;kÞ ¼

Z
pLRðzkjH1;k;xkÞpðxkjH1;k;Zk�1Þdxk

¼

Z
p0ðxkjH1;k;ZkÞdxk ð19Þ

Target present LR pLRðzkjH1;kÞ in (19) is the average LR
pLRðzkjH1;k;xkÞ in (14) weighted by prior tracker PDF
pðxkjH1;k;Zk�1Þ in (26) and is also the total integral over
unnormalized posterior tracker PDF p0ðxkjH1;k;ZkÞ in (24).
For a detection only problem (known target parameter
state xk), target present LR pLRðzkjH1;kÞ in (18) is LR
pLRðzkjH1;k;xkÞ in (14). Eq. (19) optimally reflects the
uncertainty in target parameter state xk. Unnormalized
posterior target detection PDF p0ðH0;kjZkÞ;p

0ðH1;kjZkÞ in
(17), (18) is normalized, satisfying the identity in (8).

pðH0;kjZkÞ ¼
p0ðH0;kjZkÞ

p0ðH0;kjZkÞþp0ðH1;kjZkÞ
ð20Þ

pðH1;kjZkÞ ¼
p0ðH1;kjZkÞ

p0ðH0;kjZkÞþp0ðH1;kjZkÞ
ð21Þ

Posterior target present probability pðH1;kjZkÞ in (21) is
the quantification of target presence confidence and is the
optimal system level detection statistic. The tracking
solution outputs in Section 2.4 are valid only for a
sufficiently high target presence confidence.

Posterior target present probability pðH1;kjZkÞ in (21)
decreases, stays the same, or increases with respect to
prior target present probability pðH1;kjZk�1Þ in (18)
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depending on whether target present LR pLRðzkjH1;kÞ in
(18) is less than, equal to, or greater than one.

Prior target detection PDF pðH0;kjZk�1Þ;pðH1;kjZk�1Þ in
(17), (18) is known from the detection PDF Markov update
in (22) or from initialization:

pðH0;kjZk�1Þ

pðH1;kjZk�1Þ

" #
¼

pðH0;kjH0;k�1Þ pðH0;kjH1;k�1Þ

pðH1;kjH0;k�1Þ pðH1;kjH1;k�1Þ

" #
pðH0;k�1jZk�1Þ

pðH1;k�1jZk�1Þ

" #

ð22Þ

Posterior target detection PDF pðH0;k�1jZk�1Þ,
pðH1;k�1jZk�1Þ in (22) is known from (20), (21). Detection
Markov transition probabilities pðHi;kjHj;k�1Þ (i, j=0,1) in
(22) are the target detection state probabilities at scan k

given a known target detection state at scan k�1. In
Section 6, the detection Markov state transition prob-
ability matrix is binary symmetric:

pðH0;kjH0;k�1Þ pðH0;kjH1;k�1Þ

pðH1;kjH0;k�1Þ pðH1;kjH1;k�1Þ

" #
¼

1�qdet qdet

qdet 1�qdet

" #

ð23Þ

The binary symmetric detection Markov state transi-
tion probability matrix in (23) drives prior target present
probability pðH1;kjZk�1Þ in (22) toward the ambivalent
target presence confidence of 0.5 with respect to posterior
target present probability pðH1;k�1jZk�1Þ in (22).

The detection solution in this section requires input
from the tracking solution in Section 2.4. In particular,
prior tracker PDF pðxkjH1;k;Zk�1Þ in (26) is required to find
target present LR pLRðzkjH1;kÞ in (19).
2.4. Tracking solution

Collapsing the steps in Section 2.2, the posterior
tracker PDF Bayesian update is

p0ðxkjH1;k;ZkÞ ¼ pLRðzkjH1;k;xkÞpðxkjH1;k;Zk�1Þ ð24Þ

pðxkjH1;k;ZkÞ ¼
p0ðxkjH1;k;ZkÞR

p0ðxkjH1;k;ZkÞdxk
ð25Þ

All tracking outputs are optimally computed from
posterior tracker PDF pðxkjH1;k;ZkÞ in (25), which depends
only on the shape of LR pLRðzkjH1;k;xkÞ due to normal-
ization in (25). Unnormalized posterior tracker
PDF p0ðxkjH1;k;ZkÞ in (24) also contains detection informa-
tion (see (19)). Prior tracker PDF pðxkjH1;k;Zk�1Þ in (24)
is known from the Markov update in (26) or from
initialization.

pðxkjH1;k;Zk�1Þ ¼

Z
pðxkjH1;k;xk�1Þpðxk�1jH1;k�1;Zk�1Þdxk�1

ð26Þ

Posterior tracker PDF pðxk�1jH1;k�1;Zk�1Þ in (26) is
known from (25). Tracker Markov transition PDF
pðxkjH1;k;xk�1Þ in (26) is the target parameter state xk

PDF given known target parameter state xk�1.
The tracking solution in this section assumes target

presence over all scans and is ‘‘stand alone’’. In particular,
this tracking only solution (as is also a Kalman filter) is
independent of the detection solution in Section 2.3.
3. Measurement data single target detection and
tracking solution

LR pLRðzkjH1;k;xkÞ in (14) is required in (19) and (24).
Tracker Markov transition PDF pðxkjH1;k;xk�1Þ is required
in (26). Both are found in Section 3.1 based on the
standard measurement observation and target dynamic
models. Then, the solution in Section 3.2 is a straightfor-
ward application of the general single target detection
and tracking solutions in Sections 2.3 and 2.4.

3.1. Observation and dynamic models

LR pLRðzkjH1;k;xkÞ in (14) is based on the standard
uncertainty-of-origin measurement observation model
[17–23]. We review this standard model briefly here.
Input data zk consists of Mk statistically independent
measurement locations:

zk ¼ ½zk;1 � � � zk;Mk
� ð27Þ

For target present, the target is either detected in the
signal processing function with probability Pd or is not
detected with probability 1�Pd. For target present and
detected, a single dimensionality J measurement zk,m in
(27) is associated with the target. Its location is related to
hypothesized target parameter state xk through the
standard linear observation model in (28) with random
zero mean Gaussian observation error wk having covar-
iance matrix Cz,k,m resulting in the Gaussian PDF in (29)
(see (A.1)):

zk;m ¼Hkxkþwk ð28Þ

pðzk;mjxk; assocÞ ¼N ðzk;m;Hkxk;Cz;k;mÞ ð29Þ

No association information is known. Therefore, all Mk

measurements in (27) are equally likely to be the single
associated measurement zk,m in (28) and (29). The other
Mk�1 measurements in (27) are clutter. For target
present and not detected or for target absent, all Mk

measurements in (27) are clutter.
Further, the standard uncertainty-of-origin measure-

ment observation model assumes that the number of
clutter measurements is randomly Poisson distributed in
(B.1) with parameter l, the expected number, and that
their locations are randomly uniformly i.i.d. over the
entire observation space with constant value parameter$
(reciprocal of the entire volume). Then, each clutter
measurement zk,m location PDF is punif ðzk;m;$Þ, and the
joint clutter location PDF is their product.

The total joint clutter measurement PDF
pclutðz;M;$; lÞ (both locations z and number M) is

pclutðz;M;$; lÞ
z ¼ ½z1���zM �

¼ punif ðz;$jMÞppoiðM; lÞ

¼
YM

m ¼ 1

punif ðzm;$Þ

 !
ppoiðM; lÞ

¼$MppoiðM; lÞ ð30Þ

These assumptions imply a single sensor and a point
target. Multiple sensor and distributed target solutions
would be future work. The derivation for LR pLRðzkjH1;k;xkÞ

in (14) is taken from [27]. With this standard measure-
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ment observation model in hand, target present PDF
pðzkjH1;k;xkÞ in (14) is

pðzkjH1;k;xkÞ ¼ pðzkjH1;k;xk; target detectedÞ Pd

þpðzkjH1;k;xk; target not detectedÞ ð1�PdÞ

ð31Þ

Target present PDF pðzkjH1;k;xk, target detected) in (31)
is the total PDF over all Mk target association possibilities.
The PDF of each possibility is the product of associated
measurement location PDF pðzk;mjxk; assocÞ in (29) and the
total joint clutter measurement PDF in (30) of the other
Mk�1 measurements.

pðzkjH1;k;xk; target detectedÞ ¼
XMk

m ¼ 1

pðzk;mjxk; assocÞ

pclutðz
ðzk;m=2zkÞ

k ;Mk�1;$;lÞpðzk;m ¼ assocÞ

pðzkjH1;k;xk; target detectedÞ

¼
XMk

m ¼ 1

N ðzk;m;Hkxk;Cz;k;mÞ ð$
Mk�1ppoiðMk�1; lÞÞðM�1

k Þ

ð32Þ

Target present PDF pðzkjH1;k;xk; target not detectedÞ in
(31) and target absent PDF pðzkjH0;kÞ in (14) are all clutter
in (30):

pðzkjH1;k;xk; target not detectedÞ ¼ pðzkjH0;kÞ

¼ pclutðzk;Mk;$; lÞ ¼$Mk ppoiðMk; lÞ ð33Þ

Consolidating, LR pLRðzkjH1;k;xkÞ in (14) is

pLRðzkjH1;k;xkÞ ¼
XMk

m ¼ 1

ak;mN 0ðzk;m;Hkxk;Cz;k;mÞþbk

ak;m ¼ Pdðl$Þ�1
ðð2pÞJ=2

jCz;k;mj
1=2Þ

�1

¼ Pdb
�1
ðð2pÞJ=2

jCz;k;mj
1=2Þ

�1

bk ¼ 1�Pd ð34Þ

FunctionN 0ðÞ in (34) is the unnormalized Gaussian PDF
in (A.2). LR pLRðzkjH1;k;xkÞ in (34) is multimodal (1 mode
per measurement) and reflects the heuristic notion that
the only measurement data information in a scan is that
target presence is likely ðpLRðzkjH1;k;xkÞ41Þ at all mea-
surement locations with equal likelihood but with a
spread due to measurement location observation error
and is unlikely but not impossible ð0opLRðzkjH1;k;xkÞo1Þ
far from any measurement location due to a possible
target miss. The collective measurement data information
over scans is distilled via the tracker PDF Bayesian and
Markov updates in Section 3.2. LR pLRðzkjH1;k;xkÞ in (34)
can be expressed in terms of the more familiar clutter
density b ðb¼ l$Þ parameter. If any association or
attribute information were known, that would be future
work. The use of a LR is seen to be a simplification in (34).

Gaussian (see (A.1)) tracker Markov transition PDF
pðxkjH1;k;xk�1Þ in (36) is based on the standard target
linear dynamic projection model in (35). Random target
dynamic process noise vk�1 in (35) is zero mean Gaussian
with covariance matrix Qk�1:

xk ¼ Fk�1xk�1þvk�1 ð35Þ
pðxkjH1;k;xk�1Þ ¼N ðxk; Fk�1xk�1;Q k�1Þ ð36Þ

meanðxkjZk�1Þ ¼ Fk�1meanðxk�1jZk�1Þ

x̂kjk�1 ¼ Fk�1x̂k�1jk�1 ð37Þ

covðxkjZk�1Þ ¼ Fk�1covðxk�1jZk�1ÞF
T
k�1þQ k�1

Cx;kjk�1 ¼ Fk�1Cx;k�1jk�1FT
k�1þQ k�1 ð38Þ

A standard two state target position xk and rate _xk

dynamic model with scan length T [22] in (39) was
selected for Section 6. Rate of change per scan Dxk

ðDxk ¼ T _xkÞ was actually used.

xk ¼
xk

_xk

" #
; Fk ¼

1 T

0 1

� �

Q k ¼ ðqtrkTÞ
T2=3 T=2

T=2 1

" #
ð39Þ

3.2. Solution

With the definition of the standard statistical models
on measurement input data and target kinematics given
above, the repeating tracker PDF canonical form for both
the Bayesian update in (44) and the Markov update in (47)
is a Gaussian mixture (see Appendix C) with each PDF N ðÞ
from (A.1) a Gaussian ‘‘mode’’.

Unnormalized posterior tracker PDF p0ðxkjH1;k;ZkÞ in
(40) is found from (24). LR pLRðzkjH1;k;xkÞ in (24) is known
from (34). Prior tracker PDF pðxkjH1;k;Zk�1Þ in (24) is
known from the tracker PDF Markov update in (47) or
from initialization:

p0ðxkjH1;k;ZkÞ ¼
XMk

m ¼ 1

ak;mN 0ðzk;m;Hkxk;Cz;k;mÞþbk

 !

�
XNkjk�1

n ¼ 1

pkjk�1;nN ðxk; x̂kjk�1;n;Cx;kjk�1;nÞ

 !

ð40Þ

Expand (40):

p0ðxkjH1;k;ZkÞ ¼
XNkjk�1

n ¼ 1

bkpkjk�1;nN ðxk; x̂kjk�1;n;Cx;kjk�1;nÞ

þ
XMk

m ¼ 1

XNkjk�1

n ¼ 1

ak;mpkjk�1;nN 0ðzk;m;Hkxk;Cz;k;mÞ

�N ðxk; x̂kjk�1;n;Cx;kjk�1;nÞ ð41Þ

From (A.3), each measurement m and prior Gaussian
mode n product in (41) can be expressed as a posterior
Gaussian mode with Gaussian product factor rk;m;n, which
plays a major role:

N 0ðzk;m;Hkxk;Cz;k;mÞN ðxk; x̂kjk�1;n;Cx;kjk�1;nÞ

¼ rk;m;nN ðxk; x̂kjk;m;n;Cx;kjk;m;nÞ ð42Þ

Substitute Gaussian product N 0ðÞN ðÞ from (42) into
(41) and collect all terms in (41) into a single summation
over all posterior Gaussian modes n0, each with a single
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weight pkjk;n0
0 :

p0ðxkjH1;k;ZkÞ ¼
XNkjk

n0 ¼ 1

pkjk;n0
0 N ðxk; x̂kjk;n0 ;Cx;kjk;n0 Þ

Nkjk ¼Nkjk�1þMkNkjk�1

pkjk;n0
0 ¼ ðak;mrk;m;nÞðpkjk�1;nÞ or ðbkÞðpkjk�1;nÞ ð43Þ

Unnormalized posterior tracker PDF p0ðxkjH1;k;ZkÞ in
(43) is normalized following (25):

pðxkjH1;k;ZkÞ ¼
XNkjk

n ¼ 1

pkjk;nN ðxk; x̂kjk;n;Cx;kjk;nÞ

pkjk;n ¼ pkjk;n
0 =

XNkjk

n0 ¼ 1

pkjk;n0
0 : ð44Þ

Posterior tracker PDF pðxkjH1;k;ZkÞ in (44) reduces to a
normalization of unnormalized Gaussian mode weights
p0kjk;n0 in (43). Prior tracker PDF pðxkjH1;k;Zk�1Þ in (45) is
found from (26). Posterior tracker PDF pðxk�1jH1;k�1;Zk�1Þ

in (26) is known from the tracker PDF Bayesian update in
(44). Tracker Markov transition PDF pðxkjH1;k;xk�1Þ in (26)
is known from (36):

pðxkjH1;k;Zk�1Þ

¼
XNk�1jk�1

n ¼ 1

pk�1jk�1;n

�

Z
N ðxk; Fk�1xk�1;Q k�1ÞN ðxk�1; x̂k�1jk�1;n;Cx;k�1jk�1;nÞdxk�1

� �

ð45Þ

The tracker PDF Markov update in (45) reduces to a
Markov update for each Gaussian mode n (in braces),
which is a Gaussian PDF (see (A.1)) with mean x̂kjk�1;n and
covariance matrix Cx;kjk�1;n from (37), (38) [22]:Z
N ðxk;Fk�1xk�1;Q k�1ÞN ðxk�1; x̂k�1jk�1;n;Cx;k�1jk�1;nÞdxk�1

¼N ðxk; x̂kjk�1;n;Cx;kjk�1;nÞ ð46Þ

Substitute (46) into (45). Gaussian mode weights
pk�1jk�1;n are unchanged. Then, prior tracker PDF
pðxkjH1;k;Zk�1Þ in (45) is

pðxkjH1;k;Zk�1Þ ¼
XNkjk�1

n ¼ 1

pkjk�1;nN ðxk; x̂kjk�1;n;Cx;kjk�1;nÞ

Nkjk�1 ¼Nk�1jk�1; pkjk�1;n ¼ pk�1jk�1;n ð47Þ

Target present LR pLRðzkjH1;kÞ in (19) is required in the
detection solution in Section 2.3. Substitute unnormalized
posterior tracker PDF p0ðxkjH1;k;ZkÞ from (43) into (19).

pLRðzkjH1;kÞ ¼
XNkjk

n ¼ 1

pkjk;n
0 ð48Þ

With target present LR pLRðzkjH1;kÞ known from (48),
the detection PDF Bayesian update in (17), (18), (20), and
(21) and, then, the detection PDF Markov update in (22)
are performed. The use of unnormalized PDFs to obtain
(48) is seen to be a simplification.

This solution is correct based on the required com-
pliance with the general single target detection and
tracking solution in Section 2 with LR pLRðzkjH1;k;xkÞ from
(34) and tracker Markov transition PDF pðxkjH1;k;xk�1Þ

from (36), which themselves are the correct solutions
based on their standard models.

The Kalman filter solution (single Gaussian mode, see
Appendix A) and Bayesian conditional PDF (unimodal
Gaussian shape) are, respectively, special cases of this
solution and LR pLRðzkjH1;k;xkÞ in (34). The latter are
extensions for the additional uncertainty-of-origin condi-
tions in Section 1. Only linear, Gaussian observation and
dynamic models are considered. Nonlinear, non-Gaussian
models would be future work.

The Gaussian modes are the fundamental objects. They
are computed independently of any single target solution,
or detector-tracker; are the only input required for any
detector-tracker’s recursive computation at a scan; and
only require a recursive computation at a scan with
measurements as the input.

A Gaussian mode is the Kalman filter solution for a
single target measurement path over scans (1 per scan,
see Appendix A). A detector-tracker has an irresistible
proclivity to seek the strongest target path in its available
measurement input data by virtue of integration in the
tracker PDF Bayesian update. I.e., the Gaussian mode
weights unimodally peak at the correct Gaussian mode
with the others negligible. Then, the solution depends
only on a subset of the measurements: those contributing
to the dominant, or peak, Gaussian modes, which may be
viewed as the correctly associated measurements. This
property is demonstrated in Section 6.
4. Measurement data multiple target detection and
tracking solution

For L potential targets with joint total multiple target
state XL

k , joint posterior total multiple target state PDF
pðXL

k jZkÞ is

pðXL
k jZkÞ ¼ pðXð1Þk ;Xð2Þk ; . . . ;XðLÞk jZkÞ ð49Þ

Each total single target state X
ðlÞ
k in (49) is a total single

target state Xk in Section 2.1. Each posterior total single
target state PDF pðXðlÞk jZkÞ in (2) and (3) can be found as a
marginal of (49). The straightforward extension of the
posterior total single target state PDF pðXkjZkÞ solution in
Sections 2 and 3 to find joint posterior total multiple
target state PDF pðXL

k jZkÞ in (49) is, in general, computa-
tionally infeasible.

Therefore, the multiple target approach exploits the
detector-tracker properties in Section 3.2. If the dominant
Gaussian modes of each detector-tracker can be excluded
from all other detector-trackers, their solutions are
mutually orthogonal and thus independent. The detec-
tor-trackers do not ‘‘share’’ Gaussian modes. Only one
Gaussian mode weight can be ‘‘high’’ over all detector-
trackers. Then, joint posterior total multiple target state
PDF pðXL

k jZkÞ in (49) can be factored as the product of all
these resulting posterior total single target state PDFs
pðXðlÞk jZkÞ:

pðXL
k jZkÞ ¼

YL

l ¼ 1

pðXðlÞk jZkÞ ð50Þ
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The multiple target approach is the realization of (50).
Consider the single target detector-tracker solution
structure in Section 3.2. Unnormalized posterior tracker
PDF p0ðxkjH1;k;ZkÞ in (43) is the only input required for the
remaining detection and tracking Bayesian and Markov
PDF updates. Then, unnormalized posterior tracker PDFs
p00ðxðlÞk jH

ðlÞ
1;k;ZkÞ are found as the marginals of the joint

multiple target unnormalized posterior tracker PDF for
use in those updates.

For the two target case, the marginal solution for
unnormalized posterior tracker 1 PDF p00ðxð1Þk jH

ð1Þ
1;k;ZkÞ is

p00ðxð1Þk jH
ð1Þ
1;k;ZkÞ

¼ a
Z XNkjk

n1 ¼ 1

p
0 ð1Þ
kjk;n1
N ðxð1Þk ; x̂kjk;n1

;Cx;kjk;n1
Þ

 !

�
XNkjk

n2 ¼ 1

p
0 ð2Þ
kjk;n2
N ðxð2Þk ; x̂kjk;n2

;Cx;kjk;n2
Þ

 !
fðn1;n2Þdxð2Þk

fðn1;n2Þ ¼ 1�dðn1�n2Þ

a¼
Z

p0ðxð2Þk jH
ð2Þ
1;k;ZkÞdxð2Þk

� ��1

¼
XNkjk

n2 ¼ 1

p
0 ð2Þ
kjk;n2

 !�1

ð51Þ

Each factor in parentheses in (51) is the single target
unnormalized posterior tracker PDF in (43). Their product
is the joint 2 target unnormalized posterior tracker PDF
based on an independence assumption (the desired case)
and since no joint information is available. The ‘‘non-
sharing’’ of Gaussian modes is not an inherent property as
is the strongest target path seeking behavior. For (51)
expanded, it is equivalent to neglecting terms with the
same Gaussian modes (n1=n2). I.e., both detector-trackers
cannot exist at the same Gaussian mode. This is enforced
by boundary condition f(n1,n2) (f(n1,n2)=0 for n1=n2 and 1
otherwise) in (51), which is additional prior information.

The unnormalized posterior tracker PDFs both indivi-
dually and collectively in their joint PDF are improper
PDFs (do not integrate to one). Therefore, a scale factor a
is required in (51). The rationale for scale factor a is that
unnormalized posterior tracker 1 PDF p00ðxð1Þk jH

ð1Þ
1;k;ZkÞ in

(51) must reduce to the single target case in (43)
(p0ðxð1Þk jH

ð1Þ
1;k;ZkÞ) for independent operation (f(n1,n2)=1),

preserving the correct scale for detection.
Find unnormalized posterior tracker 1 PDF

p00ðxð1Þk jH
ð1Þ
1;k;ZkÞ in (51) and generalize to unnormalized

posterior tracker l PDF p00ðxðlÞk jH
ðlÞ
1;k;ZkÞ ðl¼ 1; . . . ; LÞ for the L

target case.

p00ðxðlÞk jH
ðlÞ
1;k;ZkÞ ¼

XNkjk

n ¼ 1

p
00 ðlÞ
kjk;nN ðx

ðlÞ
k ; x̂kjk;n;Cx;kjk;nÞ

p
00 ðlÞ
kjk;n ¼ p

0 ðlÞ
kjk;n

YL

l0 ¼ 1
l0al

qðl
0 Þ

kjk;n

qðl
0 Þ

kjk;n ¼ 1�p
0 ðl0 Þ
kjk;n=

XNkjk

n0 ¼ 1

p0 ðl
0 Þ

kjk;n0 : ð52Þ

Gaussian modes N ðxðlÞk ; x̂kjk;n;Cx;kjk;nÞ and their weights
p0ðlÞkjk;n in (52) are known from (43). Using unnormalized
posterior tracker l PDF p00ðxðlÞk jH
ðlÞ
1;k;ZkÞ in (52), posterior

detection PDF pðHðlÞ0;kjZkÞ;pðH
ðlÞ
1;kjZkÞ and tracker PDF

pðxðlÞk jH
ðlÞ
1;k;ZkÞ for detector-tracker l are computed from

the remaining detection and tracker PDF Bayesian and
Markov updates in Section 3.2.

Unnormalized posterior Gaussian mode weight p00ðlÞkjk;n

in (52) is decreased with respect to unnormalized
posterior Gaussian mode weight p0ðlÞkjk;n in (43) for any
other weight p0 ðl

0 Þ

kjk;n ‘‘high’’ through multiplication by its
‘‘inverse’’ weight qðl

0 Þ

kjk;n ð0rqðl
0 Þ

kjk;nr1Þ, which is ‘‘low’’.
Otherwise, there is little effect ðqðl

0 Þ

kjk;n � 1Þ. This operation
directly results from boundary condition f() in (51) and
‘‘partitions’’ Gaussian modes and, thus, measurement data
over detector-trackers. It may be viewed as an indirect
association of measurement data over detector-trackers
and is the counterpart to the explicit measurement
association hypotheses in JPDA and MHT.

For steady-state, the detector-trackers closely achieve
the mutual orthogonality in (50) and are essentially
optimal. The marginalization suppresses any tendency
for the Gaussian modes to commingle over the detector-
trackers. For initialization or acquisition, the multiple
target solution is driven to this ideal state. Only one
detector-tracker will ‘‘win’’ at each target path. This
property is demonstrated in Section 6.

The Gaussian modes are a common resource over all
detector-trackers and are a self-propagating basis set for
all the posterior tracker PDFs yielding simplicity and
efficiency in implementation. They play an analogous role
to a fixed grid [1,7,28] and a particle filter (adaptive grid)
[29–31] point basis set representation of the posterior
tracker PDF but yield a richer, less sparse representation
of the target parameter state space.

From this viewpoint, the tracking solutions are the
computation of the Gaussian mode weights, which may
be regarded as the probabilities of each Gaussian mode
being the correct solution and, thus, are a ‘‘ soft’’ selection
over the Gaussian modes and thus also over all single
target measurement path Kalman filter solutions. The
Gaussian mode weights are the only differentiation over
detector-trackers. This viewpoint is demonstrated in
Section 6.

The detector-tracker global convergence to the stron-
gest target path enables the desirable detector-trackers’
global target search and acquisition but necessitates
selective data restriction through the inverse weights to
prevent the undesirable detector-trackers’ collocation for
a multiple target problem. This property is critical to the
operation in Section 6 and is demonstrated. Problems
where targets can be collocated and thus can ‘‘share’’
Gaussian modes (e.g., bearing observation space with
finite resolvability) would be future work.
5. Gaussian modes

Gaussian mode n discrete target absent, present states
at scan k are hypotheses H0,k

(n), H1,k
(n). Their solution is the

same as the single target detection solution in Section 3.2
but with the computation restricted to a single Gaussian
mode with unity weight. Then, their posterior probabil-
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Fig. 1. Target truth.
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ities are recursively propagated in the detection PDF
Bayesian update in (17), (18), (20), and (21) and the
detection PDF Markov update in (22) with target absent,
present LRs pLRðzkjH

ðnÞ
0;kÞ;pLRðzkjH

ðnÞ
1;kÞ from (53):

pLRðzkjH
ðnÞ
0;kÞ ¼ 1

pLRðzkjH
ðnÞ
1;kÞ ¼ ak;mrk;m;n or bk ð53Þ

An issue is the growth in Gaussian modes from the
tracker PDF Bayesian update in (43), similar to the growth
in association hypotheses for MHT. Gaussian mode
reduction is required. In Section 6, two criteria were
applied. The first is weak Gaussian modes based on small
posterior Gaussian mode target present probability. This
causes the termination of weak Gaussian mode strings
and acts as a gate for measurements with respect to
Gaussian modes. The second is redundant Gaussian
modes based on ‘‘ closeness’’ using the Mahalanobis
distance. This eliminates the weaker of two Gaussian
mode strings converging to the same solution due to
common input measurements and prevents initialization
of a measurement near a Gaussian mode.

A distinct Gaussian mode is the ‘‘null’’, or 1st, Gaussian
mode and is the representation of minimal target
parameter state xk knowledge. It has a large covariance
matrix Cx;kjk;1 and a nominal mean x̂kjk;1 spanning the
entire target parameter state xk space and has significant
posterior Gaussian mode weight pðlÞkjk;1 in (44) for a
detector-tracker l only for no good match to any other
Gaussian mode. The null Gaussian mode is not included in
the inverse weighting operation in (52). I.e., it can be
shared by detector-trackers. It is included in the unnor-
malized tracker PDF Bayesian update in (40), which may
be viewed as an initialization for a measurement.
0 10 20 30 40 50 60 70 80 90 100
0

20

40

x

Fig. 2. Simulated measurement data.
6. Simulation results

The purpose of the simulation is to demonstrate
performance where clutter is an issue and operation.
Scalar measurements were directly simulated in a generic
scalar x position observation space following the standard
models in Section 3.1. An example detector-tracker
management procedure is described and is utilized.

Truth for four target paths is in Fig. 1. The position
observation range is {0.0,100.0} with 200 total scans. The
targets have staggered start scans, and all end at scan 170.
Each target path is piecewise constant rate and has a 0.1
scan rate step change every 20 scans with maximum 0.5.
All target measurements have 0.9 probability of detection
and zero mean Gaussian position observation error with
standard deviation 0.05. Prior maximum rate information
is available through a high variance 0.0 pseudo-rate
observation in each measurement. Clutter measurement
positions are uniformly i.i.d. {0.0,100.0} with the number
Poisson distributed ðl¼ 85:0Þ in (B.1). A resolution
(minimum measurement spacing) of 0.3 is enforced
causing a reduction to an average of 67.3. The
measurement input data is in Fig. 2. The true target
tracks (with misses and errors) can be identified.
The Gaussian mode solution is demonstrated in Fig. 3.
The size of each point is modulated by the posterior
Gaussian mode target present probability in Section 5.
True target tracks and spurious tracks can be identified.
The number of Gaussian modes is on the order of the
number of measurements demonstrating the Gaussian
mode reduction in Section 5, which does not adversely
affect performance.

The detection statistic outputs in Fig. 4 are posterior
target present probability pðHðlÞ1;kjZkÞ in (21). Three tracking
outputs are shown in Figs. 5–14. The first demonstrates
the detector-tracker ‘‘selection’’ process over posterior
Gaussian modes by the size of each modulated by its
weight pðlÞkjk;n in (44) similar to Fig. 3. The second is the
posterior tracker PDF means (MMSE estimates) from (C.1).
The third is the target truth.
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Fig. 3. Gaussian modes.
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Fig. 4. Detection statistics.
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Fig. 5. Detector-tracker 1 position (x) output.
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Fig. 6. Detector-tracker 1 rate (Dx) output.
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No target kinematic knowledge is required for initi-
alization of a detector-tracker (uniform Gaussian mode
weights), and it is unconfirmed. Its target presence
confidence is low, and its tracking outputs are not valid.
An unconfirmed detector-tracker is raised to tentative if
its detection statistics rise above a threshold. A target
detection is not made, but an unconfirmed detector-
tracker is initiated to search for a ‘‘new’’ target. A tentative
detector-tracker is raised to confirmed if its detection
statistics rise above a higher threshold. A target detection
is declared, and its tracking outputs are now valid. A
confirmed detector-tracker is lowered to tentative if its
detection statistics fall below a threshold and is dropped
for a lower threshold. At any scan, there is only one
unconfirmed detector-tracker, globally searching for a
new target over the entire target parameter state space. A
multitude of unconfirmed Kalman filter based trackers is
not required to perform this function.

At start-up, the system is initialized to unconfirmed
detector-tracker 1 and one null Gaussian mode (see
Section 5). Detector-tracker 1 posterior Gaussian mode
weights pð1Þkjk;n in (44) and, thus, posterior tracker 1 PDF
mean converge to target 1, the strongest initial target
path. The ‘‘background’’ Gaussian modes in Figs. 5–14
have low weight. The background persistent target rate of
zero is due to the measurement pseudo-rate observation.
Detector-tracker 1 detection statistics converge to nearly
one indicating high target presence confidence.

Detector-tracker 1 initiates detector-tracker 2, which
similarly detects, acquires, and follows target 2, the
strongest available target path at its inception. Detector-
tracker 1 ‘‘denies’’ target 1 to detector-tracker 2 and all
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Fig. 7. Detector-tracker 2 position (x) output.
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Fig. 8. Detector-tracker 2 rate (Dx) output.
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Fig. 9. Detector-tracker 3 position (x) output.
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Fig. 10. Detector-tracker 3 rate (Dx) output.
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other subsequently initiated detector-trackers through its
inverse weights qð1Þkjk;n in (52). The same events transpire,
and this cycle is repeated. Detector-trackers 3 and 4
detect, acquire, and follow targets 3 and 4. After the
targets disappear, detector-trackers 1, 2, 3, 4 tracking
outputs diverge, and their detection statistics fall. Detec-
tor-trackers 1, 2, 3 are dropped by scenario end with
detector-tracker 4 on the verge.

Detector-tracker 5 is the exception. Its tracking out-
puts in Figs. 13 and 14 are a random walk over the entire
target parameter state space. This is the correct behavior
since targets 1, 2, 3, 4 are ‘‘taken’’ and none are left. This
behavior further demonstrates the detector-tracker global
target search and acquisition and the inverse weighting
operation, which enforces non-sharing of Gaussian modes
and thus non-collocation over detector-trackers.
Occasionally, detector-tracker 5 temporarily acquires a
‘‘clutter track’’ but its detection statistics in Fig. 4 correctly
remain low, and it remains unconfirmed. Any detections
would have been false alarms.

7. Summary and conclusions

The real time multitarget detection and tracking
problem (including uncertainty-of-origin issues) is suffi-
ciently developed so that there exists standard accepted
models and solution methodology. This paper is grounded
in these models and methodology even though the
solution in totality is novel. The standard models and
methodology are locally well defined. However, the
weaving into an optimal system level solution has not
been achieved until now.
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Fig. 11. Detector-tracker 4 position (x) output.
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Fig. 12. Detector-tracker 4 rate (Dx) output.
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Fig. 13. Detector-tracker 5 position (x) output.
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Fig. 14. Detector-tracker 5 rate (Dx) output.
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This paper has derived the optimal Bayes–Markov
filter solution for the multiple target uncertainty-of-origin
problem. We have shown that under standard linear,
Gaussian assumptions the posterior PDF is a repeating
Gaussian mixture with a common basis set over targets
and have provided the analytic formulation for this
Gaussian mixture. In addition, we have presented an
efficient novel computational approach where we capture
the relevant Gaussian modes by removing weak or
redundant Gaussian modes. This process is analogous to
pruning hypotheses in MHT.

A full comparison to MHT has not been performed in
this paper. However, the proposed technique has advan-
tages over MHT for the following reasons. First, our
method is based on a rigorous analytic formulation of the
recursive posterior target PDF, which shows that the
correct posterior PDF is a Gaussian mixture. In contrast,
standard techniques assume the posterior PDF is Gaussian
and then work to decide which measurement to give to
each standard Kalman filter. Second, we are able to select
which modes (hypotheses) to remove from our catalog in
an optimal manner—e.g., by removing hypothesis that are
least likely to be correct. Standard techniques employ
various heuristics for this requirement rather than
precisely computing the hypothesis probability. Finally,
the solution optimally jointly estimates the target ex-
istence probability and the target parameter state, fully
capturing the coupling of uncertainty in these estimates.
In contrast, other approaches treat these problems
separately.

There are several avenues for future work. One avenue
is to relax the assumption of (50). I.e., rather than treating
the multiple target problem as multiple coupled single
target problems, we capture the coupling between targets
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in a joint manner. A potential approach is to factor (49)
into clusters of single targets, target pairs, target triplets,
and so on, adaptively selected based on target proximity
and then treat the clusters jointly along the lines of [30].
A second avenue is to investigate the effect of non-
thresholded measurements on the form of the recursive
PDF. Finally, we will investigate extending this solution to
(mildly) nonlinear systems where the extended [22] or
unscented [32] Kalman filter is used as the base PDF
rather than the standard Kalman filter.
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Appendix A. Gaussian PDFs and product

Gaussian PDF N ðÞ is (A.1) with dimensionality J

random variable x, mean x, and covariance matrix C.

N ðx;x;CÞ ¼ ðð2pÞJ=2
jCj1=2Þ

�1 expð�0:5ðx�xÞTC�1
ðx�xÞÞ

ðA:1Þ

Unnormalized Gaussian PDF N 0ðÞ (max=1) in (A.2) is
(A.1) with only the exponent factor:

N 0ðx;x;CÞ ¼ expð�0:5ðx�xÞTC�1
ðx�xÞÞ ðA:2Þ

The Gaussian product N 0ðz;Hx;CzÞN ðx;x;Cx Þ can be
identically expressed as a Gaussian PDF with a factor:

N 0ðz;Hx;CzÞN ðx;x;Cx Þ ¼ rN ðx; x̂;Cx̂ Þ

C�1
x̂ ¼HTC�1

z HþC�1
x

x̂ ¼ Cx̂ ðH
TC�1

z zþC�1
x xÞ

r¼ jCx̂ j
1=2

jCx j
1=2

exp �
1

2
d2

� �

d2 ¼ ðz�HxÞTðCzþHCx HT
Þ
�1
ðz�HxÞ ðA:3Þ

The Kalman filter Bayesian update is a normalized
Gaussian product resulting in Gaussian PDF N ðx; x̂;Cx̂ Þ in
(A.3). This and the Markov projection in (37) and (38) are
the complete Kalman filter solution [2,3]. Gaussian
product factor r ð0oro1Þ plays no role in the Kalman
filter solution as contrasted to its important role in the
more general problem here. Exponent d2 is a form of the
Mahalanobis distance.

Appendix B. Poisson PDF

Poisson PDF ppoiðm; lÞ in (B.1) is discrete with non-
negative integer random variable m and parameter l.

ppoiðm; lÞ ¼
lme�l

m!
; m¼ 0;1;2; . . .

meanðmÞ ¼ l; varðmÞ ¼ l ðB:1Þ
Appendix C. Gaussian mixture PDF

The Gaussian mixture PDF p(x) in (C.1) is a weighted
average of N Gaussian PDF terms and is the canonical
prior or posterior tracker PDF form at any scan with mean
x and covariance matrix Cx. Gaussian PDF N ðÞ (see (A.1))
in each term n has mean xn and covariance matrix Cx,n and
is a Gaussian ‘‘mode’’ with weight pn. This form has been
extensively used by others [33]:

pðxÞ ¼
XN

n ¼ 1

pnN ðx;xn;Cx;nÞ

0rpnr1;
XN

n ¼ 1

pn ¼ 1

x ¼ E½x� ¼
XN

n ¼ 1

pnxn

Rx ¼ E½xxT� ¼
XN

n ¼ 1

pnðxnxT
nþCx;nÞ

Cx ¼ E½ðx�xÞðx�xÞT� ¼Rx�xxT
ðC:1Þ
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