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Abstract1 — This paper presents a novel approach to 
detecting and tracking moving targets using a constellation of 
narrowband radio frequency (RF) sensors. Our methodology is 
an innovative combination of nonlinear estimation and 
information theoretic sensor placement. The nonlinear filtering 
approach fully exploits bistatic Doppler measurements made 
by the sensors without thresholding or linear/Gaussian 
assumptions, thereby improving the detection/false alarm 
tradeoff and lowering tracking error. The information 
theoretic sensor placement algorithm, which is based on 
minimizing the Cramer-Rao bound (CRB) on localization 
variance, selects sensor positions that lead to the best 
estimation performance, thereby maximally exploiting the 
finite sensing resources. We illustrate the efficacy of the 
algorithm by showing how well we can track a target using 
sensors placed using the CRB optimal method as compared to 
sensors placed randomly. 

I. INTRODUCTION 

This paper describes an innovative method for detecting 
and tracking moving targets by exploiting a constellation of 
inexpensive narrowband (NB) Radio Frequency (RF) 
sensors. In our model problem, we consider a road with on 
the order of a half-dozen sensors placed around the road. A 
processing center receives and processes the bistatic radar 
data. It is the goal of the signal processing approach to 
exploit these mulitstatic returns for the effective detection 
and tracking of vehicles operating in the surveillance region.  

A constellation of narrowband sensors has a number of 
benefits over conventional wideband sensors in this 
application. First, commercial applications have lead to an 
erosion of the available spectrum meaning often only a 
small portion is available for other use [1][2]. Furthermore, 
NB sensors are inexpensive due to their simple electronics, 
require low energy consumption, are easy to maintain, and it 
is easy to communicate their data to a centralized processing 
point. But perhaps most importantly, a constellation of NB 
sensors provide geometric diversity. By exploiting bistatic 
returns with advanced signal processing techniques like 
those described here, this trades costly spectral diversity for 
cost-efficient spatial diversity, while providing performance 
improvement. 

The paper contains two main contributions. First, we 
give a Bayes optimal nonlinear filtering method of target 
tracking which admits the highly nonlinear and non-
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Gaussian measurements made by the sensors.  Standard 
approaches address the problem in two sequential phases: 
detection and tracking. In particular, one algorithm is 
responsible for generating threshold exceedances 
(detections) at each epoch (often an FFT block, or 
“snapshot”) and then these detections are passed to a 
separate (typically Kalman-based) tracking algorithm. In 
contrast, our approach performs track-before-detect, i.e., 
there is no thresholding (or other hard decision) on the 
received measurements and all data is incorporated softly 
into a probabilistic estimate. Furthermore, our method 
directly accommodates the non-Gaussian and non-linear 
sensor to target couplings that characterize this scenario. 
Given these distinctions, the method yields improved 
performance in both false alarm/detection tradeoffs and 
tracking error.  

Second, we describe an information theoretic method 
for choosing where to place the individual sensors in the 
constellation. Our approach is based on selecting sensor 
locations to minimize the Cramer-Rao bound (CRB) on 
estimator variance.  This method automatically favors 
sensor placements that yield beneficial (bistatic) spatial 
diversity. As such, it optimizes the ability to detect and track 
moving targets. The efficacy of the sensor placement is 
demonstrated by comparing tracking performance with 
sensors randomly placed versus those placed using the CRB 
optimal sensor placement algorithm. 

The paper proceeds as follows. In Section II, we 
introduce the bistatic Doppler signal model. In Section III, 
we show how this model is combined with a nonlinear 
filtering algorithm to provide a tractable Bayes optimal 
tracking approach. In Section IV, we describe a Cramer-Rao 
bound based sensor placement algorithm for optimally 
choosing sensor locations and illustrate it performance. 
Finally, section V concludes. 

II. THE SENSOR MODEL 

We assume a constellation of  sensors. To simplify 
the notation, we assume each sensor is both a transmitter 
and a receiver, although this assumption is not required by 
our approach. A sensor transmits a narrowband RF signal, 
which is reflected off the target and received at each sensor. 
Then this process repeats  times, with each sensor 
serving as transmitter. There are then  bistatic pairs, 
which process the received signal to generate information 
about bistatic range rate from the observed shift in 
frequency. Note, we assume purely narrowband sensors so 
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no range information is available. We could expand our 
model to include sensors which provide range information 
at the cost of more expensive hardware and increased 
computation. 

Given a CPI worth of pulses has been transmitted by 
sensor A and received by all sensors, Fourier processing 
yields Doppler compression – under the assumption the 
target moves at a constant velocity for this short period of 
time. This slow-time data surface can be used to evaluate 
the evidence for hypotheses about target bistatic Doppler, 
which is the instantaneous rate of change of target bistatic 
range. The measurements made by all  sensors from the 
energy transmitted by sensor A are corrupted by various 
types of noise, including clutter, measurement noise, and 
quantization noise.  

We employ the following statistical model to describe 
the measurements. First, let  denote the magnitude 
measurement in the  bistatic Doppler resolution cell 
between sensors  and . Resolution and the number of 
cells are determined by the number of pulses and the PRF. 
The collection of measurements is then the vector of bistatic 
Doppler correlations in each cell, i.e., the vector 

 
 (1) 

 
where  is the number of bistatic Doppler cells and the 
statistics of the complex measurement envelope in each cell 
depend on whether that cell corresponds to a target-absent 
cell or a target-present cell. 
 Let the vector  describe the true 2D 
position and velocity of the target. We model the statistics in 
each bistatic Doppler cell as Rayleigh. To be concrete, for 
each bistatic Doppler cell   
 

 
(2) 

 
where  is the pixel-dependent Rayleigh parameter. In the 
point-target pixilated model,  is  
 

 (3) 
 
where the indicator variable  is  if  maps into cell .  
is also a function of transmitter and receiver locations, but 
this is suppressed in the notation for clarity. Therefore, the 
target containing cell has energy returns which distributed 
Rayleigh with  and the other (background) cells have 
energy returns which are distributed Rayleigh with .  

III. NONLINEAR FILTERING 

 This section describes the track-before-detect approach 
to joint target detection and localization. The goal is to 
construct a probability density on target state given the 
collection of bistatic Doppler measurements taken over time 
for the constellation of sensors. 
 Our approach differs from traditional methods in 
several manners. First, traditional methods operate in two-
stages: first performing detection on incoming 

measurements and then passing these threshold exceedances 
to a tracker. This requires measurement thresholding, which 
is an SNR degrading step. Second, traditional methods use 
linear (Kalman) filters that sub-optimally model 
measurements as Gaussian and having linear sensor-to-
target coupling. In contrast, our approach does not threshold 
the measurements but instead uses the raw energy returns, 
treats the detection and localization problem jointly, and 
allows both non-Gaussian and non-linear sensor and target 
statistics. 
 To be concrete, we denote the 2D position and velocity 
of a single target at time k as . Additionally, 
H0

k denotes the hypothesis that no target is present at time 
, and  denotes the hypothesis that a single target is 

present. Finally,  is the measurement taken in bistatic 
Doppler pixel  at time ;   represents measurements in 
all Doppler cells at time ;  and  denotes the collection of 
all measurements in all Doppler cells taken up to and 
including time . When necessary to specify the particular 
transmitter and receiver pair we will do so as . 
 Fundamentally, we wish to estimate the joint 
probability a target is present (i.e.,  is true) and its state is 

, given the measurements. Mathematically, we want the 
hybrid continuous-discrete density [4] 
 

 (4) 
 
for all . This quantity can also be expressed as the 
product of the target present probability and the target state 
probability: 
 

 (5) 
 
 Computationally, we represent the target state 
probability  on a 4D discrete grid 
(corresponding to the four dimensional state vector ) of 

 cells. The surveillance region of 
interest dictates the spatial extent of the grid.  
 In the sequential Bayesian approach, we (i) assume a 
prior estimate of the desired probabilities is present (perhaps 
completely uninformative), and (ii) generate a recursive 
formula which relates probabilities at one time step with 
those at the next.  
 The target present  and absent  
probabilities can be computed recursively using the law of 
total probability and Bayes’ rule, yielding: 

 

 

 
(6) 

  
The fundamental data dependent quantity needed to 
construct the target existence update is the likelihood ratio 

, which is a function of the sensor 
measurement statistics and the measured data. The 
numerator is the likelihood of receiving measurement vector 
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 if state  were indeed true. This is evaluated for each 
possible state . The denominator is the likelihood of 
receiving the measurement vector  if in fact there were no 
target in the region. Notice no thresholding is used. The 
quantity  is the measurement vector received (consisting, 
for example, of L Doppler values that result from an FFT of 

 received pulses). This includes all cells, not simply those 
pixels that correspond to threshold exceedances. Also we 
use the data from all transmit/receive pairs in this update. 
 The target state probability is computed similarly: 

 
(7) 

  
 Therefore, in principle, the update for each possible  
proceeds by computing its predicted probability at the next 
time step (according to a temporal target kinematic model) 
and then updating using the likelihood ratio 

. This procedure mirrors the 
Kalman Filter steps (prediction and update), but with Bayes-
optimal processing. 
 All updates require temporal prediction. For the target 
absent and present probabilities  and , 
we use a simple mixing matrix approach, which corresponds 
to a fixed target arrival/removal probability. Our approach 
also allows more complicated models with little impact on 
computational requirements. 
 The temporal evolution of the probability density on  
can be expressed in continuous time using a partial 
differential equation [7]. For example, if the target is 
modeled as moving with a constant velocity plus random 
accelerations (the so-called “nearly constant velocity 
model”). In the following discussion we use this model as 
an example. Other models may be equally appropriate, 
including models that use road constraints and higher order 
motion terms. 
 Continuing under the assumption that we have a CPI of 

 pulses from  transmitter/receiver pairs, each of the  
pairs  has a set of  of pixilated bistatic Doppler cells. 
Then the numerator of the likelihood function can be written 
(assuming conditional independence given the state) as 

 

(8) 

 Figure 1 illustrates the the nonlinear filtering approach. 
The panels show the target position and velocity marginals 
after a number of time steps. A white dot shows truth, and 
the regions of high probability are close to the truth. Notice 
the non-Gaussian nature of the PDF. 
 

 
Figure 1. Marginals of the non-Gaussian 4D probability density on 
target state. It inherits the non-Gaussianity, from the complicated 

nonlinearities and Rayleigh statistics of the bistatic Doppler 
measurements.  

IV. CRAMER-RAO BOUND SENSOR PLACEMENT 

 This section discusses the Cramer Rao bound (CRB) 
approach for optimal sensor placement.  Qualitatively, our 
sensor placement algorithm selects sensor locations that 
yield the best performance in estimating target location in 
terms of the CRB on target state estimator variance. In other 
words, we choose the sensor positions that yield the best 
bound on achievable estimator performance. 
 While other authors [2] use CRB metrics for gauging 
the performance of bistatic systems, our approach includes 
several innovations. First, the approach places sensors to 
optimize detection and localization performance, rather than 
just to gauge performance. Second, it accounts for the entire 
region under surveillance using a novel spatial weighting on 
the CRB. Finally, it approximates a computationally 
intractable global optimization in a high dimension space by 
an iterative-greedy approximation. Simulations show this 
approach yields intuitive results which perform well in 
simulations.  
 We want the CRB corresponding to eq. (2), but are 
hampered by differentiability issues because the Doppler 
cell envelope statistics are spatially discontinuous. For this 
reason, we make the approximation 
 

 

 

(9) 

 
where  represents the Doppler frequency corresponding 
to pixel , and  relates the target parameter vector 
to a Doppler frequency: 
 

 

 
where 
 

 

(10) 

 
 Assuming the frequency bins are independent yields the 
joint distribution among the pixels as 
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(11) 

 
we wish to find the Cramer-Rao bound associated with 
estimation of the parameter vector  from the measurements 

. For an unbiased estimator this bound is based on the 
inverse of the Fisher Information Matrix (FIM), whose 

 element is defined as 
 

 
(12) 

 

 The required partials are  

 

 

 
(13) 

 

 Which leads to the FIM elements: 

 

 

(14) 

 
The desired CRB for a parameter  is then  
 

 (15) 
 
where  is any unbiased estimator of the . In the 
current setting, we are interested in estimating target state 
over a known road.  
 Let , and  denote the  elements from 
the matrix . We have chosen to use a minimax approach 
and choose to select the sensor locations  
 

 (16) 

 
 In practice, finding the global optimal solution is 
difficult due to the large dimensionality of the problem (i.e., 
determining the (x,y) coordinates of N sensors jointly is an 
optimization in ℜ  

2N). We therefore instead employ an 
iterative greedy approach, where we always optimize one 
sensor at a time, by placing it at the position that minimizes 

the CRB bound on estimation performance. The method 
proceeds as follows. First, we randomly select positions for 
all N sensors. Then we hold N-1 sensors fixed, and choose 
the best location for the remaining sensor by minimizing the 
CRB for all possible positions. This is a tractable 2D 
optimization, which we do by discrete enumeration of a 
selected set of possible positions for the sensor. We then 
move to the second sensor, holding the other N-1 fixed 
(including the most recently positioned sensor and its new 
position). We repeat this process for all sensors, and then 
start back at the first sensor, repeating until no sensors 
change position. 

This has the advantage of recasting the problem as N 
optimizations in ℜ  

2 (which we further discretize to a finite 
number of possibilities). The disadvantage is that the joint 
coupling of the sensor locations is not fully modeled. We 
are not guaranteed to find the globally optimal solution to 
(16), and in fact in simulation we find that the final sensor 
position does depend on the initial choice of sensor location. 
However, interestingly, the minimum found is typically 
very close to the actual global minimum in value. 

 Figure 2 shows an example of the CRB surface for 
placing sensor 6. The CONOPS entails providing 
surveillance over a road highlighted in green. Sensors 1 
through 5 have already been placed, and we are attempting 
to place the sixth sensor. Each potential positioning has 
been evaluated under the CRB metric (low is good). As the 
figure shows, putting sensors in places already well covered 
by existing sensors is a poor choice in terms of minimizing 
the CRB. 

 

 
Figure 2. A CRB sensor placement surface. A road is indicated in 

white. The placement of sensors 1 through 5 are indicated by the black 
circled numbers. The surface shows the CRB for placing the sixth 

sensor at each possible location in the surveillance region. Red is high, 
indicating a poor choice of sensor location and blue is low indicating a 

good choice of sensor location. 
 

Figure 3 compares tracking performance using sensors 
placed using the CRB optimal algorithm and sensors placed 
randomly, for 2, 4, 6, 8 and 10 sensors. As the figure 
illustrates, CRB optimal placement of the sensors leads to 
significant improvement in tracking performance. 
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Figure 3. A comparison of tracker performance when using sensors 
placed randomly and sensors placed using the CRB optimal method. 

 
Figure 4 illustrates the CRB surface when the road 

constraint is not used to bias the sensor locations. It uses the 
same five sensor locations as the earlier figure, but does not 
use the road to bias the placement of the sixth sensor. 

 

 
Figure 4.  CRB sensor placement surface without road constraints for 

the sixth sensor (about to be placed). Red is high, indicating poor 
sensor locations and blue is low, indicating good sensor locations.  

V. CONCLUSION 

This paper presented a novel approach to detecting and 
tracking moving targets using a constellation of narrowband 
radio frequency (RF) sensors. The methodology is an 
innovative combination of nonlinear estimation and 
information theoretic sensor placement. The nonlinear 
filtering approach fully exploits bistatic Doppler 
measurements made by the sensors without thresholding or 
linear/Gaussian assumptions, thereby improving the 
detection/false alarm tradeoff and lowering tracking error. 
The information theoretic sensor placement algorithm, 
which is based on minimizing the Cramer-Rao bound on 
localization variance, selects sensor positions that lead to the 
best estimation performance, thereby maximally exploiting 
the finite sensing resources. 
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