
Discrete Event Dyn Syst
DOI 10.1007/s10626-009-0071-x

Partially Observable Markov Decision Process
Approximations for Adaptive Sensing

Edwin K. P. Chong · Christopher M. Kreucher ·
Alfred O. Hero III

Received: 18 July 2008 / Accepted: 14 May 2009
© Springer Science + Business Media, LLC 2009

Abstract Adaptive sensing involves actively managing sensor resources to achieve
a sensing task, such as object detection, classification, and tracking, and represents
a promising direction for new applications of discrete event system methods. We
describe an approach to adaptive sensing based on approximately solving a partially
observable Markov decision process (POMDP) formulation of the problem. Such ap-
proximations are necessary because of the very large state space involved in practical
adaptive sensing problems, precluding exact computation of optimal solutions. We
review the theory of POMDPs and show how the theory applies to adaptive sensing
problems. We then describe a variety of approximation methods, with examples to
illustrate their application in adaptive sensing. The examples also demonstrate the
gains that are possible from nonmyopic methods relative to myopic methods, and
highlight some insights into the dependence of such gains on the sensing resources
and environment.
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1 Introduction

1.1 What is adaptive sensing?

In its broadest sense, adaptive sensing has to do with actively managing sensor
resources to achieve a sensing task. As an example, suppose our goal is to determine
the presence or absence of an object, and we have at our disposal a single sensor
that can interrogate the scene with any one of K waveforms. Depending on which
waveform is used to irradiate the scene, the response may vary greatly. After each
measurement, we can decide whether to continue taking measurements using that
waveform, change waveforms and take further measurements, or stop and declare
whether or not the object is present. In adaptive sensing, this decision making is
allowed to take advantage of the knowledge gained from the measurements so far.
In this sense, the act of sensing “adapts” to what we know so far. What guides
this adaptation is a performance objective that is determined beforehand—in our
example above, this might be the average number of interrogations needed so that
we can declare the presence or absence of the object with a confidence that exceeds
some threshold (say, 90%).

Adaptive sensing problems arise in a variety of application areas, and represent a
promising direction for new applications of discrete event system methods. Here, we
outline only a few.

Medical diagnostics Perhaps the most familiar example of adaptive sensing takes
place between a doctor and a patient. The task here is to diagnose an illness from
a set of symptoms, using a variety of medical tests at the doctor’s disposal. These
include physical examinations, blood tests, radiographs (X-ray images), computer-
ized tomography (CT) scans, and magnetic resonance imaging (MRI). Doctors use
results from tests so far to determine what test to perform next, if any, before making
a diagnosis.

Nondestructive testing In nondestructive testing, the goal is to use noninvasive
methods to determine the integrity of a material or to measure some characteristic
of an object. A wide variety of methods are used in nondestructive testing, ranging
from optical to microwave to acoustic. Often, several methods must be used before
a determination can be made. The test results obtained so far inform what method
to use next (including what waveform to select), thus giving rise to an instance of
adaptive sensing.

Sensor scheduling for target detection, identification, and tracking Imagine a group
of airborne sensors—say, radars on unmanned aerial vehicles (UAVs)—with the
task of detecting, identifying, and tracking one or more targets on the ground. For a
variety of reasons, we can use at most one sensor at any given time. These reasons
include limitations in communication resources needed to transmit data from the
sensors, and the desire to minimize radar usage to maintain covertness. The selection
of which sensor to use over time is called sensor scheduling, and is an adaptive sensing
problem.

Waveform selection for radar imaging Radar systems have become sufficiently agile
that they can be programmed to use waveform pulses from a library of waveforms.
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The response of a target in the scene can vary greatly depending on what waveform
is used to radiate the area due to intrapulse characteristics (e.g., frequency and
bandwidth) or interpulse characteristics (e.g., pulse repetition interval). The main
issue in the operation of such agile radar systems is the selection of waveforms to
use in a particular scenario. If past responses can be used to guide the selection of
waveforms, then this issue is an instance of adaptive sensing.

Laser pulse shaping Similar to the last example, optical waveforms can also be
designed to generate a variety of responses, only at much smaller wavelengths. By
carefully tailoring the shape of intense light pulses, the interaction of light with even
a single atom can be controlled (Bartels et al. 2000). The possibility of such controlled
interactions of light with atoms has many promising applications. As in the previous
example, these applications give rise to adaptive sensing problems.

1.2 Nonmyopic adaptive sensing

In our view, adaptive sensing is fundamentally a resource management problem, in
the sense that the main task is to make decisions over time on the use of sensor
resources to maximize sensing performance. It is informative to distinguish between
myopic and nonmyopic (also known as dynamic or multistage) resource management,
a topic of much current interest (see, e.g., Kreucher et al. 2004; He and Chong 2004,
2006; Bertsekas 2005; Krakow et al. 2006; Li et al. 2006, 2007; Ji et al. 2007). In
myopic resource management, the objective is to optimize performance on a per-
decision basis. For example, consider the problem of sensor scheduling for tracking
a single target, where the problem is to select, at each decision epoch, a single sensor
to activate. An example sensor-scheduling scheme is closest point of approach, which
selects the sensor that is perceived to be the closest to the target. Another (more
sophisticated) example is the method described in Kreucher et al. (2005b), where
the authors present a sensor scheduling method using alpha-divergence (or Rényi
divergence) measures. Their approach is to make the decision that maximizes the
expected information gain (in terms of the alpha-divergence).

Myopic adaptive sensing may not be ideal when the performance is measured over
a horizon of time. In such situations, we need to consider schemes that trade off short-
term for long-term performance. We call such schemes nonmyopic. Several factors
motivate the consideration of nonmyopic schemes, easily illustrated in the context of
sensor scheduling for target tracking:

Heterogeneous sensors If we have sensors with different locations, waveform char-
acteristics, usage costs, and/or lifetimes, the decision of whether or not to use a
sensor, and with what waveform, should consider the overall performance, not
whether or not its use maximizes the current performance.

Sensor motion The future location of a sensor affects how we should act now.
To optimize a long-term performance measure, we need to be opportunistic in our
choice of sensor decisions.

Target motion If a target is moving, there is potential benefit in sensing the target
before it becomes unresolvable (e.g., too close to other targets or to clutter, or
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shadowed by large objects). In some scenarios, we may need to identify multiple
targets before they cross, to aid in data association.

Environmental variation Time-varying weather patterns affect target visibility in
a way that potentially benefits from nonmyopic decision making. In particular,
by exploiting models of target visibility maps, we can achieve improved sensing
performance by careful selection of waveforms and beam directions over time. We
show an example along these lines in Section 8.

The main focus of this paper is on nonmyopic adaptive sensing. The basic
methodology presented here consists of two steps:

1) Formulating the adaptive sensing problem as a partially observable Markov
decision process (POMDP); and

2) Applying an approximation to the optimal policy for the POMDP, because
computing the exact solution is intractable.

Our contribution is severalfold. First, we show in detail how to formulate adaptive
sensing problems in the framework of POMDPs. Second, we survey a number of
approximation methods for such POMDPs. Our treatment of these methods includes
their underlying foundations and practical considerations in their implementation.
Third, we illustrate the performance gains that can be achieved via examples.
Fourth, in our illustrative examples, we highlight some insights that are relevant to
adaptive sensing problems: (1) with very limited sensing resources, nonmyopic sensor
and waveform scheduling can significantly outperform myopic methods with only
moderate increase in computational complexity; and (2) as the number of available
resources increases, the nonmyopic advantage decreases.

Significant interest in nonmyopic adaptive sensing has arisen in the recent robotics
literature. For example, the recent book by Thrun et al. (2005) describes examples of
such approaches, under the rubric of probabilistic robotics. Our paper aims to address
increasing interest in the subject in the signal processing area as well. Our aim is to
provide an accessible and expository treatment of the subject, introducing a class of
new solutions to what is increasingly recognized to be an important new problem.

1.3 Paper organization

This paper is organized as follows. In Section 2, we give a concrete motivating
example that advocates the use of nonmyopic methods. We then describe, in
Section 3, a formulation of the adaptive sensing problem as a partially observable
Markov decision process (POMDP). We provide three examples to illustrate how to
formulate adaptive sensing problems in the POMDP framework. Next, in Section 4,
we review the basic principles behind Q-value approximation, the key idea in our
approach. Then, in Section 5, we illustrate the basic lookahead control framework
and describe the constituent components. In Section 6, we describe a host of Q-
value approximation methods. Among others, this section includes descriptions of
Monte Carlo sampling methods, heuristic approximations, rollout methods, and
the traditional reinforcement learning approach. In Sections 7 and 8, we provide
simulation results on model problems that illustrate several of the approximate
nonmyopic methods described in this paper. We conclude in Section 9 with some
summary remarks.
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In addition to providing an expository treatment on the application of POMDPs
to the adaptive sensing problem, this paper includes several new and important
contributions. First, we introduce a model problem that includes time-varying in-
tervisibility which has all of the desirable properties to completely explore the
trade between nonmyopic and myopic scheduling. Second, we introduce several
potentially tractable and general numerical methods for generating approximately
optimal nonmyopic policies, and show explicitly how they relate to the optimal
solution. These include belief-state simplification, completely observable rollout,
and reward surrogation, as well as a heuristic based on an information theoretic
approximation to the value-to-go function which is applicable in a broad array of
scenarios (these contributions have never appeared in journal publications). Finally,
these new techniques are compared on a model problem, followed by an in-depth
illustration of the value of nonmyopic scheduling on the model problem.

2 Motivating example

We now present a concrete motivating example that will be used to explain and
justify the heuristics and approximations used in this paper. This example involves
a remote sensing application where the goal is to learn the contents of a surveillance
region via repeated interrogation. (See Hero et al. 2008 for a more complete
exposition of adaptive sensing applied to such problems.)

Consider a single airborne sensor which is able to image a portion of a ground
surveillance region to determine the presence or absence of moving ground targets.
At each time epoch, the sensor is able to direct an electrically scanned array
so as to interrogate a small area on the ground. Each interrogation yields some
(imperfect) information about the small area. The objective is to choose the sequence
of pointing directions that lead to the best ability to estimate the entire contents of
the surveillance region.

Further complicating matters is the fact that at each time epoch the sensor position
causes portions of the ground to be unobservable due to the terrain elevation
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Fig. 1 a A digital terrain elevation map for a surveillance region, indicating the height of the terrain
in the region. b, c Visibility masks for a sensor positioned to the south and to the west, respectively,
of the surveillance region. We show binary visibility masks (nonvisible areas are black and visible
areas are white). In general, visibility may be between 0 and 1 indicating areas of reduced visibility,
e.g., regions that are partially obscured by foliage
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Fig. 2 A six time step vignette
where a target moves through
an obscured area. Other
targets are present elsewhere
in the surveillance region. The
target is depicted by an
asterisk. Areas obscured to the
sensor are black and areas that
are visible are white. Extra
dwells just before becoming
obscured (time = 1) aid in
localization after the target
emerges (time = 6)
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between the sensor and the ground. Given its position and the terrain elevation, the
sensor can compute a visibility mask which determines how well a particular spot
on the ground can be seen. As an example, in Fig. 1 we give binary visibility masks
computed from a sensor positioned (a) south and (b) to the west of the topologically
nonhomogeneous surveillance region (these plots come from real digital terrain
elevation maps). As can be seen from the figures, sensor position causes “shadowing”
of certain regions. These regions, if measured, would provide no information to
the sensor. A similar target masking effect occurs with atmospheric propagation
attenuation from disturbances such as fog, rain, sleet, or dust, as illustrated in
Section 8. This example illustrates a situation where nonmyopic adaptive sensing is
highly beneficial. Using a known sensor trajectory and known topological map, the
sensor can predict locations that will be obscured in the future. This information can
be used to prioritize resources so that they are used on targets that are predicted to
become obscured in the future. Extra sensor dwells immediately before obscuration
(at the expense of not interrogating other targets) will sharpen the estimate of target
location. This sharpened estimate will allow better prediction of where and when the
target will emerge from the obscured area. This is illustrated graphically with a six
time-step vignette in Fig. 2.

3 Formulating adaptive sensing problems

3.1 Partially observable Markov decision processes

An adaptive sensing problem can be posed formally as a partially observable Markov
decision process (POMDP). Before discussing exactly how this is done, we first need
to introduce POMDPs. Our level of treatment will not be as formal and rigorous as
one would expect from a fullblown course on this topic. Instead, we seek to describe
POMDPs in sufficient detail to allow the reader to see how an adaptive sensing
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problem can be posed as a POMDP, and to explore methods to approximate optimal
solutions. Our exposition assumes knowledge of probability, stochastic processes,
and optimization. In particular, we assume some knowledge of Markov processes,
including Markov decision processes, a model that should be familiar to the discrete
event system community. For completeness, we will introduce POMDPs in sufficient
detail to allow the reader to see how an adaptive sensing problem can be posed
as a POMDP, and to explore methods to approximate optimal solutions. For a full
treatment of POMDPs and related background, see Bertsekas (2007).

A POMDP is specified by the following ingredients:

• A set of states (the state space) and a distribution specifying the random initial
state.

• A set of possible actions (the action space).
• A state-transition law specifying the next-state distribution given an action taken

at a current state.
• A reward function specifying the reward (real number) received given an action

taken at a state.
• A set of possible observations (the observation space).
• An observation law specifying the distribution of observations given an action

taken at a state.

A POMDP is a controlled dynamical process in discrete time. The process begins
at time k = 0 with a (random) initial state. At this state, we perform an action and
receive a reward, which depends on the action and the state. At the same time, we
receive an observation, which again depends on the action and the state. The state
then transitions to some random next state, whose distribution is specified by the
state-transition law. The process then repeats in the same way—at each time, the
process is at some state, and the action taken at that state determines the reward,
observation, and next state. As a result, the state evolves randomly over time in
response to actions, generating observations along the way.

We have not said anything so far about the finiteness of the state space or the
sets of actions and observations. The advantage to leaving this issue open is that
it frees us to construct models in the most natural way. Of course, if we are to
represent any such model in a computer, we can only do so in a finite way (though
the finite numbers that can be represented in a computer are typically sufficiently
large to meet practical needs). For example, if we model the motion of a target
on the ground in terms of its Cartesian coordinates, we can deal with this model
in a computer only in a finite sense—specifically, there are only a finite number of
possible locations that can be captured on a standard digital computer. Moreover,
the theory of POMDPs becomes much more technically involved if we are to deal
rigorously with infinite sets. For the sake of technical formality, we will assume
henceforth that the state space, the action space, and the observation space are
all finite (though not necessarily “small”—we stress that this assumption is merely
for technical reasons). However, when thinking about models, we will not explicitly
restrict ourselves to finite sets. For example, it is convenient to use a motion model
for targets in which we view the Cartesian coordinates as real numbers. There is no
harm in this dichotomous approach as long as we understand that ultimately we are
computing only with finite sets.
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3.2 Belief state

As a POMDP evolves over time, we do not have direct access to the states that occur.
Instead, all we have are the observations generated over time, providing us with
clues of the actual underlying states (hence the term partially observable). These
observations might, in some cases, allow us to infer exactly what states actually
occurred. However, in general, there will be some uncertainty in our knowledge
of the states that actually occurred. This uncertainty is represented by the belief
state (or information state), which is the a posteriori (or posterior) distribution of the
underlying state given the history of observations.

Let X denote the state space (the set of all possible states in our POMDP), and
let B be the set of distributions over X . Then a belief state is simply an element
of B. Just as the underlying state changes over time, the belief state also changes
over time. At time k = 0, the (initial) belief state is equal to the given initial state
distribution. Then, once an action is taken and an observation is received, the belief
state changes to a new belief state, in a way that depends on the observation received
and the state-transition and observation laws. This change in the belief state can be
computed explicitly using Bayes’ rule.

To elaborate, suppose that the current time is k, and the current belief state is
b k ∈ B. Note that b k is a probability distribution over X—we use the notation b k(x)

for the probability that b k assigns to state x ∈ X . Let A represent the action space.
Suppose that at time k we take action ak ∈ A and, as a result, we receive observation
yk. Denote the state-transition law by Ptrans, so that the probability of transitioning
to state x′ given that action a is taken at state x is Ptrans(x′|x, a). Similarly, denote the
observation law by Pobs, so that the probability of receiving observation y given that
action a is taken at state x is Pobs(y|x, a). Then, the next belief state given action ak

is computed using the following two-step update procedure:

1. Compute the “updated” belief state b̂ k based on the observation yk of the state
xk at time k, using Bayes’ rule:

b̂ k(x) = Pobs(yk|x, ak)b k(x)
∑

s∈X Pobs(yk|s, ak)b k(s)
, x ∈ X .

2. Compute the belief state b k+1 using the state-transition law:

b k+1(x) =
∑

s∈X
b̂ k(s)Ptrans(x|s, ak), x ∈ X .

This two-step procedure is commonly realized in terms of a Kalman filter or a particle
filter (Ristic et al. 2004).

It is useful to think of a POMDP as a random process of evolving belief states. Just
as the underlying state transitions to some random new state with the performance
of an action at each time, the belief state also transitions to some random new
belief state. So the belief state process also has some “belief-state-transition” law
associated with it, which depends intimately on the underlying state-transition and
the observation laws. But, unlike the underlying state, the belief state is fully
accessible.

Indeed, any POMDP may be viewed as a fully observable Markov decision process
(MDP) with state space B, called the belief-state MDP or information-state MDP
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(see Bertsekas 2007). To complete the description of this MDP, we will show how
to write its reward function, which specifies the reward received when action a is
taken at belief-state b . Suppose b ∈ B is some belief state and a is an action. Let
R(x, a) be the reward received if action a is taken at underlying state x. Then let
r(b , a) = ∑

x∈X b(x)R(x, a) be the expected reward with respect to belief-state b ,
given action a. This reward r(b , a) then represents the reward function of the belief-
state MDP.

3.3 Optimization objective

Given a POMDP, our goal is to select actions over time to maximize the expected
cumulative reward (we take expectation here because the cumulative reward is
a random variable). To be specific, suppose we are interested in the expected
cumulative reward over a time horizon of length H: k = 0, 1, . . . , H − 1. Let xk and
ak be the state and action at time k, and let R(xk, ak) be the resulting reward received.
Then, the cumulative reward over horizon H is given by

VH = E

[
H−1∑

k=0

R(xk, ak)

]

,

where E represents expectation. It is important to realize that this expectation is with
respect to x0, x1, . . . ; i.e., the random initial state and all the subsequent states in the
evolution of the process, given the actions a0, a1, a2, . . . taken over time. The goal is
to pick these actions so that the objective function is maximized.

We have assumed without loss of generality that the reward is a function only
of the current state and the action. Indeed, suppose we write the reward such
that it depends on the current state, the next state, and the action. We can then
take the conditional mean of this reward with respect to the next state, given the
current state and action (the conditional distribution of the next state is given by
the state-transition law). Because the overall objective function involves expectation,
replacing the original reward with its conditional mean in the way described above
results in no loss of generality. Finally, notice that the conditional mean of the
original reward is a function of the current state and the action, but not the next
state.

Note that we can also represent the objective function in terms of r (the reward
function of the belief-state MDP) instead of R:

VH(b 0) = E

[
H−1∑

k=0

r(b k, ak)

∣
∣
∣
∣
∣
b 0

]

.

where E[·|b 0] represents conditional expectation given b 0. The expectation now is
with respect to b 0, b 1, . . . ; i.e., the initial belief state and all the subsequent belief
states in the evolution of the process. We leave it to the reader to verify this
expression involving belief states indeed gives rise to the same objective function
value as the earlier expression involving states. In Section 4 we will discuss an
equation, due to Bellman, that characterizes this conditional form of the objective
function.

It is often the case that the horizon H is very large. In such cases, for technical
reasons relevant to the analysis of POMDPs, the objective function is often expressed
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as a limit. A sensible limiting objective function is the infinite-horizon (or long-term)
average reward:

lim
H→∞

E

[
1

H

H−1∑

k=0

R(xk, ak)

]

.

Another common limiting objective function is the infinite-horizon cumulative dis-
counted reward:

lim
H→∞

E

[
H−1∑

k=0

γ k R(xk, ak)

]

,

where γ ∈ (0, 1) is called the discount factor. In this paper, our focus is not on
analytical approaches to solving POMDPs. Therefore, even when dealing with large
horizons, we will not be concerned with the technical considerations involved in
taking the kinds of limits in the above infinite-horizon objective functions (Bertsekas
2007). Instead, we will often imagine that H is very large but still use the nonlimiting
form.

3.4 Optimal policy

In general, the action chosen at each time should be allowed to depend on the entire
history up to that time (i.e., the action at time k is a random variable that is a function
of all observable quantities up to time k). However, it turns out that if an optimal
choice of such a sequence of actions exists, then there is an optimal choice of actions
that depends only on “belief-state feedback” (see Smallwood and Sondik 1973 and
references therein for the origins of this result). In other words, it suffices for the
action at time k to depend only on the belief-state b k at time k. So what we seek is,
at each time k, a mapping π∗

k : B → A such that if we perform action ak = π∗
k (b k),

then the resulting objective function is maximized. As usual, we call such a mapping
a policy. So, what we seek is an optimal policy.

3.5 POMDPs for adaptive sensing

POMDPs form a very general framework based on which many different stochastic
control problems can be posed. Thus, it is no surprise that adaptive sensing problems
can be posed as POMDPs.

To formulate an adaptive sensing problem as a POMDP, we need to specify
the POMDP ingredients in terms of the given adaptive sensing problem. This
specification is problem specific. To show the reader how this is done, here we
provide some examples of what aspects of adaptive sensing problems influence how
the POMDP ingredients are specified. As a further illustration, in the next three
sections we specify POMDP models for three example problems, including the
motivating example in Section 2 and the simulations.

States The POMDP state represents those features in the system (directly observ-
able or not) that possibly evolve over time. Typically, the state is composed of several
parts. These include target positions and velocities, sensor modes of operation,
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sensor parameter settings, battery status, data quality, which sensors are active, states
that are internal to tracking algorithms, the position and connectivity of sensors, and
communication resource allocation.

Actions To specify the actions, we need to identify all the controllable aspects
of the sensing system (those aspects that we wish to control over time in our
adaptive sensing problem). These include sensor mode switching (e.g., waveform
selection or carrier frequencies), pointing directions, sensor tunable parameters, sen-
sor activation status (on/off), sensor position changes, and communication resource
reallocation.

State-transition law The state-transition law is derived from models representing
how states change over time. Some of these changes are autonomous, while some
are in response to actions. Examples of such changes include target motion, which
sensors were most recently activated, changes in sensor parameter settings, sensor
failures over time, battery status changes based on usage, and changes in the position
and connectivity of sensors.

Reward function To determine the reward function, we need to first decide on
our overall objective function. To be amenable to POMDP methods, this objective
function must be of the form shown before, namely the mean sum of per-time-step
rewards. Writing the objective function this way automatically specifies the reward
function. For example, if the objective function is the mean cumulative tracking
error, then the reward function simply maps the state at each time to the mean
tracking error at that time.

Observations The observation at each time represents those features of the system
that depend on the state and are accessible to the controlling agent (i.e., can be used
to inform control decisions). These include sensor outputs (e.g., measurements of
target locations and velocities), and those parts of state that are directly observable
(e.g., battery status), including prior actions.

Observation law The observation law is derived from models of how the observa-
tions are related to the underlying states. In particular, we will need to use models
of sensors (i.e., the relationship between the sensor outputs and the quantities being
measured), and also models of the sensor network configuration.

In the next three sections, we provide examples to illustrate how to formulate
adaptive sensing problems as POMDPs. In the next section, we show how to
formulate an adaptive classification problem as a POMDP (with detection problems
being special cases). Then, in the section that follows, we show how to formulate an
adaptive tracking problem as a POMDP. Finally, we consider the airborne sensing
problem in Section 2 and describe a POMDP formulation for it. (which also applies
to the simulation example in Section 7).

3.6 POMDP for an adaptive classification problem

We now consider a simple classification problem and show how the POMDP frame-
work can be used to formulate this problem. In particular, we will give specific forms
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for each of the ingredients described in Section 3.5. This simple classification problem
statement can be used to model problems such as medical diagnostics, nondestructive
testing, and sensor scheduling for target detection.

Our problem in illustrated in Fig. 3. Suppose an object belongs to a particular un-
known class c, taking values in a set C of possible classes. We can take measurements
on the object that provide us with information from which we will infer the unknown
class. These measurements come from a “controlled sensor” at our disposal, which
we can use at will. Each time we use the sensor, we first have to choose a control
u ∈ U . For each chosen control u, we get a measurement whose distribution depends
on c and u. Call this distribution Psensor(·|c, u) (repeated uses of the sensor generate
independent measurements). Each time we apply control u, we incur a cost of κ(u)

(i.e., the cost of using the controlled sensor depends on the control applied). The
controlled sensor may represent a particular measurement instrument that can be
controlled (e.g., with different configurations or settings) or may represent a set
of fixed sensors from which to choose (e.g., a seismic, radar, and induction sensor
for landmine detection, as discussed in Scott et al. 2004). Notice that detection (i.e.,
hypothesis testing) is a special case of our problem because it reduces the case where
there are two classes: present and absent.

After each measurement is taken, we have to choose whether or not to produce
a classification (i.e., an estimate ĉ ∈ C). If we choose to produce such a classification,
the scenario terminates. If not, we can continue to take another measurement by
selecting a sensor control. The performance metric of interest here (to be maximized)
is the probability of correct classification minus the total cost of sensors used.

To formulate this problem as a POMDP, we must specify the ingredients described
in Section 3.5: states, actions, state-transition law, reward function, observations, and
observation law.

States The possible states in our POMDP formulation of this classification problem
are the possible classes, together with an extra state to represent that the scenario has
terminated, which we will denote by τ . Therefore, the state space is given by C ∪ {τ }.
Note that the state changes only when we choose to produce a classification, as we
will specify in the state-transition law below.

Actions The actions here are of two kinds: we can either choose to take a mea-
surement, in which case the action is the sensor control u ∈ U , or we can choose to
produce a classification, in which case the action is the class ĉ ∈ C. Hence, the action
space is given by U ∪ C.

State-transition law The state-transition law represents how the state evolves at
each time step as a function of the action. As pointed out before, as long as we are
taking measurements, the state does not change (because it represents the unknown

Fig. 3 An adaptive
classification system
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object class). As soon as we choose to produce a classification, the state changes to
the terminal state τ . Therefore, the state-transition law Ptrans is given by

Ptrans(x′|x, a) =
⎧
⎨

⎩

1 if a ∈ U and x′ = x
1 if a ∈ C and x′ = τ

0 otherwise.

Reward function The reward function R here is given by

R(x, a) =
⎧
⎨

⎩

−κ(a) if a ∈ U and x �= τ

1 if a ∈ C and x = a
0 otherwise.

If we produce a classification, then the reward is 1 if the classification is correct, and
otherwise it is 0. Hence, the mean of the reward when producing a classification is
the probability that the classification is correct. If we use the finite-horizon objective
function with horizon H, then the objective function represents the probability of
producing a correct classification within the time horizon of H (e.g., representing
some maximum time limit for producing a classification) minus the total sensing cost.

Observations The observations in this problem represent the sensor outputs (mea-
surements). The observation space is therefore the set of possible measurements.

Observation law The observation law specifies the distribution of the observations
given the state and action. So, if x ∈ C and a ∈ U , then the observation law is given by
Psensor(·|x, a). If x = τ , then we can define the observation law arbitrarily, because it
does not affect the solution to the problem (recall that after the scenario terminates,
represented by being in state τ , we no longer take any measurements).

Note that as long as we are still taking measurements and have not yet produced a
classification, the belief state for this problem represents the a posteriori distribution
of the unknown class being estimated. It is straightforward to show that the optimal
policy for this problem will always produce a classification that maximizes the a
posteriori probability (i.e., is a “MAP” classifier). However, it is not straightforward
to deduce exactly when we should continue to take measurements and when we
should produce a classification. Determining such an optimal policy requires solving
the POMDP.

3.7 POMDP for an adaptive tracking problem

We now consider a simple tracking problem and show how to formulate it using a
POMDP framework. Our problem in illustrated in Fig. 4. We have a Markov chain
with state space S evolving according to a state-transition law given by T (i.e., for
s, s′ ∈ S , T(s′|s) is the probability of transitioning to state s′ given that the state is
s). We assume that S is a metric space—there is a function d : S × S → R such that
d(s, s′) represents a “distance” measure between s and s′.1 The states of this Markov

1For the case where S represents target kinematic states in Cartesian coordinates, we typically use
the Euclidean norm for this metric.
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Fig. 4 An adaptive tracking
system
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chain are not directly accessible—they represent quantities to be tracked over time
(e.g., the coordinates and velocities of targets).

To do the tracking, as in the last section, we exploit measurements from a
“controlled sensor” over time. At each time step, we first have to choose a control
u ∈ U . For each chosen control u, we get a measurement whose distribution depends
on the Markov chain state s and control u, denoted Psensor(·|s, u) as before (again,
we assume that sensor measurements over time are independent). Each time we
apply control u, we incur a cost of κ(u) (i.e., as in the last example, the cost of using
the controlled sensor depends on the control applied). As in the last example, the
controlled sensor may represent a particular measurement instrument that can be
controlled (e.g., with different configurations or settings) or may represent a set of
fixed sensor assets from which to choose (e.g., multiple sensors distributed over a
geographical region, where the control here is which subset of sensors to activate, as
in He and Chong (2004, 2006), Krakow et al. (2006), Li et al. (2006, 2007)).

Each measurement is fed to a tracker, which is an algorithm that produces an
estimate ŝk ∈ S of the state at each time k. For example, the tracker could be a
Kalman filter or a particle filter (Ristic et al. 2004). The tracker has an internal
state, which we will denote zk ∈ Z . The internal state is updated as a function of
measurements:

zk+1 = ftracker(zk, yk),

where yk is the measurement generated at time k as a result of control uk (i.e., if
the Markov chain state at time k is sk, then yk has distribution Psensor(·|sk, uk)). The
estimate ŝk is a function of this internal state zk. For example, in the case of a Kalman
filter, the internal state represents a mean vector together with a covariance matrix.
The output ŝk is usually simply the mean vector. In the case of a particle filter,
the internal state represents a set of particles. See Ristic et al. (2004) for explicit
equations to represent ftracker.

The performance metric of interest here (to be maximized) is the negative mean
of the sum of the cumulative tracking error and the sensor usage cost over a horizon
of H time steps. To be precise, the tracking error at time k is the “distance” between
the output of the tracker, ŝk, and the true Markov chain state, sk. Recall that the
“distance” here is well-defined because we have assumed that S is a metric space. So
the tracking error at time k is d(ŝk, sk).

As in the last section, to formulate this adaptive tracking problem as a POMDP,
we must specify the ingredients described in Section 3.5: states, actions, state-
transition law, reward function, observations, and observation law.

States It might be tempting to define the state space for this problem simply to be
the state space for the Markov chain, S . However, it is important to point out that
the tracker also contains an internal state, and the POMDP state should take both
into account. Accordingly, for this problem we will take the state at time k to be the
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pair [sk, zk], where sk is the state of the Markov chain to be tracked, and zk is the
tracker state. Hence, the state space is S × Z .

Actions The actions here are the controls applied to the controlled sensor. Hence,
the action space is simply U .

State-transition law The state-transition law specifies how the state changes at
each time k, given the action ak at that time. Recall that the state at time k is
the pair [sk, zk]. The Markov chain state sk makes a transition according to the
transition probability T(·|sk). The tracker state zk makes a transition depending on
the observation yk. In other words, the transition distribution for the next tracker
state given zk is the distribution of ftracker(zk, yk) (which in turn depends on the
measurement distribution Psensor(·|sk, ak)). This completely specifies the distribution
of [sk+1, zk+1] as a function of [sk, zk] and ak.

Reward function The reward function is given by

R([sk, zk], ak) = −(d(ŝk, sk) + κ(ak)),

where the reader should recall that the tracker output ŝk is a function of zk. Notice
that the first term in the (per-time-step) reward, which represents tracking error, is
not a function of ak. Instead, the tracking errors depend on the actions applied over
time through the track estimates ŝk (which in turn depend on the actions through the
distributions of the measurements).

Observations As in the previous example, the observations here represent the sen-
sor outputs (measurements). The observation space is therefore the set of possible
measurements.

Observation law The observation law is given by the measurement distribution
Psensor(·|sk, ak). Note that the observation law does not depend on zk, the tracker
state, even though zk is part of the POMDP state.

3.8 POMDP for motivating example

In this section, we give mathematical forms for each of the ingredients listed in
Section 3.5 for the motivating example described in Section 2 (these also apply to
the simulation example in Section 7). To review, the motivating example dealt with
an airborne sensor charged with detecting and tracking multiple moving targets. The
airborne sensor is agile in that it can steer its beam to different ground locations. Each
interrogation of the ground results in an observation as to the absence or presence
of targets in the vicinity. The adaptive sensing problem is to use the collection of
measurements made up to the current time to determine the best place to point next.

States In this motivating problem, we are detecting and tracking N moving ground
targets. For the purposes of this discussion we assume that N is known and fixed, and
that the targets are moving in 2 dimensions (a more general treatment, where the
number of targets is both unknown and time varying, is given elsewhere (Kreucher
et al. 2005c)). We denote these positions as x1, . . . , xN where xi is a 2-dimensional
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vector corresponding to target i. Furthermore, because of the terrain, the position
of the sensor influences the visibility of certain locations on the ground, so sensor
position is an important component of the state. Denote the (directly observable)
3-dimensional sensor position by σ . Then the state space X consists of real-valued
vectors in R

2N+3, i.e., each state takes the form

x = [x1, x2, . . . , xN−1, xN, σ ].
Although not explicitly shown here, the surveillance region topology is assumed

known and considered part of the problem specification. This specification affects the
observation law, as we shall see below.

Actions The airborne sensor is able to measure a single detection cell and make
an imperfect measurement as to the presence or absence of a target in that cell.
Therefore, the action a ∈ {1, . . . , C} is an integer specifying which of the C discrete
cells is measured.

State-transition law The state-transition law describes the distribution of the next
state vector x′ = [x′

1, x′
2, . . . , x′

N, σ ′] conditioned on the current state vector x =
[x1, x2, . . . , xN, σ ] and the action a. Because our states are vectors in R

2N+3, we will
specify the state-transition law as a conditional density function. For simplicity, we
have chosen to model the evolution of each of the N targets as independent and
following a Gaussian law, i.e.,

Tsingle target(x′
i|xi) = 1

2π |�|−1/2
exp− 1

2 (xi−x′
i)

	�−1(xi−x′
i), i = 1, . . . , N

(where xi and x′
i are treated here as column vectors). In other words, each target

moves according to a random walk (purely diffusive). Because of our independence
assumption, we can write the joint target-motion law as

Ttarget
(
x′

1, . . . , x′
N|x1, . . . , xN

) =
N∏

i=1

Tsingle target
(
x′

i|xi
)
.

The temporal evolution of the sensor position is assumed deterministic and known
precisely (i.e., the aircraft if flying a pre-planned pattern). We use f (σ ) to denote
the sensor trajectory function, which specifies the next position of the sensor given
current sensor position σ ; i.e., if the current sensor position is σ , then f (σ ) is exactly
the next sensor position. Then, the motion law for the sensor is

Tsensor(σ
′|σ) = δ

(
σ ′ − f (σ )

)
.

With these assumptions, the state-transition law is completely specified by

Ptrans
(
x′|x, a

) = Ttarget
(
x′

1, . . . , x′
N|x1, . . . , xN

)
Tsensor

(
σ ′|σ )

.

Note that according to our assumptions, the actions taken do not affect the state
evolution. In particular, we assume that the targets do not know they are under
surveillance and consequently they do not take evasive action (see Kreucher et al.
2006 for a model that includes evasion).
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Reward function In previous work (Kreucher et al. 2005b), we have found that
information gain provides a useful metric that captures a wide variety of goals.
Information gain is a metric that measures the relative information increase between
a prior belief state and a posterior belief state, i.e., it measures the benefit a particular
observation has yielded. An information theoretic metric is intuitively pleasing as it
measures different types of benefits (e.g., information about the number of targets
present versus information about the positions of individual targets) on an equal
footing, that of information gain. Furthermore, it has been shown that information
gain can be viewed as a near universal proxy for any risk function (Kreucher et al.
2005a). Therefore, the reward used in this application is the gain in information
between the belief state before a measurement b k and the (measurement updated)
belief state after a measurement is made b̂ k. We use a particular information metric
called the Rènyi divergence, defined as follows. The Rènyi divergence of two belief
states p and q is given by

Dα(p||q) = 1

α − 1
ln

∑

x∈X
p(x)αq(x)1−α

where α > 0. To define the reward r(b , a) in our context, given a belief state b and
an action a, we first write,


α(b , a, y) = Dα

(
b̂ ||b

)
,

where y is an observation with distribution given by the observation law Pobs(·|b , a)

and b̂ is the “updated” belief state computed as described earlier in Section 3.2 using
Bayes’ rule and knowledge of b , a, and y. Note that 
α(b , a, y) is a random variable
because it is a function of the random observation y, and hence its distribution
depends on a. We will call this random variable the myopic information gain.
The reward function is defined in terms of the myopic information gain by taking
expectation: r(b , a) = E[
α(b , a, y)|b , a].

Observations When a cell is interrogated, the sensor receives return energy and
thresholds this energy to determine whether it is to be declared a detection or a
nondetection. This imperfect measurement gives evidence as to the presence or
absence of targets in the cell. Additionally, the current sensor position is directly
observable. Therefore, the observation is given by [z, σ ], where z ∈ {0, 1} is the one-
bit observation representing detection or nondetection, and σ is the position of the
sensor.

Observation law Detection/nondetection is assumed to result from thresholding a
Rayleigh-distributed random variable that characterizes the energy returned from an
interrogation of the ground. The performance is completely specified by a probability
of detection Pd and a false alarm rate Pf, which under the Rayleigh assumption are
linked by a signal-to-noise-plus-clutter ratio, SNCR, by Pd = P1/(1+SNCR)

f .
To precisely specify the observation model, we make the following notational

definitions. First, let oa(x1, . . . , xN) denote the occupation indicator function for cell
a, defined as oa(x1, . . . , xN) = 1 when at least one of the targets projects into sensor
cell a (i.e., at least one of the xi locations are within cell a), and oa(x1, . . . , xN) = 0
otherwise. Furthermore, let va(σ ) denote the visibility indicator function for cell a,
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defined as va(σ ) = 1 when cell a is visible from a sensor positioned at σ (i.e., there is
no line of sight obstruction between the sensor and the cell), and va(σ ) = 0 otherwise.
Then the probability of receiving a detection given state x = [x1, . . . , xN, σ ] and
action a is

Pdet(x, a) =
{

Pd if oa(x1, . . . , xN)va(σ ) = 1

Pf if oa(x1, . . . , xN)va(σ ) = 0.

Therefore, the observation law is specified completely by

Pobs(z|x, a) =
{

Pdet(x, a) if z = 1

1 − Pdet(x, a) if z = 0.

4 Basic principle: Q-value approximation

4.1 Overview and history

In this section, we describe the basic principle underlying approximate methods to
solve adaptive sensing problems that are posed as POMDPs. This basic principle is
due to Bellman, and gives rise to a natural framework in which to discuss a variety of
approximation approaches. Specifically, these approximation methods all boil down
to the problem of approximating Q-values.

Methods for solving POMDPs have their roots in the field of optimal control,
which dates back to the end of the seventeenth century with the work of Johann
Bernoulli (Willems 1996). This field received significant interest in the middle of
the twentieth century, when much of the modern methodology was developed, most
notably by Bellman (1957), who applied dynamic programming to bear on optimal
control, and Pontryagin et al. (1962), who introduced his celebrated maximum
principle based on calculus of variations. Since then, the field of optimal control has
enjoyed much fruit in its application to control problems arising in engineering and
economics.

The recent history of methods to solve optimal stochastic decision problems took
an interesting turn in the second half of the twentieth century with the work of
computer scientists in the field of artificial intelligence seeking to solve “planning”
problems (roughly analogous to what engineers and economists call optimal control
problems). The results of their work most relevant to the POMDP methods discussed
here are reported in a number of treatises from the 80s and 90s (Cheng 1988;
Kaelbling et al. 1996, 1998; Zhang and Liu 1996). The methods developed in the
artificial intelligence (machine learning) community aim to provide computationally
feasible approximations to optimal solutions for complex planning problems under
uncertainty. The operations research literature has also continued to reflect ongoing
interest in computationally feasible methods for optimal decision problems (Lovejoy
1991b; Chang et al. 2007; Powell 2007).

The connection between the significant work done in the artificial intelligence
community and those of the earlier work on optimal control is noted by Bertsekas
and Tsitsiklis in their 1996 book (Bertsekas and Tsitsiklis 1996). In particular, they
note that the developments in reinforcement learning—the approach taken by arti-
ficial intelligence researchers for solving planning problems—is most appropriately
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understood in the framework of Markov decision theory and dynamic programming.
This framework is now widely reflected in the artificial intelligence literature (Kael-
bling et al. 1996, 1998; Zhang and Liu 1996; Thrun et al. 2005). Our treatment in this
paper rests on this firm and rich foundation (though our focus is not on reinforcement
learning methods).

4.2 Bellman’s principle and Q-values

The key result in Markov decision theory relevant here is Bellman’s principle. Let
V∗

H(b 0) be the optimal objective function value (over horizon H) with b 0 as the initial
belief state. Then, Bellman’s principle states that

V∗
H(b 0) = max

a

(
r(b 0, a) + E

[
V∗

H−1(b 1)|b 0, a
])

where b 1 is the random next belief state (with distribution depending on a), and
E[·|b 0, a] represents conditional expectation with respect to the random next state
b 1, whose distribution depends on b 0 and a. Moreover,

π∗
0 (b 0) = arg max

a

(
r(b 0, a) + E

[
V∗

H−1(b 1)|b 0, a
])

is an optimal policy.
Define the Q-value of taking action a at state b k as

QH−k(b k, a) = r(b k, a) + E
[
V∗

H−k−1(b k+1)|b k, a
]
,

where b k+1 is the random next belief state (which depends on the observation yk at
time k, as described in Section 3.2). Then, Bellman’s principle can be rewritten as

π∗
k (b k) = arg max

a
QH−k(b k, a)

i.e., the optimal action at belief-state b k (at time k, with a horizon-to-go of H − k) is
the one with largest Q-value at that belief state. This principle, called lookahead, is
the heart of POMDP solution approaches.

4.3 Stationary policies

In general, an optimal policy is a function of time k. If H is sufficiently large, then
the optimal policy is approximately stationary (independent of k). This is intuitively
clear: if the end of the time horizon is a million years away, then how we should act
today given a belief-state is the same as how we should act tomorrow with the same
belief state. Said differently, if H is sufficiently large, the difference between QH and
QH−1 is negligible. Moreover, if needed we can always incorporate time itself into the
definition of the state, so that dependence on time is captured simply as dependence
on state.

Henceforth we will assume for convenience there is a stationary optimal policy,
and this is what we seek. We will use the notation π for stationary policies (with
no subscript k)—this significantly simplifies the notation. Our approach is equally
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applicable to the short-horizon, nonstationary case, with appropriate notational
modification (to account for the time dependence of decisions).

4.4 Receding horizon

Assuming H is sufficiently large and that we seek a stationary optimal policy, at any
time k we write:

π∗(b) = arg max
a

QH(b , a).

Notice that the horizon is taken to be fixed at H, regardless of the current time k. This
is justified by our assumption that H is so large that at any time k, the horizon is still
approximately H time steps away. This approach of taking the horizon to be fixed at
H is called receding horizon control. For convenience, we will also henceforth drop
the subscript H from our notation (unless the subscript is explicitly needed).

4.5 Approximating Q-values

Recall Q(b , a) is the reward r(b , a) of taken action a at belief-state b plus the
expected cumulative reward of applying the optimal policy for all future actions.
This second term in the Q-value is in general difficult to obtain, especially when the
belief-state is large. For this reason, approximation methods are necessary to obtain
Q-values. Note that the quality of an approximation is not so much in the accuracy
of the actual Q-values obtained, but in the ranking of the actions reflected by their
relative values.

In Section 6, we describe a variety of methods to approximate Q-values. But
before discussing such methods, we first describe the basic control framework for
using Q-values to inform control decisions.

5 Basic control architecture

By Bellman’s principle, knowing the Q-values allows us to make optimal control
decisions. In particular, if we are currently at belief-state b , we need only find the
action a with the largest Q(b , a). This principle yields a basic control framework
that is illustrated in Fig. 5. The top-most block represents the sensing system, which
we treat as having an input and two forms of output. The input represents actions
(external control commands) we can apply to control the sensing system. Actions
usually include sensor-resource controls, such as which sensor(s) to activate, at what
power level, where to point, what waveforms to use, and what sensing modes to
activate. Actions may also include communication-resource controls, such as the data
rate for transmission from each sensor.

The two forms of outputs from the sensing system represent:

1) Fully observable aspects of the internal state of the sensing system (called
observables), and

2) Measurements (observations) of those aspects of the internal state that are not
directly observable (which we refer to simply as measurements).
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Fig. 5 Basic lookahead
framework
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We assume that the underlying state-space is the Cartesian product of two sets, one
representing unobservables and the other representing observables. Target states
are prime examples of unobservables. So, measurements are typically the outputs
of sensors, representing observations of target states. Observables include things
like sensor locations and orientations, which sensors are activated, battery status
readings, etc. In the remainder of this section, we describe the components of
our control framework. Our description starts from the architecture of Fig. 5 and
progressively fills in the details.

5.1 Controller

At each decision epoch, the controller takes the outputs (measurements and observ-
ables) from the sensing system and, in return, generates an action that is fed back
to the sensing system. This basic closed-loop architecture is familiar to mainstream
control system design approaches.

The controller has two main components. The first is the measurement filter, which
takes as input the measurements, and provides as output the a posteriori (posterior)
distribution of unobservable internal states (henceforth called unobservables). In
the typical situation where the unobservables are target states, the measurement
filter outputs a posterior distribution on target states given the measurement history.
The measurement filter is discussed further below. The posterior distribution of the
unobservables in addition to the observables form the belief state, the posterior
distribution of the underlying state. The second component is the action selector,
which takes the belief state and computes an action (the output of the controller).
The basis for action selection is Bellman’s principle, using Q-values. This is discussed
below.

5.2 Measurement filter

The measurement filter computes the posterior distribution given measurements.
This component is present in virtually all target-tracking systems. It turns out that
the posterior distribution can be computed iteratively: each time we obtain a new
measurement, the posterior distribution can be obtained by updating the previous
posterior distribution based on knowing the current action, the transition law, and the
observation law. This update is based on Bayes’ rule, described earlier in Section 3.2.
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Fig. 6 Basic components of
the action selector
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The measurement filter can be constructed in a number of ways. If the posterior
distribution always resides within a family of distributions that is conveniently para-
meterized, then all we need to do is keep track of the belief-state parameters. This
is the case, for example, if the belief state is Gaussian. Indeed, if the unobservables
evolve in a linear fashion, then these Gaussian parameters can be updated using a
Kalman filter. In general, however, it is not practical to keep track of the exact belief
state. Indeed, a variety of options have been explored for belief-state representation
and simplification (e.g., Rust 1997; Roy et al. 2005; Yu and Bertsekas 2004). We will
have more to say about belief-state simplification in Section 6.11.

Particle filtering is a Monte Carlo sampling method for updating posterior distri-
butions. Instead of maintaining the exact posterior distribution, we maintain a set of
representative samples from that distribution. It turns out that this method dovetails
naturally with Monte Carlo sampling-based methods for Q-value approximation, as
we will describe later in Section 6.8.

5.3 Action selector

As shown in Fig. 6, the action selector consists of a search (optimization) algorithm
that optimizes an objective function, the Q-function, with respect to an action. In
other words, the Q-function is a function of the action—it maps each action, at a
given belief state, to its Q-value. The action that we seek is one that maximizes the
Q-function. So, we can think of the Q-function as a kind of “action-utility” function
that we wish to maximize. The search algorithm iteratively generates a candidate
action and evaluates the Q-function at this action (this numerical quantity is the Q-
value), searching over the space of candidate actions for one with the largest Q-value.
Methods for obtaining (approximating) the Q-values is described in the next section.

6 Q-value approximation methods

6.1 Basic approach

Recall the definition of the Q-value,

Q(b , a) = r(b , a) + E
[
V∗ (

b ′) |b , a
]
, (1)

where b ′ is the random next belief state (with distribution depending on a). In all but
very special problems, it is impossible to compute the Q-value exactly. In this section,
we describe a variety of methods to approximate the Q-value. Because the first term
on the right-hand side of (1) is usually easy to compute, most approximation methods
focus on the second term. As pointed out before, it is important to realize that the
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quality of an approximation to the Q-value is not so much in the accuracy of the
actual values obtained, but in the ranking of the actions reflected by their relative
values.

We should point out that each of the approximation methods presented in this
section has its own domain of applicability. Traditional reinforcement learning
approaches (Section 6.6), predicated on running a large number of simulations to
“train,” are broadly applicable as they only require a generative model. However,
these methods often have infeasible computational burden owing to the long training
time required for some problems. Furthermore, there is an extensibility problem,
where a trained function may perform very poorly if the problem changes slightly
between the training stage and the application stage. To address these concerns,
we present several sampling techniques (Sections 6.2, 6.8, 6.9, 6.11) which are also
very broadly applicable as they only require a generative model. These methods
do not require a training phase, per se, but do on-line estimation. However, in
some instances, these too may require more computations than desirable. Simi-
larly, parametric approximations (Section 6.5) and action-sequence approximations
(Section 6.7) are general in applicability but may entail excessive computational
requirements. Relaxation methods (Section 6.3) and heuristics (Section 6.4) may
provide reduced computation but require advanced domain knowledge.

6.2 Monte Carlo sampling

In general, we can think of Monte Carlo methods simply as the use of computer
generated random numbers in computing expectations of random variables through
averaging over many samples. With this in mind, it seems natural to consider using
Monte Carlo methods to compute the value function directly based on Bellman’s
equation:

V∗
H(b 0) = max

a0

(
r(b 0, a0) + E

[
V∗

H−1(b 1)|b 0, a0
])

.

Notice that the second term on the right-hand side involves expectations (one per
action candidate a0), which can be computed using Monte Carlo sampling. However,
the random variable inside each expectation is itself an objective function value
(with horizon H − 1), and so it too involves a max of an expectation via Bellman’s
equation:

V∗
H(b 0) = max

a0

(

r(b 0, a0) + E
[

max
a1

(
r(b 1, a1) + E

[
V∗

H−2(b 2)|b 1, a1
])

∣
∣
∣
∣ b 0, a0

])

.

Notice we now have two “layers” of max and expectation, one “nested” within
the other. Again, we see the inside expectation involves the value function (with
horizon H − 2), which again can be written as a max of expectations. Proceeding
this way, we can write V∗

H(b 0) in terms of H layers of max and expectations. Each
expectation can be computed using Monte Carlo sampling. The remaining question
is how computationally burdensome is this task?

Kearns et al. (1999) have provided a method to calculate the computational
burden of approximating the value function using Monte Carlo sampling as described
above, given some prescribed accuracy in the approximation of the value function.
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Unfortunately, it turns out that for practical POMDP problems this computational
burden is prohibitive, even for modest degrees of accuracy. So, while Bellman’s
equation suggests a natural Monte Carlo method for approximating the value
function, the method is not useful in practice. For this reason, we seek alternative
approximation methods. In the next few subsections, we explore some of these
methods.

6.3 Relaxation of optimization problem

Some problems that are difficult to solve become drastically easier if we relax certain
aspects of the problem. For example, by removing a constraint in the problem,
the “relaxed” problem may yield to well-known solution methods. This constraint
relaxation enlarges the constraint set, and so the solution obtained may no longer
be feasible in the original problem. However, the objective function value of the
solution bounds the optimal objective function value of the original problem.

The Q-value involves the quantity V∗(b ′), which can be viewed as the optimal
objective function value corresponding to some optimization problem. The method
of relaxation, if applicable, gives rise to a bound on V∗(b ′), which then provides an
approximation to the Q-value. For example, a relaxation of the original POMDP
may result in a bandit problem (see Krishnamurthy and Evans 2001; Krishnamurthy
2005); or may be solvable via linear programming (see de Farias and Van Roy
2003, 2004). (See also specific applications to sensor management Castanon 1997;
Washburn et al. 2002.) In general, the quality of this approximation is a function of
the specific relaxation and is very problem specific. For example, Castanon (1997)
suggests that in his setting his relaxation approach is feasible for generating near-
optimal solutions. Additionally, Washburn et al. (2002) show that the performance of
their index rule is eclipsed by that of multi-step lookahead under certain conditions
of the process noise, while being much closer in the low-noise situation. While it
is sometimes possible to apply analytical approaches to a relaxed version of the
problem, it is generally accepted that problems that can be posed as POMDPs are
unlikely to be amenable to analytical solution approaches.

Bounds on the optimal objective function value can also be obtained by approx-
imating the state space. Lovejoy (1991a) shows how to approximate the state space
by a finite grid of points, and use that grid to construct upper and lower bounds on
the optimal objective function.

6.4 Heuristic approximation

In some applications we are unable to compute Q-values directly, but can use domain
knowledge to develop an idea of its behavior. If so, we can heuristically construct a
Q-function based on this knowledge.

Recall from (1) that the Q-value is the sum of two terms, where the first term
(the immediate reward) is usually easy to compute. Therefore, it often suffices
to approximate only the second term in (1), which is the mean optimal objective
function value starting at the next belief state, which we call the expected value-to-go
(EVTG). (Note the EVTG is a function of both b and a, because the distribution
of the next belief state is a function of b and a.) In some problems, it is possible to
construct a heuristic EVTG based on domain knowledge. If the constructed EVTG
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properly reflects tradeoffs in the selection of alternative actions, then the ranking of
these actions via their Q-values will result in the desired “lookahead.”

For example, consider the motivating example of tracking multiple targets with
a single sensor. Suppose we can only measure the location of one target per
decision epoch. The problem then is to decide which location to measure and the
objective function is the aggregate (multi-target) tracking error. The terrain over
which the targets are moving is such that the measurement errors are highly location
dependent, for example because of the presence of topological features which cause
some areas to be invisible from a future sensor position. In this setting, it is intuitively
clear that if we can predict sensor and target motion so that we expect a target
is about to be obscured, then we should focus our measurements on that target
immediately before the obscuration so that its track accuracy is improved and the
overall tracking performance maximized in light of the impending obscuration.

The same reasoning applies in a variety of other situations, including those where
targets are predicted to become unresolvable to the sensor (e.g., two targets that
cross) or where the target and sensor motion is such that future measurements
are predicted to be less reliable (e.g., a bearings-only sensor that is moving away
from a target). In these situations, we advocate a heuristic method that replaces the
EVTG by a function that captures the long-term benefit of an action in terms of an
“opportunity cost” or “regret.” That is, we approximate the Q-value as

Q(b , a) ≈ r(b , a) + wN(b , a)

where N(b , a) is an easily computed heuristic approximation of the long-term value,
and w is a weighting term that allows us to trade the influence of the immediate value
and the long-term value. As a concrete example of a useful heuristic, we have used
the “gain in information for waiting” as a choice of N(b , a) (Kreucher et al. 2004).
Specifically, let ḡk

a denote the expected value of the Rényi divergence between the
belief state at time k and the updated belief state at time k after taking action a,
as defined in Section 3.8 (i.e., the myopic information gain). Note that this myopic
information gain is a random variable whose distribution depends on a, as explained
in Section 3.8. Let pk

a(·) denote the distribution of this random variable. Then a
useful approximation of the long-term value of taking action a is the gain (loss) in
information received by waiting until a future time step to take the action,

N(b , a) ≈
M∑

m=1

γ msgn
(
ḡk

a − ḡk+m
a

)
Dα

(
pk

a(·)||pk+m
a (·))

where M is the number of time steps in the future that are considered.
Each term in the summand of N(b , a) has two components. First, sgn

(
ḡk

a − ḡk+m
a

)

signifies if the expected reward for taking action a in the future is more or less
than the present. A negative value implies that the future is better and that the
action ought to be discouraged at present. A positive value implies that the future
is worse and that the action ought to be encouraged at present. This may happen, for
example, when the visibility of a given target is getting worse with time. The second
term, Dα

(
pk

a(·)||pk+m
a (·)), reflects the magnitude of the change in reward using the

divergence between the density on myopic rewards at the current time step and at
a future time step. A small number implies the present and future rewards are very
similar, and therefore the nonmyopic term should have little impact on the decision
making.
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Therefore, N(b , a) is positive if an action is less favorable in the future (e.g.,
the target is about to become obscured). This encourages taking actions that are
beneficial in the long term, and not just taking actions based on their immediate
reward. Likewise, the term is negative if the action is more favorable in the future
(e.g., the target is about to emerge from an obscuration). This discourages taking
actions now that will have more value in the future.

6.5 Parametric approximation

In situations where a heuristic Q-function is difficult to construct, we may consider
methods where the Q-function is approximated by a parametric function (by this
we mean that we have a function approximator parameterized by one or more
parameters). Let us denote this approximation by Q̃(b , θ), where θ is a parameter
(to be tuned appropriately). For this approach to be useful, the computation of
Q̃(b , θ) has to be relatively simple, given b and θ . Typically, we seek approximations
for which it is easy to set the value of the parameter θ appropriately, given some
information of how the Q-values “should” behave (e.g., from expert knowledge,
empirical results, simulation, or on-line observation). This adjustment or tuning of
the parameter θ is called training. In contrast to on-line approximation methods
discussed in this section, the training process in parametric approximation is often
done off-line.

As in the heuristic approximation approach, the approximation of the Q-function
by the parametric function approximator is usually accomplished by approximating
the EVTG, or even directly approximating the objective function V∗.2 In the usual
parametric approximation approach, the belief state b is first mapped to a set of
features. The features are then passed through a parametric function to approximate
V∗(b). For example, in the problem of tracking multiple targets with a single sensor,
we may extract from the belief state some information on the location of each target
relative to the sensor, taking into account the topology. These constitute features.
For each target, we then assign a numerical value to these features, reflecting the
measurement accuracy. Finally, we take a linear combination of these numerical
values, where the coefficients of this linear combination serve the role of the
parameters to be tuned.

The parametric approximation method has some advantages over methods based
only on heuristic construction. First, the training process usually involves numerical
optimization algorithms, and thus well-established methodology can be brought to
bear on the problem. Second, even if we lack immediate expert knowledge on our
problem, we may be able to experiment with the system (e.g., by using a simulation
model). Such empirical output is useful for training the function approximator.
Common training methods found in the literature go by the names of reinforcement
learning, Q-learning, neurodynamic programming, and approximate dynamic pro-
gramming. We have more to say about reinforcement learning in the next section.

2In fact, given a POMDP, the Q-value can be viewed as the objective function value for a related
problem; see Bertsekas and Tsitsiklis (1996).
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The parametric approximation approach may be viewed as a systematic method
to implement the heuristic approach. But note that even in the parametric approach,
some heuristics are still needed in the choice of features and in the form of the
function approximator. For further reading, see Bertsekas and Tsitsiklis (1996).

6.6 Reinforcement learning

A popular method for approximating the Q-function based on the parametric
approximation approach is reinforcement learning or Q-learning (Watkins 1989).
Recall that the Q-function satisfies the equation

Q(b , a) = r(b , a) + E
[

max
α

Q
(
b ′, α

)∣∣
∣ b , a

]
. (2)

In Q-learning, the Q-function is estimated from multiple trajectories of the process.
Assuming as usual that the number of states and actions are finite, we can represent
Q(b , a) as a lookup table. In this case, given an arbitrary initial value of Q(b , a),
the one-step Q-learning algorithm (Sutton and Barto 1998) is given by the repeated
application of the update equation:

Q(b , a) ← (1 − β)Q(b , a) + β
(

r(b , a) + max
α

Q
(
b ′, α

))
, (3)

where β is a parameter in (0, 1) representing a “learning rate,” and each of the 4-
tuples {b , a, b ′, r} are examples of states, actions, next states, and rewards incurred
during the training phase. With enough examples of belief states and actions, the
Q-function can be “learned” via simulation or on-line.

Unfortunately, in most realistic problems (the problems considered in this paper
included) it is infeasible to represent the Q-function as a lookup table. This is
either due to the large number of possible belief states (our case), actions, or both.
Therefore, as pointed out in the last section, function approximation is required. A
standard and simplest class of Q-function approximators are linear combinations of
basis functions (also called features):

Q(b , a) = θ(a)	φ(b), (4)

where φ(b) is a feature vector (often constructed by a domain expert) associated
with state b and the coefficients of θ(a) are to be estimated, i.e., the training data
is used to learn the best approximation to Q(b , a) among all linear combinations of
the features. Gradient descent is used with the training data to update the estimate
of θ(a):

θ(a) ← θ(a) + β

(

r(b , a) + max
a′ Q(b ′, a′) − Q(b , a)

)

∇θ Q(b , a)

= θ(a) + β

(

r(b , a) + max
a′ θ(a′)	φ(b ′) − θ(a)	φ(b)

)

φ(b).

Note that we have taken advantage of the fact that for the case of a linear function
approximator, the gradient is given by ∇Q(b , a) = φ(b). Hence, at every iteration,
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θ(a) is updated in the direction that minimizes the empirical error in (2). When
a lookup table is used in (4), this algorithm reduces to (3). Once the learning
of the vector θ(a) is completed, optimal actions can be computed according to
arg maxa θ(a)	φ(b). Determining the learning rate (β) and the number of training
episodes required is a matter of active research.

Selecting a set of features that simultaneously provide both an adequate descrip-
tion of the belief state and a parsimonious representation of the state space requires
domain knowledge. For the illustrative example that we use in this paper (see
Section 3.8), the feature vector φ(b) should completely characterize the surveillance
region and capture its nonstationary nature. For consistency in comparison to other
approaches, we appeal to features that are based on information theory, although
this is simply one possible design choice. In particular, we use the expected myopic
information gain at the current time step and the expected myopic information
gain at the next time step as features which characterize the state. Specifically, let
r(b , a) = E[
α(b , a, y)|b , a] be defined as in Section 3.8. Next, define b ′ to be the
belief state at the hypothetical “next” time step starting at the current belief state b ,
computed using the second of the two-step update procedure in Section 3.2. In other
words, b ′ is what results in the next step if only a state transition takes place, without
an update based on incorporating a measurement. Then, the feature vector is

φ(b) = [
r(b , 1), . . . , r(b , C), r(b ′, 1), . . . , r(b ′, C)

]

where C is the number of cells (and also the number of actions). In the situation
of time-varying visibility, these features capture the immediate value of various
actions and allow the system to learn the long-term value by looking at the change in
immediate value of the actions over time. In a more general version of this problem,
actions might include more than just which cell to measure—for example, actions
might also involve which waveform to transmit. In these more general cases, the
feature vector will be have more components to account for the larger set of possible
actions.

6.7 Action-sequence approximations

Let us write the value function (optimal objective function value as a function of
belief state) as

V∗(b) = max
π

E

[
H−1∑

k=0

r(b k, π(b k))

∣
∣
∣
∣
∣
b , π(b)

]

= E

[

max
a0,...,aH−1:ak=π(b k)

H−1∑

k=0

r(b k, ak)

∣
∣
∣
∣
∣
b

]

, (5)

where the notation maxa0,...,aH−1:ak=π(b k) means maximization subject to the constraint
that each action ak is a (fixed) function of the belief state b k. If we relax this constraint
on the actions and allow them to be arbitrary random variables, then we have an
upper bound on the value function:

V̂HO(b) = E

[

max
a0,...,aH−1

H−1∑

k=0

r(b k, ak)

∣
∣
∣
∣
∣
b

]

.
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In some applications, this upper bound provides a suitable approximation to the
value function. The advantage of this method is that in certain situations the
computation of the “max” above involves solving a relatively easy optimization
problem. This method is called hindsight optimization (Chong et al. 2000; Wu et al.
2002).

One implementation involves averaging over many Monte Carlo simulation runs
to compute the expectation above. In this case, the “max” is computed for each
simulation run by first generating all the random numbers for that run, and then
applying a static optimization algorithm to compute optimal actions a0, . . . , aH−1. It
is easy now to see why we call the method “hindsight” optimization: the optimization
of the action sequence is done after knowing all uncertainties over time, as if making
decisions in hindsight.

As an alternative to relaxing the constraint in (5) (that each action ak is a fixed
function of the belief state b k), suppose we further restrict each action to be simply
fixed (not random). This restriction gives rise to a lower bound on the value function:

V̂FO(b) = max
a0,...,aH−1

E
[
r (b 0, a0) + · · · + r (b H−1, aH−1) |b , a0, . . . , aH−1

]
.

To use analogous terminology to “hindsight optimization,” we call this method
foresight optimization—we make decisions before seeing what actually happens,
based on our expectation of what will happen. The method is also called open loop
feedback control (Bertsekas 2007). For a tracking application of this, see Chhetri
et al. (2004).

We should also point out some alternatives to the simple hindsight or foresight
approaches above. In Yu and Bertsekas (2004), more sophisticated bounds are
described that do not involve simulation, but instead rely on convexity. The method
in Miller et al. (2009) also does not involve simulation, but approximates the future
belief-state evolution using a single sample path.

6.8 Rollout

In this section, we describe the method of policy rollout (or simply rollout) (Bertsekas
and Castanon 1999). The basic idea is simple. First let Vπ (b 0) be the objective
function value corresponding to policy π . Recall that V∗ = maxπ Vπ . In the method
of rollout, we assume that we have a candidate policy πbase (called the base policy),
and we simply replace V∗ in (1) by Vπbase . In other words, we use the following
approximation to the Q-value:

Qπbase(b , a) = r(b , a) + E
[
Vπbase

(
b ′) |b , a

]
.

We can think of Vπbase as the performance of applying πbase in our system. In
many situations of interest, Vπbase is relatively easy to compute, either analytically,
numerically, or via Monte Carlo simulation.

It turns out that the policy π defined by

π(b) = arg max
a

Qπbase(b , a) (6)
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is at least as good as πbase (in terms of the objective function); in other words,
this step of using one policy to define another policy has the property of policy
improvement. This result is the basis for a method known as policy iteration, where
we iteratively apply the above policy-improvement step to generate a sequence
of policies converging to the optimal policy. However, policy iteration is difficult
to apply in problems with large belief-state spaces, because the approach entails
explicitly representing a policy and iterating on it (remember that a policy is a
mapping with the belief-state space B as its domain).

In the method of policy rollout, we do not explicitly construct the policy π in (6).
Instead, at each time step, we use (6) to compute the output of the policy at the
current belief-state. For example, the term E[Vπbase(b ′)|b , a] can be computed using
Monte Carlo sampling. To see how this is done, observe that Vπbase(b ′) is simply the
mean cumulative reward of applying policy πbase, a quantity that can be obtained
by Monte Carlo simulation. The term E[Vπbase(b ′)|b , a] is the mean with respect to
the random next belief-state b ′ (with distribution that depends on b and a), again
obtainable via Monte Carlo simulation. We provide more details in Section 6.10. In
our subsequent discussion of rollout, we will focus on its implementation using Monte
Carlo simulation. For an application of the rollout method to sensor scheduling for
target tracking, see He and Chong (2004, 2006), Krakow et al. (2006), Li et al. (2006,
2007).

6.9 Parallel rollout

An immediate extension to the method of rollout is to use multiple base policies. So
suppose that �B = {π1, . . . , πn} is a set of base policies. Then replace V∗ in (1) by

V̂(b) = max
π∈�B

Vπ (b).

We call this method parallel rollout (Chang et al. 2004). Notice that the larger the set
�B, the tighter V̂(b) becomes as a bound on V∗(b). Of course, if �B contains the
optimal policy, then V̂ = V∗. It follows from our discussion of rollout that the policy
improvement property also holds here. As with the rollout method, parallel rollout
can be implemented using Monte Carlo sampling.

6.10 Control architecture in the Monte Carlo case

The method of rollout provides a convenient turnkey (systematic) procedure for
Monte-Carlo-based decision making and control. Here, we specialize the general
control architecture of Section 5 to the use of particle filtering for belief-state
updating and a Monte Carlo method for Q-value approximation (e.g., rollout). We
note that there is increasing interest in Monte Carlo methods for solving Markov
decision processes (Thrun et al. 2005; Chang et al. 2007). Particle filtering, which
is a Monte Carlo sampling method for updating posterior distributions, dovetails
naturally with Monte Carlo methods for Q-value approximation. An advantage
of the Monte Carlo approach is that it does not rely on analytical tractability—it
is straightforward in this approach to incorporate sophisticated models for sensor
characteristics and target dynamics.



Discrete Event Dyn Syst

Fig. 7 Basic control
architecture with particle
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Figure 7 shows the control architecture specialized to the Monte Carlo setting. In
contrast to Fig. 5, a particle filter plays the role of the measurement filter, and its
output consists of samples of the unobservables. Figure 8 shows the action selector
in this setting. Contrasting this with Fig. 6, we see that a Monte Carlo simulator
plays the role of the Q-value approximator (e.g., via rollout). Search algorithms that
are suitable here include the method of Shi and Chen (2000), which is designed for
such problems, dovetails well with a simulation-based approach, and accommodates
heuristics to guide the search within a rigorous framework.

As a specific example, consider applying the method of rollout. In this case, the
evaluation of the Q-value for any given candidate action relies on a simulation model
of the sensing system with some base policy. This simulation model is a “dynamic”
model in that it evaluates the behavior of the sensing system over some horizon of
time (specified beforehand). The simulator requires as inputs the current observables
and samples of unobservables from the particle filter (to specify initial conditions)
and a candidate action. The output of the simulator is a Q-value corresponding
to the current measurements and observables, for the given candidate action. The
output of the simulator represents the mean performance of applying the base policy,
depending on the nature of the objective function. For example, the performance
measure of the system may be the negative mean of the sum of the cumulative
tracking error and the sensor usage cost over a horizon of H time steps, given the
current system state and candidate action.

To elaborate on exactly how the Q-value approximation using rollout is imple-
mented, suppose we are given the current observables and a set of samples of the
unobservables (from the particle filter). The current observables together with a
single sample of unobservables represent a candidate current underlying state of the
sensing system. Starting from this candidate current state, we simulate the application
of the given candidate action (which then leads to a random next state), followed by
application of the base policy for the remainder of the time horizon—during this time

Fig. 8 Components of the
action selector

Particle
Filter

Search
Algorithm

Q-Value

Action Selector

Simulator

Candidate
action

Samples of
unobservables

Observables
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horizon, the system state evolves according to the dynamics of the sensing system as
encoded within the simulation model. For this single simulation run, we compute
the “action utility” of the system (e.g., the negative of the sum of the cumulative
tracking error and sensor usage cost over that simulation run). We do this for each
sample of the unobservables, and then average over the performance values from
these multiple simulation runs. This average is what we output as the Q-value.

The samples of the unobservables from the particle filter that are fed to the
simulator (as candidate initial conditions for unobservables) may include all the
particles in the particle filter (so that there is one simulation run per particle), or
may constitute only a subset of the particles. In principle, we may even run multiple
simulation runs per particle.

The above Monte Carlo method for approximating POMDP solutions has some
beneficial features. First, it is flexible in that a variety of adaptive sensing scenarios
can be tackled using the same framework. This is important because of the wide
variety of sensors encountered in practice. Second, the method does not require
analytical tractability; in principle, it is sufficient to simulate a system component,
whether or not its characteristics are amenable to analysis. Third, the framework
is modular in the sense that models of individual system components (e.g., sensor
types, target motion) may be treated as “plug-in” modules. Fourth, the approach
integrates naturally with existing simulators (e.g., Umbra (Gottlieb and Harrigan
2001)). Finally, the approach is inherently nonmyopic, allowing the tradeoff of short-
term gains for long-term rewards.

6.11 Belief-state simplification

If we apply the method of rollout to a POMDP, we need a base policy that maps
belief states to actions. Moreover, we need to simulate the performance of this
policy—in particular, we have to sample future belief states as the system evolves
in response to actions resulting from this policy. Because belief states are probability
distributions, keeping track of them in a simulation is burdensome.

A variety of methods are available to approximate the belief state. For example,
we could simulate a particle filter to approximate the evolution of the belief state
(as described previously), but even this may be unduly burdensome. As a further
simplification, we could use a Gaussian approximation and keep track only of the
mean and covariance of the belief state using a Kalman filter or any of its extensions,
including extended Kalman filters and unscented Kalman filters (Julier and Uhlmann
2004). Naturally, we would expect that the more accurate the approximation of the
belief state, the more burdensome the computation.

An extreme special case of the above tradeoff is to use a Dirac delta distribution
for belief states in our simulation of the future. In other words, in our lookahead
simulation, we do away with keeping track of belief states altogether and instead
simulate only a completely observable version of the system. In this case, we need only
consider a base policy that maps underlying states to actions—we could simply apply
rollout to this policy, and not have to maintain any belief states in our simulation.
Call this method completely observable (CO) rollout. It turns out that in certain
applications, such as in sensor scheduling for target tracking, a CO-rollout base policy
is naturally available (see He and Chong 2004, 2006; Krakow et al. 2006; Li et al. 2006,
2007). Note that we will still need to keep track of (or estimate) the actual belief state
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of the system, even if we use CO rollout. The benefit of CO rollout is that it allows
us to avoid keeping track of (simulated) belief states in our simulation of the future
evolution of the system.

In designing lookahead methods with a simplified belief state, we must ensure the
simplification does not hide the good or bad effects of actions. The resulting Q-value
approximation must properly rank current actions. This requires a carefully designed
simplification of the belief state together with a base policy that appropriately reflects
the effects of taking specific current actions.

For example, suppose that a particular current action results in poor future
rewards because it leads to belief states with large variances. Then, if we use the
method of CO rollout, we have to be careful to ensure that this detrimental effect of
the particular current action be reflected as a cost in the lookahead. (Otherwise, the
effect would not be accounted for properly, because in CO rollout we do not keep
track of belief states in our simulation of the future effect of current actions.)

Another caveat in the use of simplified belief states in our lookahead is that the
resulting rewards in the lookahead may also be affected (and this may have to be
taken into account). For example, consider again the problem of sensor scheduling
for target tracking, where the per-step reward is the negative mean of the sum of
the tracking error and the sensor usage cost. Suppose that we use a particle filter
for tracking (i.e., for keeping track of the actual belief state). However, for our
lookahead, we use a Kalman filter to keep track of future belief states in our rollout
simulation. In general, the tracking error associated with the Kalman filter is different
from that of the particle filter. Therefore, when summed with the sensor usage cost,
the relative contribution of the tracking error to the overall reward will be different
for the Kalman filter compared to the particle filter. To account for this, we will need
to scale the tracking error (or sensor usage cost) in our simulation so that the effect of
current actions are properly reflected in the Q-value approximations from the rollout
with the simplified belief state calculation.

6.12 Reward surrogation

In applying a POMDP approximation method, it is often useful to substitute the
reward function for an alternative (surrogate), for a number of reasons. First, we
may have a surrogate reward that is much simpler (or more reliable) to calculate
than the actual reward (e.g., the method of reduction to classification (Blatt and
Hero 2006a, b)). Second, it may be desirable to have a single surrogate reward for
a range of different actual rewards. For example, Kreucher et al. (2005b), Hero
et al. (2008) shows that average Rényi information gain can be interpreted as a near
universal proxy for any bounded performance metric. Third, reward surrogation may
be necessitated by the use of a belief-state simplification technique. For example, if
we use a Kalman filter to update the mean and covariance of the belief state, then
the reward can only be calculated using these entities.

The use of a surrogate reward can lead to many benefits. But some care must
be taken in the design of a suitable surrogate reward. Most important is that the
surrogate reward be sufficiently reflective of the true reward that the ranking of
actions with respect to the approximate Q-values be preserved. A superficially
benign substitution may in fact have unanticipated but significant impact on the
ranking of actions. For example, recall the example raised in the previous section on
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belief-state simplification, where we substitute the tracking error of a particle filter
for the tracking error of a Kalman filter. Superficially, this substitute appears to be
hardly a “surrogate” at all. However, as pointed out before, the tracking error of the
Kalman filter may be significantly different in magnitude from that of a particle filter.

7 Illustration: spatially adaptive airborne sensing

In this section, we illustrate the performance of several of the strategies discussed
in this paper on a common model problem. The model problem has been chosen
to have the characteristics of the motivating example given earlier, while remaining
simple enough so that the workings of each method are transparent.

In the model problem, there are two targets, each of which is described by a
one-dimensional position (see Fig. 9). The state is therefore a 2-dimensional real
number describing the target locations plus the sensor position, as described in
Section 3.8. Targets move according to a pure diffusion model (given explicitly
in Section 3.8 as Tsingle target(y|x)), and the belief state is propagated using this
model. Computationally, the belief state is estimated by a multi-target particle filter,
according to the algorithm given in Kreucher et al. (2005c).

The sensor may measure any one of 16 cells, which span the possible target
locations (again, see Fig. 9). The sensor is capable of making three (not necessarily
distinct) measurements per time step, receiving binary returns independent from
dwell to dwell. The three measurements are fused sequentially: after each measure-
ment, we update the belief state by incorporating the measurement using Bayes’ rule,
as discussed in Section 3.2. In occupied cells, a detection is received with probability
Pd = 0.9. In cells that are unoccupied a detection is received with probability Pf (set
here at 0.01). This sensor model is given explicitly in Section 3.8 by Pobs(z|x, a).

At the onset, positions of the targets are known only probabilistically. The belief
state for the first target is uniform across sensor cells {2, . . . , 6} and for the second
target is uniform across sensor cells {11, . . . , 15}. The particle filter used to estimate
the belief state is initialized with this uncertainty.

Visibility of the cells changes with time as in the motivating example of Section 3.8.
At time 1, all cells are visible. At times 2, 3, and 4, cells {11, . . . , 15} become obscured.
At time 5, all cells are visible again. This time varying visibility map is known to
the sensor management algorithm and should be exploited to best choose sensing
actions.

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12 Cell 13 Cell 14 Cell 15 Cell 16

Time 1
Time 2
Time 3
Time 4
Time 5

X X

Fig. 9 The model problem. At the onset, the belief state for target 1 is uniformly distributed across
cells {2, . . . , 6} and the belief state for target 2 is uniformly distributed across cells {11, . . . , 15}. At
time 1 all cells are visible. At times 2, 3, and 4, cells {11, . . . , 15} are obscured. This is a simple case
where a target is initially visible, becomes obscured, and then reemerges
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Sensor management decisions are made by using the belief state to predict which
actions are most valuable. In the following paragraphs, we contrast the decisions
made by a number of different strategies that have been described earlier.

At time 1 a myopic strategy, using no information about the future visibility, will
choose to measure cells uniformly from the set {2, . . . , 6} ∪ {11, . . . , 15} as they all
have the same expected immediate reward. As a result, target 1 and target 2 will on
the average be given equal attention. A nonmyopic strategy, on the other hand, will
choose to measure cells from {11, . . . , 15} as they are soon to become obscured. That
is, the policy of looking for target 2 at time 1 followed by looking for target 1 is best.

Figure 10 shows the performance of several of the on-line strategies discussed
in this paper on this common model problem. The performance of each scheduling
strategy is measured in terms of the mean squared tracking error at each time step.
The curves represent averages over 10, 000 realizations of the model problem. Each
realization has randomly chosen initial positions of the targets and measurements
corrupted by random mistakes as discussed above. The five policies are as follows.

• A random policy that simply chooses one of the 16 cells randomly for inter-
rogation. This policy provides a worst-case performance and will bound the
performance of the other policies.

• A myopic policy that takes the action expected to maximize immediate reward.
Here the surrogate reward is myopic information gain as defined in Section 6.4,
measured in terms of the expected Rényi divergence with α = 0.5 (see Kreucher
et al. 2005b). So the value of an action is estimated by the amount of information
it gains. The myopic policy is sub-optimal because it does not consider the long
term ramifications of its choices. In particular, at time 1 the myopic strategy
has no preference as to which target to measure because both are unobscured
and have uncertain position. Therefore, half of the time, target 1 is measured,
resulting in an opportunity cost because target 2 is about to disappear.

• The reinforcement learning approach described in Section 6.6. The Q-function
was learned using a linear function approximator, as described in detail in
Section 6.6, by running a large number (105) of sample vignettes. Each sample

Fig. 10 The performance of
the five policies discussed
above. Performance is
measured in terms of mean
squared tracking error at each
time step, averaged over a 104
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vignette proceeds as follows. An action is taken randomly. The resulting imme-
diate gain (as measured by the expected information gain) is recorded and the
resulting next-state computed. This next-state is used to predict the long-term
gain using the currently available Q-function. The Q-function is then refined
given this information (in practice this is done in blocks of many vignettes, but the
principle is the same). Training the Q-function is a very time consuming process.
In this case, for each of the 105 sample vignettes, the problem was simulated from
beginning to end, and the state and reward variables were saved along the way. It
is also unclear as to how the performance of the trained Q-function will change
if the problem is perturbed. However, with these caveats in mind, once the Q-
function has been learned, decision making is very quick and the resulting policy
in this case is very good.

• The heuristic EVTG approximation described in Section 6.4 favors actions
expected to be more valuable now than in the future. In particular, actions
corresponding to measuring target 2 have additional value because target 2
is predicted to be obscured in the future. This makes the ranking of actions
that measure target 2 higher than those that measure target 1. Therefore, this
policy (like the other nonmyopic approximations described here) outperforms
the myopic policy. The computational burden is on the order of H times the
myopic policy, where H is the horizon length.

• The rollout policy described in Section 6.8. The base policy used here is to take
each of the three measurements sequentially at the location where the target
is expected to be, which is a function of the belief state that is current to the
particular measurement. This expectation is computed using the predicted future
belief state, which requires the belief state to be propagated in time. This is done
using a particle filter. We again use information gain as the surrogate reward to
approximate Q-values. The computational burden of this method is on the order
of NH times that of the myopic policy, where H is the horizon length and N is
the number of Monte Carlo trials used in the approximation (here H = 5 and
N = 25).

• The completely observable rollout policy described in Section 6.11. As in the
rollout policy above, the base policy here is to take measurements sequentially
at locations where the target is expected to be, but enforces the criterion that
the sensor should alternate looking at the two targets. This slight modification is
necessary due to the delta-function representation of future belief states. Since
the completely observable policy does not predict the posterior into the future, it
is significantly faster than standard rollout (an order of magnitude faster in these
simulations). However, it requires a different surrogate reward (one that does
not require the posterior like the information gain surrogate metric). Here we
have chosen as a surrogate reward to count the number of detections received,
discounting multiple detections of the same target.

Our main intent here is simply to convey that, from Fig. 10, the nonmyopic policies
perform similarly, and are better than the myopic and random policies, though at
the cost of additional computational burden. The nonmyopic techniques perform
similarly since they ultimately choose similar policies. Each one prioritizes measuring
the target that is about to disappear over the target that is in the clear. On the other
hand, the myopic policy is “losing” the target more often, resulting in higher mean
error as there are more catastrophic events.
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8 Illustration: multi-mode adaptive airborne sensing

In this section, we turn our attention to adaptive sensing with a waveform-agile sen-
sor. In particular, we investigate how the availability of multiple waveform choices
effects the myopic/nonmyopic trade. The model problem considered here again
focuses on detection and tracking in a visibility impaired environment. The target
dynamics, belief-state update, and observation law are identical to that described in
the first simulation. However, in this section we look at a sensor that is agile over
waveform as well as pointing direction (i.e., can choose both where to interrogate as
well as what waveform to use). Furthermore, the different waveforms are subject
to different (time-varying) visibility maps. Simulations show that the addition of
waveform agility (and corresponding visibility differences) changes the picture.
In this section, we restrict our attention to the EVTG heuristic for approximate
nonmyopic planning. Earlier simulations have shown that in model problems of this
type, the various approaches presented here perform similarly.

8.1 A study with a single waveform

We first present a baseline result comparing random, myopic, and heuristic EVTG
(HECTG) approximation based performance in the (modified) model problem. The
model problem again covers a surveillance area broken into 16 regions with a target
that is to be detected and tracked. The single target moves according to a purely
diffusive model, and the belief state is propagated using this model. However, in this
simulation the model problem is modified in that there is only one sensor allocation
per time step and the detection characteristics are severely degraded. The region
is occluded by a time-varying visibility map that obscures certain sub-regions at
each time step, degrading sensor effectiveness in those regions at that time step.
The visibility map is known exactly a priori and can be used both to predict which
portions of the region are useless to interrogate at the present time (because of
current occlusion) and to predict which regions will be occluded in the future. The
sensor management choice in the case of a single waveform is to select the pointing
direction (one of the 16 sub-regions) to interrogate. If a target is present and the sub-
region is not occluded, the sensor reports a detection with pd = 0.5. If the target is not
present or the sub-region is occluded the sensor reports a detection with p f = .01.

Both the myopic and nonmyopic information based methods discount the value of
looking at occluded sub-regions. Prediction of myopic information gain uses visibility
maps to determine that interrogating an occluded cell provides no information
because the outcome is certain (it follows the false alarm distribution). However, the
nonmyopic strategy goes further: It uses future visibility maps to predict which sub-
regions will be occluded in the future and gives higher priority to their interrogation
at present.

The simulation results shown in Fig. 11 indicate that the HEVTG approximation
to the nonmyopic scheduler provides substantial performance improvement with
respect to a myopic policy in the single waveform model problem. The gain in
performance for the policy that looks ahead is primarily ascribable to the following.
It is important to promote interrogation of sub-regions that are about to become
occluded over those that will remain visible. If a sub-region is not measured and
then becomes occluded, the opportunity to determine target presence in that region
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Fig. 11 Performance of the
scheduling policies with a
pointing-agile single
waveform sensor
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is lost until the region becomes visible again. This opportunity cost is captured in
the HEVTG approximation as it predicts which actions will have less value in the
future and promotes them at the present. The myopic policy merely looks at the
current situation and takes the action with maximal immediate gain. As a result of
this greediness, it misses opportunities that have long term benefit. As a result of this
greediness, the myopic policy may outperform the HEVTG in the short term but
ultimately underperforms.

8.2 A study with multiple independent waveforms

This subsection explores the effect of multiple waveforms on the nonmyopic/myopic
trade. We consider multiple independent waveforms, where independent means the
time-varying visibility maps for the different waveforms are not coupled in any way.
This assumption is relaxed in the following subsection.

Each waveform has an associated time-varying visibility map drawn indepen-
dently from the others. The sensor management problem is one of selecting both
pointing direction and the waveform. All other simulation parameters are set iden-
tically to the previous simulation (i.e., detection and false alarm probabilities, and
target kinematics). Figure 12 shows performance curves for two and five independent
waveforms. In comparison to the single waveform simulation, these simulations (a)
have improved overall performance, and (b) have a narrowed gap in performance
between nonmyopic and myopic schedulers.

Figure 13 provides simulation results as the number of waveforms available is
varied. These results indicate that as the number of independent waveforms available
to the scheduler increase, the performance difference between a myopic policy and
a nonmyopic policy narrows. This is largely due to the softened opportunity cost the
myopic policy suffers. In the single waveform situation, if a region became occluded
it could not be observed until the visibility for the single waveform changed. This puts
a sharp penalty on a myopic policy. However, in the multiple independent waveform
scenario, the penalty for myopic decision making is much less severe. In particular,
if a region becomes occluded in waveform i, it is likely that some other waveform
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Fig. 12 Top: Performance of
the strategies with a
two-waveform sensor. Bottom:
Performance curves with a
five-waveform sensor
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is still viable (i.e., the region is unoccluded to that waveform) and a myopic policy
suffers little loss. As the number of independent waveforms available to the sensor
increases, this effect is magnified until there is essentially no difference in the two
policies.

8.3 A study with multiple coupled waveforms

A more realistic multiple waveform scenario is one in which the visibility occlusions
between waveforms are highly coupled. Consider the case where a platform may
choose between the following 5 waveforms (modalities) for interrogation of a region:
electro-optical (EO), infra-red (IR), synthetic aperture radar (SAR), foliage pene-
trating radar (FOPEN), and moving target indication radar (MTI). In this situation,
the visibility maps for the 5 waveforms are highly coupled through the environmental
conditions (ECs) present in the region. For example, clouds effect the visibility of
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Fig. 13 Top: The terminal
performance of the scheduling
algorithms versus number of
waveforms. Bottom: The gain
(performance improvement)
of the nonmyopic policy with
respect to the myopic policy
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both EO and IR. Similarly, tree cover effects the performance of all modes except
FOPEN, and so on.

Therefore, a more realistic study of multiple waveform performance is to model
the time-varying nature of a collection of environmental conditions and generate the
(now coupled) waveform visibility maps from the ECs. For this simulation study, we
choose the nominal causation map shown in Fig. 14 (top).

The time-varying maps of each EC are chosen to resemble a passover, where for
example the initial cloud map is chosen randomly and then it moves at a random ori-
entation and random velocity through the region over the simulation time. The wave-
form visibility maps are then formed by considering all obscuring ECs and choosing
the maximum obscuration. This setup results in fewer than five independent wave-
forms available to the sensor because the viability maps are coupled through the ECs.

Figure 14 (bottom) shows a simulation result of the performance for a five
waveform sensor. The simulation shows the gap between the myopic policy and
the nonmyopic policy widens from where it was in the independent waveform
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Fig. 14 Top: EC Causation
map. Bottom: Performance of
the scheduling strategies with a
pointing-agile five waveform
sensor, where the visibility
maps are coupled through the
presence of environmental
conditions
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simulation. In fact, in this scenario, the 5 dependent waveforms have performance
characteristics that are similar to 2 independent waveforms, as measured by the ratio
of nonmyopic scheduler performance to myopic scheduler performance. Figure 15
illustrates the difference among the three policies being compared here, highlighting
the “lookahead” property of the nonmyopic scheme.

Fig. 15 Three time steps from
a three waveform simulation.
Obscured areas are shown
with filled black squares and
unobscured areas are white.
The true target position is
shown by an asterisk for
reference. The decisions
(waveform choice and pointing
direction) are shown with
solid-bordered squares
(myopic policy) and
dashed-bordered squares
(nonmyopic policy). This
illustrates “lookahead,” where
regions that are about to be
obscured are measured
preferentially by the
nonmyopic policy
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9 Conclusions

This paper has presented methods for adaptive sensing based on approximations
for partially observable Markov decision processes, a special class of discrete event
system models. Though we have not specifically highlighted the event-driven nature
of these models, our framework is equally applicable to models that are more
appropriately viewed as event driven. The methods have been illustrated on the
problem of waveform-agile sensing, wherein it has been shown that intelligently
selecting waveforms based on past outcomes provides significant benefit over naive
methods. We have highlighted, via simulation, computationally approaches based
on rollout and a particular heuristic related to information gain. We have detailed
some of the design choices that go into finding appropriate approximations, including
choice of surrogate reward and belief-state representation.

Throughout this paper we have taken special care to emphasize the limitations of
the methods. Broadly speaking, all tractable methods require domain knowledge in
the design process. Rollout methods require a base policy specially designed for the
problem at hand; relaxation methods require one to identify the proper constraint(s)
to remove; heuristic approximations require identification of appropriate value-to-
go approximations, and so on. That being said, when domain knowledge is available
it can often yield dramatic improvement in system performance over traditional
methods at a fixed computational cost. Formulating a problem as a POMDP itself
poses a number of challenges. For example, it might not be straightforward to cast
the optimization objective of the problem into an expected cumulative reward (with
stagewise additivity).

A number of extensions to the basic POMDP framework are possible. First, of
particular interest to discrete event systems is the possibility of event-driven sensing,
where actions are taken only after some event occurs or some condition is met. In this
case, the state evolution is more appropriately modeled as a semi-Markov process
(though with some manipulation it can be converted into an equivalent standard
Markovian model) (Tijms 2003, Ch. 7). A second extension is to incorporate explicit
constraints into the decision-making framework (Altman 1998; Chen and Wagner
2007; Zhang et al. 2008).
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