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Abstract1 — Beamforming is a process that supplies 
directional gain to sensor array processing.  One modality 
where beamforming adds great value is passive sonar, where 
real-aperture arrays receive signals emitted by acoustic 
sources.  In passive sonar systems, the beamformer is the 
backbone of a processing structure that detects, localizes, and 
classifies external targets.  Conventional beamformers use 
deterministic time-delays (often implemented as phase shifts) 
to arrange coherent addition of plane-wave signals at each 
sensor.  Recently, adaptive beamformers take advantage of 
signal time history by imposing a model on the environment. 
Basis Pursuit is another reconstruction approach used in 
Compressed Sensing that also enforces a physics-based model 
– in this case a model of scene sparsity.  This paper describes 
an application of this technique to the beamforming problem.  
The main benefit of the Basis Pursuit beamforming approach 
is that it is robust to missing array elements, providing nearly 
full-aperture performance in a reduced sensor environment.  
This result is advantageous in the case of processing with 
inoperative hydrophones.  It may also provide cost savings by 
allowing array design with fewer hydrophones. 

I . INTRODUCTION

Recently, the signal processing community has shown 
great interest in Compressed Sensing (“CS”) [1].  In CS, 
fewer (sometimes significantly fewer) samples of a physical 
phenomenon than traditional Nyquist bounds would 
mandate reconstruct the original signal via a technique such 
as Basis Pursuit (BP).  Good reconstruction is possible 
under the assumption that the sampled signals are actually 
sparse.  Passive sonar often obeys this assumption, with 
180- (or 360)-degree field of view but few targets. 

This paper describes a beamforming method that 
exploits the sparsity constraints used in BP.  Like the 
Conventional Beamformer (“CBF”), we assume each signal 
impinging on a passive array of sensors arrives as a plane-
wave [2]. In addition, we also assume the number of plane-
wave signals is small compared to the number of arrival 
angles considered (“beams”). 

Our method produces results comparable to CBF in the 
case of a full-aperture array.  However, when the number of 
sensors decreases (either by hyrdrophones becoming 
unexpectedly inoperable or by design), our method produces 
higher-fidelity results than the CBF approach operating on 
the same reduced input data. 
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This paper proceeds as follows. Section II reviews a 
standard model of plane-wave physics and derives the CBF.  
A simulated example demonstrates the power of this classic 
approach, and highlights the benefits of using data in the 
wide frequency ranges available with broadband sensors. 

Section III builds on the model presented in Section II, 
and gives a brief description of our BP approach to 
beamforming.  This section shows results from a BP- 
beamformer operating on the same simulated data input 
from Section II.

Section IV demonstrates the benefits of the 
methodology on Navy collected at-sea data by comparing 
CBF and BP beamformer outputs in the case where the 
number of sensors has been significantly reduced. 

II. PLANE WAVE MODEL AND CBF

A. Plane Wave Model 
This section’s contents are based on material from [2].

We assume an array of acoustic sensors with energy from 
acoustic sources impinging on the elements in the sensor 
array.  The array’s aperture refers to the fact that each 
element resides at a different spatial location.  This diversity 
causes propagation times from a target source to each 
element to differ.  In the frequency domain, these 
propagation times manifest themselves as different phase 
values.  Figure 1 illustrates the situation for the special case 
of a linear array.  A plane wave (red line) arrives at an 
angle θ with respect to the array’s endfire direction.  If the 
distance from the source to the array’s center element is r, 
then the distance from the source to an element located at a 
distance D from the center element is:  rr Δ− , where  

).cos(θΔ Dr =
For a narrowband acoustic signal, or for a single 

Fourier component of a broadband signal (i.e., a plane 
wave), this relation provides the differential phase for a 
signal received at the nth sensor element: 

,)(2)( nrn Δ=Δ
λ
πϕ (1) 

where λ is the wavelength of the plane wave. 

B. CBF
The received signals would add coherently across elements 
if their arrival times (or phases) were forced to align.  The 
idea of the Conventional Beamformer (“CBF”) is to 
hypothesize a large set of candidate arrival angles (“beams”) 
and, on a per-beam basis, impart appropriate phase delays at 
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each element to force any signals arriving from that 
direction to add coherently.  This processing causes signals 
in each hypothesized direction to add constructively, while 
signals emanating from other directions do not. 

Figure 1:  Sensor Array Geometry.

From the time-delay relationship at the bottom of 
Figure 1, time delay is a function of the cosine of arrival 
angle.  Thus, in the figures that follow, the independent axis 
representation of arrival angle is  u = cos(θ)  (rather than θ).

The quantity that describes a narrowband, plane-wave 
signal arriving from an angle u as it impinges on each 
element is a N×1 vector (where N is the number of elements 
in the array).  Each term in the vector represents the phase 
rotation of the signal as it arrives at the corresponding 
element.  This quantity is called a “steering vector” or a 
“manifold vector.”  Denote the steering vector for a 1D 
array as a.  We have (from Figure 1) this expression for a 
plane wave signal arriving from angle specified by u for the 
nth element in the vector: 

unjkp
n eua )()( −= (2) 

where p(n) is the location of the nth element in 1D, and the 
wavenumber k is 2π/λ.  Thus, for a 1D array with elements 
uniformly spaced by a distance d, the entire vector becomes:  

[ TduNjkdujkjkdu eeeua )1(21)( −−−−= ] (3) 

Implementation of a CBF beamformer at a single 
bearing (or beam) simply involves rotating the phase of each 
hypothesized signal (i.e., a plane wave at arrival angle 
specified by u) by the appropriate amount to cause the 
signal at each element to combine coherently.  This 
procedure amounts to simply pre-multiplying the signal by 
aH, where ()H denotes the conjugate transpose operation. 

By extension, we can represent the entire CBF 
operation, where we postulate a large number of arrival 
directions, as a linear filter with fixed coefficients.  Recall 
that N is the number of elements, and defining Nθ as the 
number of hypothesized arrival angles (beams), a N×Nθ
“steering matrix”  

[ ]T
NuauauaA )()()( 21 θ

= (4) 

allows the operation  

zAb H= (5) 

to perform the entire beamforming operation (all Nθ beams 
at a single frequency), where z is a  N×1  vector representing 
the received data at each element.  Here, the output b is a  
Nθ×1  vector representing all output beams. 

Figure 2 (blue line) shows a simulated CBF profile for 
two ideal (noise-free environment) targets:  one at u=-0.1 
and the other at u=0.1.  As is evident from the figure, the 
targets have different SNR values.  There are 51 sensor 
elements and CBF forms 201 beams, at the array’s design 
frequency (i.e., the element spacing is λ/2 at the plane 
wave’s frequency).  The figure clearly indicates peaks at the 
arrival angles corresponding to the two targets, as well as a 
good deal of sidelobe structure.  The red line shows a more 
realistic beam profile, where additive noise corrupts the 
arriving signals at each element. 

Figure 2:  Standard CBF Processing (2 Targets). 

C. Broadband 
A powerful technique for improving target SNR and 

localization is to take advantage of the broad frequency 
bands afforded by many passive sensors.  Simple incoherent 
combination of beam profiles (like those in Figure 2) over 
multiple frequencies results in improved performance.  
Figure 3 provides a simple example.  Here, beam profiles 
for the same scenario as Figure 2 appear for different 
frequencies.  The blue line indicates the profile for the 
wavelength corresponding to the element spacing, and the 
green line shows the profile for the wavelength that 
corresponds to one-fourth the element spacing.  Note that 
operating the array at this frequency causes spatial aliasing 
(or “grating lobe”) artifacts.  The red line indicates simple 
incoherent addition of beam profiles over a band of 
frequencies from DC to four times the array’s design 
frequency (i.e., element spacing of 2λ at that frequency).  
Note that the red line possesses narrower mainbeam width 
than many of the low-frequency bins, with sidelobe 
structure as well as grating lobes almost eliminated by the 
averaging process. 
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Figure 3:  Broadband CBF. 

III. BASIS PURSUIT

CBF processing is a very effective technique and it is 
employed in many real scenarios.  However, it does not 
exploit physical characteristics of the environment that may 
lead to improved performance.  This section describes a 
plane-wave model for beamforming, and develops an 
alternate formulation of the beamforming problem based on 
the Basis Pursuit (“BP”) method. 

A. Plane-wave signals 
We have already written a single plane-wave signal 

arriving from arrival angle θ  (where )cos(θ≡u ) via 
Equation (3) above, and also written the expression for a 
collection of unit-amplitude plane-wave signals as A  in 
Equation (4).  Given this notation, a simple expression 
describes a set of signals arriving at various angles  θm:

nsAz += (6) 

Here, s  is the set of complex source signals (Nθ×1);

A   is the steering matrix, which maps signals to received 

data (a sensor model); n  is an (Nθ×1) noise vector at each 

of the potential source locations; and z is the data received 
at the sensor elements (N×1)  The crucial assumption here is 
that there is a potential source of energy (target) at each of 
the Nθ arrival angles, and all entries in the s  vector 
corresponding to angles where no target is present are zero.  
In other words, most of the Nθ entries in the complex signals 
amplitude vector s  are zero and s  is sparse. 

B. Basis Pursuit Approach to Beamforming 
Our application of BP to the beamforming problem 

relies on two basic assumptions.  One is narrowband signals 
arrive at the array as plane-waves.  This is a common 
assumption made in most beamforming algorithms. The 
second assumption is that there are a small number of 
signals compared to the number of available sensor 
elements. For example, the scenario that gave rise to Figure
2 and Figure 3 has two signals. In this case, most beams 

represent directions with no signal present.  
Many authors have produced tools to solve matrix 

equations subject to the constraint that the solution be 
sparse.  Some have demonstrated that, under certain 
conditions [3][5], solving 

σ≤−
21

  subject to        minarg zsAs
s

(7) 

is equivalent to solving 

σ≤−
20   subject to        minarg zsAs

s
(8) 

i.e., the one-norm minimization generates the maximally 
sparse solution to the matrix equation (Equation (6)). 

Returning to the simulations of Figure 2 and Figure 3,
we compute the BP solution to the same input data.  The 
particular BP implementation is publicly available [4] from 
the authors of [3].  The result appears in Figure 4, where the 
blue line reproduces the noise-free CBF solution from 
Figure 2, and the red line shows the sparse BP solution.  We 
have picked sensible values for the optimization parameters 
required by the algorithm and error criterion. The BP 
approach is able to isolate the two plane-wave targets 
without any false targets in the sidelobe structure. 

Figure 4:  BP vs. CBF for two Plane Wave Signals. 

A more realistic scenario is one with corrupting noise, 
as in Figure 2.  We added Gaussian noise to the target 
signals, and the results appear in Figure 5.  Here, the noise 
floor pushes the far-out, noise-free, 40dB CBF sidelobes 
(with respect to maximum signal) up by about 10dB to 
approximately 30dB.  The BP solution, however, is virtually 
unaffected by the noise, and still produces two signal peaks 
at the correct arrival angles with no false signals. 
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Figure 5:  BP vs. CBF for Plane Wave Signals in Noise. 

C. Applications 
The BP approach produces solutions with simulated 

data characterized by much more favorable sidelobe profiles 
than CBF.  In addition, another application for BP methods 
is operating a reduced number of sensor elements.  This 
often occurs on deployed arrays in the presence of failed 
hydrophones. Additionally, it may assist in the design of 
future arrays which can deliver higher precision 
beamforming then the conventional approach.   

The simulation shown in Figure 6 and Figure 7
illustrate the need for an effective approach.  Figure 6
repeats the noisy CBF beam profile for the two targets in 
blue.  The red line indicates CBF performance with a 
random set of 20 hydrophones removed (of the original 51).  
In this case, the processing is the same as Equation (5) but 
with the A  matrix reduced, each deleted column 
corresponding to a missing hydrophone.  It is very clear that 
performance has declined significantly, with raised inner 
sidelobe levels and a 15 dB increase in the noise floor 
region. 

Figure 6:  CBF with Failed Hydrophones. 

The BP approach is able to produce nearly full-fidelity 
results with the dramatically reduced number of sensors.  
Figure 7 shows the outcome in red, and the reduced-sensors 
CBF result appears for reference in blue.  Comparing the red 
BP curve here with the full-aperture BP curve (Figure 5,
red) indicates that the large number of missing hydrophones 
(40%) has not significantly impacted target-finding 
performance. 

Figure 7:  CS-BP v. CS-CBF with Failed Hydrophones. 

IV. REAL DATA RESULTS

A. Passive Sonar Display Modality 
This section illustrates the performance of the BP 

approach using real data collected during an at-sea 
experiment.  The single time graph in Figure 3 (red line) is 
useful because it provides information about where targets 
are located in space at a frozen time snapshot.  However, a 
more useful display provides the bearing information 
present in that curve over time.  Figure 8 shows an example 
of such a display.  Each horizontal slice shows the 
equivalent of the red line in Figure 3 in grayscale (i.e., a 
bearing profile, in cosine-space).  White pixels represent 
high-energy bearing-time events, and black pixels 
correspond to low-energy.  The vertical axis represents time.  
Thus objects that move in the x-direction on these displays 
have bearing rate relative to the sensor over time.  Vertical 
objects, like all the ones in this real-world scenario, do not 
have significant bearing changes over time.  Because of its 
format, this display is known as a Bearing-Time Record 
(“BTR.”).

Figure 8:  BTR Displays:  Full-Aperture CBF v. BP. 

This figure shows that the CBF (left-panel) and BP 
(rght-panel) approaches produce comparable results for the 
full-aperture case.  The same targets are evident in both 
images. 
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B. BP in the Presence of Reduced Sensor Elements 
Reproducing the conditions of Figure 6 (eliminating a 

significant number of the hydrophones) over all frequency 
bins of course has a negative impact on BTR quality.  In the 
left panel of Figure 9, CBF processing seems to have lost or 
almost lost two of the 5 clearly visible, non-endfire targets.  
However, BP, operating on the same exact input data, is 
able to maintain these targets on the display. 

Figure 11:  Target-SNR curves:  BP-CS vs. CBF-CS. 

REFERENCES 

[1] Emmanuel J. Candes and Michael B. Wakin, “An Introduction to 
Compressive Sampling,”  IEEE Signal Processing Magazine,  vol. 25, 
no. 2, pp. 21-30,  March, 2008. 

[2] Harry L. Van Trees,  Detection, Estimation, and Modulation Theory, 
Part IV, Optimum Array Processing.  New York:  John Wiley & Sons, 
2002.Figure 9:  BTR Displays:  CS-Aperture CBF v. BP. 

[3] Ewout Van Den Berg and Michael P. Friedlander, Probing the Pareto 
Frontier for Basis Pursuit Solutions, Siam J. Sci. Computing, Vol. 31, 
No. 2:  pp. 890–912. 

The next two figures quantify the gains BP enjoys over 
CBF in this reduced sensor situation.  In Figure 10, color 
overlays indicate target bearing.  A simple maximum 
amplitude search over a manually specified window (both 
for CBF and BP) determines this truth data. 

[4] http://www.cs.ubc.ca/labs/scl/spgl1/ 

[5] E. J. Candes, J. Romberg, and T. Tao, Stable signal recovery from 
incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 
(2006), pp. 1207–1223. The target truth bearing-time trajectories in Figure 10

provide a method for estimating target SNR on the 
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Figure 10:  CS-Aperture BTRs:  With Target Overlays. 
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