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Abstract—This paper describes a Bayesian approach to 
detecting and tracking multiple moving targets using 
acoustic data from multiple passive arrays. Traditional 
undersea acoustic systems develop tracks at the single array 
level, requiring track association between nodes with 
nonlinear projections from measurement space to target 
space. In contrast, our nonlinear filtering approach fuses 
data at the measurement level and operates directly in the 
target state space. As such, this approach directly addresses 
both the nonlinear sensor to target state coupling as well as 
the ambiguities caused by bearings-only nature of the 
passive regime. In particular, our method better addresses 
these challenges by combining high-fidelity physics-based 
sensor statistical modeling, an innovative nonlinear 
Bayesian filter, and a unique method of handing the 
computational implementation. 12 
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1. INTRODUCTION 

This paper describes a principled Bayesian approach to 
detecting and tracking multiple moving targets using 
acoustic data from multiple passive arrays. Traditional 
undersea acoustic systems focus on signal processing and 
track development at the single array level, resulting in 
reliable but very intensive methods for finding targets that 
are located in densely populated shipping lanes.  This 
process requires track association between nodes, including 
nonlinear projections from measurement space to target 
space. In contrast, our approach fuses data from multiple 
nodes at the measurement (rather than track) level and 
operates directly in the target state space (rather than 
measurement state space). There exist a number of 
challenges in the problem. First, sensor data couples to the 
unknown target states in a non-linear fashion. Second, the 
multi-array data is plagued by ambiguities. There are two 
main ambiguities present in the problem: a left-right 
ambiguity at each sensor node inherent to any linear array, 
and a multi-target ambiguity caused by additional beam 
intersections due to the multiple targets and multiple 
sensors. In this paper, we describe a novel approach to 
combat these challenges by combining high-fidelity 
physics-based sensor statistical modeling, an innovative 
nonlinear Bayesian filter, and a unique method of handing 
the computational implementation. 

Nonlinear filtering approaches to multitarget tracking have 
been studied extensively in the literature. The “PDF 
Tracker” work by Bethel [2-3] gives a Bayesian nonlinear 
filtering approach and provides a strong theoretical basis for 
its viability. The seminal “likelihood ratio tracker” work of 
Stone [4] also describes a Bayesian multitarget tracking 
method and is implemented using a discrete grid. The 
“JMPD” approach of Kastella [5, 6] advocates estimating 
the joint multitarget state as a single hybrid probability 
density – i.e., constructing a single probability density over 
both the number of targets and the states of each. Orton and 
Fitzgerald [9] and Doucet [10] also study the multitarget 
problem from the Bayesian perspective. Recently, Streit [8] 
has described a multitarget filter that utilizes Poisson Point 
Process parameterizations. The work of Bethel & Shapo [1, 
7] shows how these ideas can be adapted to single node 
passive acoustic tracking using real sensor data.  

This work differs from earlier works as it uses the Bayes-
optimal nonlinear filtering approach to perform multitarget 
detection and tracking in a 2D (X/Y) state space (“target 
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space”) using simultaneous measurements from multiple 
passive arrays.  

In this environment, there are several challenges that require 
the nonlinear filter’s generality. First, sensor measurements 
couple nonlinearly to the desired target state (i.e., bearing 
measurements provided by passive acoustic sensors are 
related in a nonlinear manner to target XY position). 
Second, using multiple bearings only sensors in a 
multitarget environment leads to ambiguous beam 
intersections and therefore a multiply peaked conditional 
density. Additionally, this environment provides several 
implementational challenges. First, due to the physics, 
sensor resolution in X/Y is a function of target to sensor 
range. This makes numerical density estimation difficult. 
Second, the tactical nature of the problem calls for a large 
surveillance region requiring accurate density estimation 
over a large state space. 

Our proposed approach has a number of benefits over 
conventional methods. Most importantly, we do not employ 
separate filtering at each sensor node. Rather, a single 
Bayesian multitarget filter operates, combining all of the 
sensor measurements. This eliminates the need for track 
fusion, or association between tracks at different nodes. A 
cost of this approach is the bandwidth required to transfer 
measurements to a central fusion point. In addition, the 
approach fuses data at the measurement level, which avoids 
the SNR losses involved in thresholding operations. These 
features together allow for improved detection and tracking 
of low SNR targets. 

This approach requires increased computation as compared 
to conventional linear approaches. In contrast to linear 
approaches, the nonlinear approach estimates an entire non-
parametric probability density (although it is locally 
truncated) whereas a linear (Kalman) approach instead 
needs only to estimate the mean and covariance of the 
density. Both methods scale linearly in target number when 
the targets are well separated, and superlinearly when 
targets are close together. Other works [13] study the 
computational cost for nonlinear filtering in similar settings. 
In the experiments presented here, we track a few targets 
with one-second updates in real time using un-optimized 
MatLab code on a standard Desktop PC.  

The rest of this paper proceeds as follows. Section 2 
develops a high-fidelity statistical model of sensor output, 
which is a function of array geometry, location, and spectral 
characteristics. The model uses element-level physics to 
generate a description of the final beamformed broadband 
data that serves as input to the tracker.  

Section 3 reviews the Bayes optimal single target detection 
and tracking paradigm. In this nonlinear approach, we do 
not assume a parametric form for the probability density, 
allowing us to directly incorporate sensor bearing 
measurements through the high fidelity sensor model. In 
this track-before-detect (actually fuse-before-detect) 

paradigm, both the probability of target presence and 
probability of target state conditioned on target presence are 
estimated from the measurements. 

Section 4 describes the numerical approach, which is based 
on a discrete grid approximation and an efficient alternating 
direction implicit Fokker-Plank solver. This numerical 
approach is different than particle filtering [6] which is a 
stochastic sampling based method of representing the 
density. The discrete grid approach has a number of benefits 
in the current setting, most importantly as it gives non-zero 
probability mass to all locations in the surveillance region. 
The main deficiency of the fixed grid approach is wasted 
computations on regions of the state space with very low 
mass, leading to potentially sharply increased computational 
demands over the particle filtering approach, particularly in 
high dimensionality state spaces. 
 
Finally, Sections 5, 6, and 7 show how this approach is 
extended to the multitarget case. The multitarget filter builds 
on the Bayes optimal single target detection and tracking 
approach and employs a unique numerical approach based 
on multiple spatially overlapping discrete grids and moving 
tracker grids. Furthermore, we describe one of the 
interesting features of this domain: ambiguous targets. 

2. PASSIVE ACOUSTIC MODELING 

To test the multi-node tracker under the most realistic 
conditions possible, we have generated high-fidelity 
broadband simulations to model input sensor data. The 
simulation capability is robust and flexible in terms of input 
parameters, allowing arbitrary node array geometry (not 
necessarily linear), non-uniform spectral characteristics 
(e.g., to model dispersion and/or hydrophone frequency 
response), and a parameterized range of target kinematics. 

In terms of signal physics, the simulator follows the 
frequency-domain plane-wave approach detailed in [11]. In 
this model, targets emit plane waves that propagate in the 
acoustic medium and reach the array sensors. Array 
geometry induces propagation delays that cause the received 
plane waves to have different phase characteristics at each 
hydrophone in the array. Exploiting this phenomenon leads 
to a beamformer approach to array processing, in which 
bearing-time displays are typically used to show target 
motion over time. 

Fundamental to the passive sonar paradigm (and the widely 
used bearing-time display) is the frequency-bearing surface 
that results from processing an FFT-block of sensor data 
with a beamformer. Our simulator synthesizes this quantity 
as a function of target position and array location.  

An example of the simulator’s processing capabilities 
begins in Figure 1.  
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Figure 1 – Nominal Trajectory for the two simulated 

targets discussed below and a cartoon showing a passive 
node which receives acoustic energy from each. 

A passive node (pictured with an array cartoon) resides 
along the horizontal axis, centered at (0, 0) and two targets 
traverse the region. Target trajectories appear as a blue and a 
black line. From these trajectories, the array location, and 
sensor geometry we expect the target energy to be spatially 
separated on a bearing display. 

Figure 2 depicts the simulated data at the output of a 
conventional beamformer (“CBF”). In the frequency-
domain CBF used here, phase rotations (equivalent to 
classical time domain delay-and-sum processing) cause 

plane wave inputs at each hydrophone to align in a phase-
coherent way at the correct arrival angle. The equation that 
describes the required phase rotations comes from the array 
manifold vector for the array. In the case of a linear array 
such as the one simulated here, the manifold vector  takes 
on a simple form. For an array with N sensors, the nth 
component of the manifold vector is simply   

· , (1) 

where  is the nth sensor location) and the wavenumber  2 ⁄  . In contrast, plane wave signals do not add 
coherently in directions other than the true arrival angle. 
This process repeats for every discrete frequency bin in the 
simulation. In the left hand panel of Figure 2, bearing is on 
the horizontal axis (in discrete beams) and frequency (in 
discrete bins) appears on the vertical. This orientation gives 
rise to the commonly used nomenclature “FRAZ” – short 
for “FRequency-AZimuth.” Bearing extends from zero 
degrees at the far-left side of the image to 180° (π) at the 
right-hand end. Targets (physically residing at a single 
bearing) emit broadband energy across all frequencies, and 
the results are the vertical funnel-shaped responses indicated 
for both targets (in blue and red, respectively). The 
increasing spatial extent of the target energy over bearing as 
frequency decreases results from the poor spatial 
discrimination at the large acoustic wavelengths that 
comprise low-frequencies. In this display, Target 1 is fairly 
difficult to see because of its low SNR. Note that near the 
endfire regions (0° and 180°), there is significant distortion. 

 
Figure 2 – Left: A single time snapshot of the Frequency-Azimuth (FRAZ) display for two targets; Right:  The 

associated Bearing-Time Record (BTR). 
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This phenomenon results from the intrinsically poor spatial 
resolution of linear arrays near endfire (due to lack of 
physical aperture in these directions). The effect would be 
less pronounced on a cosine(bearing) display, but here we 
keep the horizontal axis in true bearing space for more 
flexibility with nonlinear array geometries and the 2D 
multiple array scenarios that are the focus of this work. 

Omnidirectional hydrophones actually provide full 360° 
(2π) coverage of the area surrounding the node. However, 
the 0°-180° region and the 180°-360° are indistinguishable 
from the perspective of linear sensors like the one modeled 
here. Therefore, we have eliminated that portion of the 
display since it adds no new information. This phenomenon 
is different from the one discussed in Section 6, where 
ambiguities arise because true passive target bearings from 
multiple targets intersect in multiple places. 

Because FRAZ images do not provide integration gain over 
frequency or an easy way for operators to follow contacts 
over time on a 2D display, bearing-time record (“BTR”) 
displays like the one in the right hand panel of Figure 2 
enjoy widespread use. A BTR is formed by integrating over 
all frequency bins. This results in easier target detection, and 
the reduced dimensionality of the process enables a display 
of target bearing over time. In contrast to the situation in the 
left panel of Figure 2, both targets are easily and clearly 
visible. Furthermore, this display provides time coverage 
absent in the FRAZ display.  

In the following sections, we assume multiple passive 
arrays, each of which records acoustic energy. The energy is 
processed into BTR surfaces like this one at each array and 
these are used as input for our 2D detection and tracking 
algorithms. Therefore, our algorithm requires only the BTR 
data (and not the data from the individual array elements). 
The BTR can be characterized statistically, in terms of 
expected signal given 0, 1, or  targets by modeling the 
energy in the FRAZ and appealing to the statics that appear 
when summing this energy. 

3. SINGLE TARGET DETECTION AND TRACKING 

THEORY 

This section explains the mathematics of the Bayesian 
approach to detecting and tracking a single moving target. 
Section 4 describes the numerical implementation. This 
methodology is expanded to the multiple target situation in 
Section 5. 

Notation 

The notation that will be used throughout this paper is as 
follows. The state of a single target at time  will be 
denoted . In this paper, our state model refers to the 
targets’ 2D position and velocity as    , 
although the approach generalizes to higher order state 
models. Furthermore, let  denote the hypothesis that no 

target is present at time , and let  denote the hypothesis 
that a target is present. Finally, we use the following 
notation to describe the measurements:   denotes the 
measurements taken by sensor  at time  (e.g., a collection 
of energy arriving at different bearings taken from the 
BTR);  denotes the measurements taken by all sensors at 
time  (i.e., , … , ); and  denotes the 
collection of all measurements taken by all sensors up to 
and including time  (i.e., , , , ). 

Fundamentally, we wish to estimate the joint probability 
that a target is present (i.e.,  is true) and its location is  
given the measurements. Mathematically, the means we 
wish to estimate the hybrid continuous-discrete density ( , ) (2) 

for all . Notice that this quantity can be expressed as ( , ) ( ) ( , ), (3) 

i.e., as the product of the target present probability ( ) and the target state probability ( , ). 
Both conceptually and implementationally, we treat the 
problem as separate (but coupled) tasks of estimating the 
target present probability (“detection”) and the estimating 
target state probability (“tracking”). The two portions will 
be covered in the following subsections. 

Bayes Optimal Detection 

In the Bayesian approach, we (i) assume that an initial or 
prior estimate of the desired probabilities is present (perhaps 
completely uninformative), and (ii) generate a recursive 
formula that relates the probabilities at one time step with 
those at the next. This is then used at each time step to 
update the desired probability. 

The target present ( ) and target absent ( ) 
detection probabilities are computed recursively using the 
law of total probability and Bayes’ rule, yielding: 

( ) ( , )( ) ( )( | )  

( , )( ) ( , ) ,
(4) 

and: 

( ) ( ) ( )( | ) . (5) 

These equations express the current target present and 
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absent hypothesis probabilities in terms of the target present 
and target state probabilities predicted from the previous 
time step (e.g., ( ) and ( , )) and the 
conditional likelihood of the incoming measurements (i.e., ( , ) ( )). 

The predicted densities are formed in the standard Bayesian 
manner: a model on target appearance and disappearance 
generates predicted target present and absent probabilities  ( )  and  ( ), and  a target kinematic 
model predicts the target state density  ( , ). We 
discuss these processes in more detail below. 

The fundamental data dependent quantity needed to 
construct the detection update is the likelihood ratio  ( , ) ( ), which is a function of the sensor 
measurement statistics and the measured data. Notice that 
the normalizing constant  ( ) ( | )⁄   present in 
both updates need not actually be computed directly since 
we can determine its value using the relation ( ) ( ) 1. (6) 

Bayes Optimal Tracking 

The target state probability is computed recursively in a 
manner similar to the above: 

( , ) ( , ) ( , )( )( )( , ) , (7) 

where the constant term ( ) ( , ) does 
not need to be computed since the probability density 
integrates to 1. Again, the fundamental data dependent 
quantity needed to construct this update is the likelihood 
ratio. Also required again is the prediction density  ( , ). 

Therefore, in principle the update for each possible  
proceeds by predicting its probability forward in time 
(according to a temporal target kinematic model) and then 
updating using the likelihood ratio ( , ) ( ). 
Obviously, since  is drawn from the continuum, some 
discrete representation or parameterization must be 
employed for computation. We defer this discussion to 
Section 4. The following subsections describe the temporal 
prediction and measurement update steps in detail. 

Temporal update 

Both the detection and tracking update stages perform 
temporal evolution on the relevant probability distributions. 
For the target present and absent probabilities  ( ) 

and ( ), we use a simple mixing matrix approach, 
where the probabilities at the previous time are used to 
predict the current probabilities, i.e., 1 1 . (8) 

This corresponds to a fixed target arrival/removal 
probability. Our approach allows more complicated models 
with little impact on computational requirements. 

Similarly, a model on target kinematics  ( , )  
performs the temporal update of the target state probability. 
This relationship is expressed in discrete time as: ( , )( , ) ( , ) . (9) 

This step is the most computationally challenging of the 
algorithm and requires a numerical approach able to 
efficiently compute the required probabilities. The approach 
we’ve selected is discussed in more detail in the 
implementation section below. 

The Multi-Sensor Likelihood ratio 

The fundamental data dependent quantity needed to update 
all densities is the likelihood ratio. In this section, we 
describe the computation in our model problem. 

For convenience, we specialize here to two bearings-only 
sensors interrogating a region. The method extends to more 
sensors in a similar manner. We further assume each sensor 
makes measurements in bearing “cells” (referred to 
hereafter as beams) with some known distribution when the 
target is present ( ) and some other distribution when the 
target is absent ( ). For notational brevity, we assume ( ) and ( ) are sensor independent, although this is 
also not required. 

The measurements  are energy values corresponding to 
discrete beams . Assuming independence among the 
beams, the likelihood ratio can be rewritten as  ( , )( ) ∏ , ,∏ ( , )  

, , ∏ ,
( , ) ∏ ( , )  

, ,( , ) , 
(10) 
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where the notation ,  is used to indicate the measurement 
in the bearing cell   corresponding to . The likelihood of 

the two-node measurement set , , , ,  

conditioned on the target present hypothesis (the numerator 
of the likelihood ratio) is simply the product of the two 
target present probabilities since target presence is more 
likely when the data follows the target present distribution 
in both sensors. In contrast, the  (target absent) 
hypothesis is the composite hypothesis that either (a) both 
measurements are drawn from the target absent density ( ), or (b) one measurement is drawn from the target 
present hypothesis and one from the target absent 
hypothesis. Therefore, in following with the GLRT, the 
denominator of the likelihood ratio is computed as the 
maximum over the three atomic hypotheses:  from both 
sensors,  from sensor 1 and  from sensor 2, and  from 
sensor 1 and  from sensor 2. 

4. SINGLE TARGET DETECTION AND TRACKING 

IMPLEMENTATION 

This section describes how the mathematics of Section 3 is 
implemented. The approach we take here utilizes a discrete 
grid representation of the posterior. In contrast, other work 
[5] has employed a particle approximation to the relevant 
posteriors. As discussed earlier, there are tradeoffs involved 
in the two approaches. 

Representation of target state probability 

We represent the target state probability  ( , )  on a 
4D discrete grid (corresponding to the four dimensional 
state vector ) of        cells. The spatial 
extent of this grid dictates the overall region where targets 
may be detected. The cell resolution must be carefully 
chosen based on the sensors and geometry to allow 
sufficient accuracy. Figure 3 gives an example of marginal 
PDFs as represented on a discrete grid. 

The tradeoffs involved in grid resolution include the 
following: (i) Algorithm speed is roughly linear in the 
number of grid cells. The number of the grid cells is the 
product of cells in each of the spatial and each of the 
velocity dimensions. This fact rewards minimizing of the 
number of cells either by limiting the overall region upon 
which the PDF is approximated or making the discretization 
coarse. (ii) Single-target tracking performance degrades as 
the grid cells become coarser. In particular, since the sensor 
to target state mapping is nonlinear, performance breaks 
down substantially above certain cell resolution sizes 
(depending on the sensor geometry). Both of these 
phenomena will be illustrated later. 

Temporal update of the tracking probability  

The temporal evolution of the probability density on  can 
be expressed in continuous time using a partial differential 
equation. We wish to compute ( , , , , ∆ ) from ( , , , , ). The relation between these two densities can 
be expressed as ( , , , , ∆ )( ∆ , ∆ , ∆ , ∆ , )(∆ , ∆ , ∆ , ∆ , ∆ ) ∆  ∆  ∆  ∆ . (11)
Using (i) a second order Taylor series approximation to ( ∆ , ∆ , ∆ , ∆ , ), (ii) assuming the 
“nearly constant velocity” model for the transition density (∆ , ∆ , ∆ , ∆ , ∆ ), and (iii) assuming small ∆ , we find 
the Fokker-Planck equation  

2 2 . (12)
This derivation is given in more detail in the Appendix. 

 
Figure 3– Grid-based representation of the target state density. Left: The 4D posterior marginalized to give the /  probability density. Right: The /  marginal.
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In the following discussion we use this transition model. 
Other models can be incorporated similarly, including 
models which use roadway constraints and higher order 
motion terms.  

In the experiments we discuss later, this model is valid (i.e., 
the diffusivity of the target is captured statistically by the 
diffusivity coefficient in the model). In cases where robust 
modeling of the target dynamics is not possible, one 
typically appeals to a multiple model approach [13] which 
adds robustness to the filtering by allowing it to select from 
a number of candidate motion models. 

The state probability density is represented on a discrete 
grid and so this differential equation must be used to update 
that representation. This discrete update is computed from 
time  to time 1 using a backward Euler method as 

, , , , , ,∆ ∆ , , , 2 , , , , , ,  (13) 

This approach has nice stability properties in both ∆  and ∆ . For more details, see [12]. 

This is illustrated graphically in Figure 4, where the left 
hand side represents the posterior from the kth time step and 
the right hand side represents the prediction for the k+1th 
time step. The white dot represents the true target position. 
In this example, the target is moving in the positive x 
direction, causing the probability mass to evolve 
preferentially along the positive x direction. 

This computation method is linear in the number of grid 
cells used in the discretization. Linear dependence on grid 
cell number is achieved using the backward Euler method 
above, yielding a tridiagonal system of equations which is 
efficiently solved using Thomas’ algorithm [12]. Figure 5 
illustrates this dependency from empirical tests. 

 
Figure 5– Computation is linear in number of grid cells. 

Temporal update of the target present probability 

The target present and absent probabilities are updated 
according to the simple mixing model described in eq. (8) 
corresponding physically to targets arriving and leaving at a 
constant rate. Since this is a discrete PMF with only two 
possible events (target present and target absent) it is 
implemented by simply storing a single floating point 
number corresponding to the target present probability. 

Measurement update of the tracking probability  

As discussed above, evaluating the measurement likelihood 
for each cell  performs the target state probability update: 

( , ) ( , ) ( , )( )  (14) 

This simply requires computation of the likelihood ratio ( , ) ( ) at each cell . Specializing again 
to the two-node, bearings only situation, at each time step, 
each sensor node makes measurements at all (discretized) 
bearings (beams ). The sensor model describes statistically 
the likelihood of each measurement conditioned on target 

 
Figure 4– The temporal update of the target state probability density. 
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present, as illustrated in Figure 6. Note that different node 
locations yield different beam widths and spatial 
information.  

By assumption, the joint likelihood of the measurements 
conditioned on target present (the numerator) is the product 
of the two individual likelihoods (i.e., the noise is 
independent from sensor to sensor): ( , ) ( , ) ( , ), (15) 

where from the end of Section 3 we know ( , ) , , . (16) 

Here,  is the bearing cell (beam) into which  projects at 
sensor node 1. Therefore, for each grid cell in the discrete 
representation of , we compute the  hypothesis 
probability as proportional to: ( , ), , , , . (17) 

As mentioned above, the  hypothesis (the denominator of 
the likelihood ratio) corresponds to the composite 
hypothesis that either (i) neither sensor has target energy in 
the target bearing, or (ii) one of the two sensors (but not 
both) has energy in the target bearing. Therefore, the 
probability of the  hypothesis is evaluated by appealing 
to the GLRT as ( , )       , , ,, , , ,, , , . (18) 

Finally, the measurement update for cell  is computed as: 

( , )( ) , , , ,
max , , ,, , , ,, , ,

. (19) 

Measurement update of the target present probability 

As discussed in Section 3, the measurement update of the 
target present probability is performed as ( | )( | ) ( | , )( | ) ( , | ) . (20) 

By comparison, it is seen that the inner term in this integral 
is the measurement update done on the target state 
probability density (eq. (14)). Therefore, the update of the 
target present and absent probabilities simply requires 
summing the (non-normalized) target state probability after 
the measurement update is performed, followed by a 
normalization step which forces  ( | ) ( | ) 1. 

For computational purposes, it is desirable that the target 
state grid contain the fewest number of cells that allow 
robust estimation. Cells which contain zero probability mass 
are useless computation and should be avoided. However, 
since we are tracking moving targets, the locations of the 
grid cells needed to estimate the target state density change 
over time. Therefore, we use a moving grid, which 
constantly re-centers around the estimated state of the target 
every update. In practice, we only allow the grid to translate 
a small number of cells at each time step, which minimizes 
the chance that a small number of bad measurements can 
shift the target off the grid. 

 
Figure 6– Single Sensor conditional likelihoods. 
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On Grid Resolution 

As mentioned to earlier, the resolution (spacing) of the 
target detection and tracking spatial grid cells is of critical 
importance. In our method, we choose to allow each cell 
center to represent the entire cell. An alternative approach 
would treat each cell as containing many sub-cells and 
requiring a weighted update. This has a similar 
computational burden as making the grid cell finer, and 
provides a benefit in the single target tracking case. 
However, in the multitarget tracking case discussed later it 
introduces other problems. A discussion of these problems 
is deferred until later. 

In the single target tracking case where cell centers 
represent the cell, the main concern is to ensure the cell 
spacing is fine enough. This avoids cases where the 
conditional likelihood has energy in large parts of a cell but 
does not overlap with the cell center. Figure 7 illustrates 
this. In this figure, cell boundaries are indicated by white 
lines, and cell centers by black dots. The true target location 
is given by the green dot. The conditional probability 
density is indicated by the color scale showing the 
intersection of the two sensor node beams. Because the grid 
resolution is insufficient, the cell center in the cell the target 
actually occupies does not correspond to the peak of the 
conditional as it should. This mismatch leads to the target 
containing cell incorrectly receiving low likelihood in the 
measurement update. 

   
Figure 7 - Grid cells must be spaced finely enough to 

avoid degenerate cases where no cell center corresponds 
to the peak of the likelihood function. 

The remedy for this issue is to make the cells more finely 
spaced. Also note that unless the grid cells are spaced 
grossly inadequately (as they are in the example given 
Figure 11 later), this problem does typically does not persist 
from time step to time step as the target is moving. The 
most catastrophic consequence of poor grid cell resolution is 
track fragmentation. In the case of overly coarse cell 
discretization, the track existence probability will be 

artificially driven lower resulting in (incorrectly) removing 
the track. A new track would then be instituted very shortly. 

On Computational Requirements  

The dominant properties that effect computations are (i) the 
number of grid cells and (ii) the number of targets. Section 5 
discusses algorithm scaling with the number of targets. Here 
we focus on the single target case and note that the 
algorithm scales linearly with number of grid cells (which is 
the product       ). 
 
Figure 8 illustrates empirically the tradeoff between cell 
resolution, tracking, and algorithm run time in the single 
target detection and tracking case. As the grid cell resolution 
decreases (i.e., the number of cells used to represent the 
probability density increase), the tracking error decreases. It 
reaches an asymptote which is dictated by the sensor 
resolution. Furthermore, as the grid cell resolution decreases 
(i.e., the number of grid cells increases), the computation 
time increases. 
 

 
Figure 8 – For single target tracking, performance 

improves as grid cells become more finely spaced. This is 
at the cost of increased computation time. 

A second way to deal with the degeneracy caused by large 
grid cells is to compute the cell likelihood function by 
weighting the likelihood of the beams into which the cell 
projects. In other words, instead of using the cell center to 
represent the entire cell, treat the cell as the continuum of 
points it represents.  Doing this exactly is computationally 
prohibitive, but approximate methods such as averaging 
discrete points in a cell are feasible. This is a net 
computation savings over simply making the grid cells 
smaller because it avoids increasing the number of cells that 
require temporal update.  

In the multitarget case, the problem is more complicated. 
Since many cells will correspond to the peak of the 
conditional likelihood, blindly shrinking cell size or 
interpolating the conditional will lead to false (double) 
initializations of targets. We will discuss this further in 
Sections 6 and 7. 
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5. MULTITARGET DETECTION AND TRACKING 

THEORY 

In principle, multiple target detection and tracking requires 
estimation of the joint multitarget probability density ( , , … , , )( , , … , , ) ( | ), (21) 

where  denotes the number of targets present at time k (0, 1, … ) and , , … ,  are the individual states of those 
targets.  

The state space of this joint multitarget probability density 
grows exponentially with the number of targets and hence 
precise computation grows exponentially as well. Brute-
force multitarget discrete grid representations of this high 
dimensional posterior become intractable with more than 
two or three targets in a four dimensional state space. 

Fortunately, high fidelity modeling of the joint coupling is 
only necessary when targets are close together, i.e., widely 
spaced targets can be treated nearly optimally by solving 
multiple single target detection and tracking problems. In 
the (unrealistic) limiting case, where all targets are well 
separated in measurement space, numerical estimation of 
the joint density grows linearly with the number of targets 
rather than exponentially.  

A more sophisticated approach to this problem is to 
automatically factorize the joint density into small groups of 
targets which must be treated jointly and develop a 
computational solution which is a compromise between the 
exponential growth of the joint computation and the linear 
growth of the fully factored computation. A detailed 
discussion of a joint density adaptive factorization approach 
and the precise algorithmic details in a related environment 
are discussed at length in [5] and [6]. 

In our present implementation, we have chosen to simply 
treat the multiple target situation as a collection of single 
target detection and tracking problems. To account for the 
sub-optimality of this approach when targets are nearby in 
measurement space, we employ a data-censoring algorithm 
which operates when targets are close - i.e., we make the 
approximation 

( , , … , , ) , ( ) , (22) 

and censor some of the data from nearby trackers to prevent 
improper evaluation of the conditional likelihood.  

Future work will extend this to high fidelity sensor 
modeling and joint density calculation for closely spaced 
targets when necessary. A sketch of this extension, 
analogous to the approach in [5], is as follows. First, the 
target state and relevant uncertainty will be estimated for 
each target. Then those targets that are close together will be 
treated in clusters. The (now joint) probability density for 
the cluster of targets will be temporally and measurement 
updated as a group. This computation is superlinear in the 
number of targets, but will only operate on targets in that 
cluster, rather than the entire target set. This method allows 
for careful physics-based modeling of the sensor returns 
when targets are close together (e.g., including the expected 
coherent sums of energy from nearby targets and accurately 
modeling sidelobe interference) and will allow for more 
effective handling of crossing targets and convoy 
movements. 

6. AMBIGUOUS TARGETS 

In addition to left-right ambiguity arising from linear arrays, 
in the present setting there are intersection ambiguities. In 
the multisensor, multitarget, bearings-only environment we 
study here there are ambiguities arising from the (persistent) 
intersection of bearing measurements across sensors from 
e.g., (sensor 1, target 1) and (sensor 2, target 2).  

Figure 9 gives an example of this phenomenon, by showing 
the multisensory conditional likelihood surface in a high-
SNR and low-SNR case, respectively. In this example, there 
are two passive sensors, one located at the northeast and one 
at the southeast of the surveillance region. There are two 
real targets indicated by white circles. Each passive sensor 
receives high energy at the bearings corresponding to the 
true targets as expected. This results in (correct) 
intersections at the true locations of the targets. However, 
there are also false intersections, which correspond to the 
mismatched beams (i.e., a beam from sensor 1, target 1 
intersection with a beam from sensor 2, target 2).  
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Ambiguous targets often move physically for some time and 
for that time are indistinguishable from real targets. This 
short term phenomenon is not a problem with the tracker but 
is a fundamental issue of physics. However, over time, the 
ambiguous targets can be distinguished from real targets in a 
tracking environment as they will move in a non-physical 
manner. Typically this non-physical motion takes the form 
of a jump movement as the ambiguities approach a line of 
symmetry defined by the nodes.  

Figure 10 provides an illustration of this behavior. For the 
first 500 time steps (shown at left), both the true targets 
(green) and the ambiguous targets (red) move in a manner 
that is plausible physically. However, as shown at right, 
after time step 500 the ambiguous targets move in a 
dramatically non-physical manner. This behavior is 
common and in this case is correlated with the ambiguity 
position moving through a sensor line of symmetry. 

7. MULTITARGET DETECTION & TRACKING 

IMPLEMENTATION 

As discussed earlier, we have chosen to factorize the joint 
density into a collection of single target densities. This 
approach is optimal when targets are well separated but is 
inappropriate as targets become close in sensor space. 
Future work includes an adaptive approach which will 
appropriately treat these closely spaced targets jointly. In the 
present work however, we employ an engineering approach 
to cope with this sub optimality which prevents 
measurement sharing among closely spaced trackers. These 
algorithmic modifications mean that the final product is not 
simply multiple single target detection and tracking 
algorithms running in parallel.  

First, we partition the surveillance region into multiple 
overlapping static detection grids. Each detection grid is a 
single target detector as described above for detecting 

    
Figure 9 – Bearings intersections corresponding to true targets (white circles) and ambiguous intersections. 

There are two sensors, located NE and SE of the image, respectively. Each sensor has high energy returns at the 
bearings corresponding to the true targets, yielding intersections at the true target locations. However, there are 

also false intersections between, for example, (sensor 1, target 1) and (sensor 2, target 2). 

   
Figure 10– Left: true and ambiguous trajectories for the first 500 time steps of the simulation. Right: After time 

step 500, the ambiguous targets make large non-physical jumps. 
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targets in its sub-region. We compute the target present 
hypothesis independently for each detector grid. It is 
desirable that each detector grid is small in total spatial 
extent to allow detection of closely spaced targets since each 
individual detection grid is only capable of accurately 
modeling the target absent/present hypothesis when there is 
either a single target present or no targets present. In 
contrast, it is desirable that each grid is large enough (in 
total spatial extent) to capture multiple time steps of 
measurements on a moving target to allow accurate 
computation of the target present hypothesis. 

Second, the single target detector/tracker equations 
(discussed above) update each detector grid. The temporal 
and measurement updates proceed as if there were a single 
target present on the grid, updating the target present 
hypothesis with the new data. In this manner, each detector 
grid performs the Bayes-optimal single target detection and 
tracking algorithm for its spatial region. 

If the target present hypothesis associated with a detector 
exceeds a threshold, the algorithm declares a new target and 
initializes a tracking grid to follow the target. This target 
grid is mobile and continually re-centered on the predicted 
target location. It is desirable that this tracking grid is as 
small as feasible for both computational reasons and also to 
allow multiple closely spaced targets to be tracked on their 
own grids. However, the grid must be large enough in 
spatial extent to account for temporal uncertainties in target 
motion and measurement error.  

The individual target temporal updates proceed exactly as in 
the single target case. The measurement updates of the 
detection and tracking grids use a measurement-censoring 
step not present in the single target tracker. This 
measurement censoring step is executed in lieu of fully 
estimating the joint multitarget density, and should be 
looked upon as an engineering method for dealing with 
closely spaced targets that is less costly than fully 
estimating the joint density. In experiments with real data it 

has been found that this method often provides sufficient 
accuracy to perform adequate tracking. However, it is our 
plan to look at joint density estimation as in [5] in future 
work. 

To elaborate, measurements that fall into the spatial extent 
of any tracker are censored from the detectors. Second, 
trackers compete for measurements based on their prior 
probabilities. These steps prevent multiple targets from 
being incorrectly detected at the same location, and also 
prevent multiple nearby trackers from simply following the 
strongest target. 

On Grid Resolution 

Like the case of single target tracking, it is important that 
grid cell spatial resolution be chosen judiciously. If grid 
cells are too coarse, it is possible no cell centers will project 
into the maximum of the conditional likelihood (refer back 
to Figure 7). However, even if the grid size too large, the 
behavior of the tracker may not be catastrophic. Typical 
behavior is that a detector initiates a track; the tracker 
follows the target for some period of time and terminates the 
track; then the detector reinitiates a tracker on the same 
target. Figure 11 illustrates the effect of grid cell resolution 
on tracking performance. The left panel shows performance 
when the grid is too coarsely spaced. The red dots show 
track termination points, and illustrate that a single target 
track is routinely broken and restarted when the grid spacing 
is too coarse. The right panel shows performance when grid 
spacing is appropriately selected. All tracks are followed 
throughout the entire vignette with no track fragmentation.  

Unlike the case of single target tracking, the multitarget case 
exhibits problems when the grid resolution is too small. In 
particular, since the multitarget detectors constantly seek  
new targets, small grid cell resolution can have the 
unintended consequence of allowing energy from the 
conditional update to bleed onto both a tracker (correctly) 
and the underlying detector (incorrectly) and thus generate 

    
Figure 11 – Left: Multitarget tracking with (too) coarse grid resolution. Right: Multitarget tracking with 

appropriately selected resolution. In both panels, red dots show track termination points, green lines show true 
target trajectories, and the other colored lines show the track estimates. 
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false (double) targets.  

Figure 12 illustrates this situation. The conditional update 
correctly updates the tracker which is tasked with following 
the target. However, the detector which is partially spatially 
coincident with the tracker also receives energy from the 
conditional update. This can lead the detector to initiate 
(falsely) a second target nearby the first target. 

This effect can be countered a number of ways. First, we 
can adjust the speed at which the tracker re-centers itself. 
The double initialization phenomenon occurs when the PDF 
peaks near the edge of the tracker grid. However, this 
method has the side effect of potentially allowing 
probability to fall off of the grid in low SNR environments, 
causing track loss. Of course, if the SNR is low enough or 
measurement outages occur tracks will be dropped. Second, 
a guardband around the tracker that does not allow any 
detector sufficiently near the tracker to receive 
reinforcement via the conditional density can mitigate the 
double target problem. However, this has the side effect of 
preventing detection of closely spaced targets. Third, 
increasing the spatial extent of the tracker has a similar 
effect as the using a guardband. It does require increased 
computation, but generates a better representation of the 
posterior.  

There are several engineering tradeoffs. The first is that 
large tracker grids (or large guard bands) prevent falsely 
detecting new targets because of conditional probability 
spill over. However, if applied too aggressively, this will 
prevent correctly detecting closely spaced targets. Second, 
quick tracker grid translation correctly centers the target 
mass, again preventing spillover into nearby detectors. 
However, overly liberal tracker repositioning may in fact 

move trackers to spurious energy locations and drop true 
targets off of the finite grid.  

On Ambiguous Targets 

As discussed earlier, ambiguous targets will eventually 
move non-physically and this will cause the tracker to 
remove them via its natural prediction and update process.  

Figure 13 illustrates this phenomenon. There are two real 
targets that create two persistent ambiguities. All four are 
detected and tracked automatically. The ambiguous targets, 
however, eventually move non-physically due to their 
reliance on the node bearing angles. The tracker 
automatically penalizes the non-physical motion and the 
targets’ present hypothesis decrease quickly over time.  

Ambiguous target removal is done automatically in the 
Bayesian framework as follows. The PDF on target state is 
predicted forward in time according to the kinematic model. 
True targets will have behavior consistent with the 
kinematic model (note the kinematic model is a statistical 
model so it is predicting a range of possibilities for the 
future target state). Ambiguous targets may behave 
consistently with this model for a period of time, but 
eventually they will appear to perform a non-physical 
maneuver (these epochs typically come when the ambiguous 
target crosses a line of symmetry in the sensor). At this 
point, the predicted target position will be in strong 
disagreement with the incoming measurements on that 
target. This mismatch in predicted target position and 
measurements leads to a decrease in the target present 
hypothesis as calculated in eq. (4). Before long, only true 
targets remain. 

     
Figure 12 – Improper selection of grid resolution leads to multiple initializations on the same target. Left: 
Measurement update of a Tracker (red=highest likelihood, blue=lowest). Right: Measurement update of a 

detector which lies near the Tracker.  Since the tracker size has been improperly chosen, some energy from the 
measurements of a single target leaks on to the detector. This can lead to false double-initializations. 
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8. CONCLUSION 

This paper has described a Bayesian approach to detecting 
and tracking multiple moving targets using acoustic data 
from multiple passive arrays. In contrast to traditional 
undersea acoustic systems, which develop tracks at the 
single array level and require track association, our 
approach fuses data at the measurement level and operates 
directly in the target state space.  

We have detailed a well known nonlinear filtering approach 
to single target detection and tracking [1, 4] and described 
our computationally efficient finite-grid approach to the 
required density estimation. We have furthermore extended 
this to the multiple target case by employing a bank of 
single target detector trackers and approximation methods 
that adjust for closely spaced targets. This approximate 
approach avoids fully treating the computationally complex 
joint multitarget problem. 

Future work includes modified approaches to posterior 
estimation including dynamic grid extent, dynamic grid 
resolution, and particle filtering. It is anticipated that 
adaptive sampling of the posterior will lead to 
computational savings. Furthermore, future work includes 
more detailed modeling and estimation of closely spaced 
targets allowing a more accurate representation of the joint 
target density. Naively implemented, this implies 
exponential growth (in the number of targets) for the 
probability state space being estimated. However, recent 
work in a related tracking domain on adaptive density 
factorization [5] and stochastic sampling (particle filtering) 
[6] provide methods that mitigate this computation growth 
when the full joint density is treated. 

 

APPENDIX 

This section discusses the details of how the single target 
probability density is time evolved on a discrete grid. This 
discussion is similar to that found elsewhere [15, 14, 13]. 

We wish to compute the single target probability density at 
time ∆ , ( , , , , ∆ ), from the density at time , ( , , , , ). The relation between these two densities can 
be expressed using the law of total probability as ( , , , , ∆ )( ∆ , ∆ , ∆ , ∆ , )(∆ , ∆ , ∆ , ∆ , ∆ ) ∆  ∆  ∆  ∆ . (23)
We expand ( ∆ , ∆ , ∆ , ∆ , ) using a 
second order Taylor series as ( ∆ , ∆ , ∆ , ∆ , )( , , , , ) ( ) ∆   ∆   ∆   ∆12 ∆ ∆ ∆ ∆ ( ) ∆   ∆   ∆ ∆ , (24)
where ( ) is the vector of partial derivatives, i.e., ( )

, and ( ) is the matrix of second order 

partial derivatives.  

Then the relation of (23) is then approximated as  

     
Figure 13– Left: Ph1 over time for four targets, two of which are real and two of which are ambiguous. Although 

the ambiguous intersections are persistent, eventually the false targets have non-physical motion. The target 
present hypothesis quickly goes to zero for these targets and they are eliminated. Right: the tracker estimate of 

target position and red circles indicating the removal point for the false targets. 
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( , , , , ∆ ) ( , , , , ) ∆
 ∆  12 (∆ ) 12 (∆ )∆ ∆  

(25)

Where  denotes the expectation with respect to the 
transition distribution (∆ , ∆ , ∆ , ∆ , ∆ ), and the omitted 
terms involve similar terms involving ∆  and ∆  and cross 
terms between the  and  coordinates. 

We use the nearly constant velocity (NCV) model to specify 
the transition distribution (∆ , ∆ , ∆ , ∆ , ∆ ). This 
assumption corresponds to one where the target moves at 
constant velocity except for random jump changes (i.e., 
nearly constant velocity). This is a plausible model when ∆  
is small as it is here.  

Specifically, the NCV model assumes step changes in target 
velocity defined by the Ito Equations ~ (0,  ) ~ 0,  . (26)
This model implies  (and likewise for ). It is 
furthermore assumed that the noise processes in each 
coordinate are independent. 

Under this model, we can evaluate the required terms from 
(25) as follows: ∆ ∆  ∆ 0 (∆ ) ∆  (∆ ) ∆  ∆ ∆ 0. 

(27)

And likewise for terms involving ∆  and ∆ . Notice that all 
cross terms (e.g., ∆ ∆ ) have expectation 0 due to the 
assumption that the noise process is independent in the two 
coordinates. 

This model simplifies (25) to  

( , , , , ∆ ) ( , , , , ) ∆12 ∆  12 ∆
 

(28)
where the terms omitted are replicas involving the  
coordinate. 

Under the assumption that ∆  is small, this can be rewritten 
as  

2  2 . (29)
For implementation, this is approximated using an implicit 
Euler scheme [12] where 

, , , , , ,∆ . (30)
Where the indices , , ,  represent the discrete , , ,  locations where the probability mass is captured. 
Likewise, using forward differencing 

, , , , , ,∆  (31)
and 

, , , 2 , , , , , ,(∆ )  (32)
and similarly for the y coordinate system. 

When substituted into (28), this leads to a series of 
equations of the form 

, , , 1 ∆∆ ∆(∆ ) ∆∆ ∆(∆ )
, , , ∆∆

, , , ∆2(∆ )
, , , ∆2(∆ ) , , ,  

This series of equations define the probability at each point 
at time 1. It can be efficiently solved via Thomas’ 
algorithm (rather than simply inverted) as the matrix is 
tridiagonal.  
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