
Chapter 3

INFORMATION THEORETIC APPROACHES
TO SENSOR MANAGEMENT

Alfred O. Hero

University of Michigan

Chris Kreucher

General Dynamics

1. Introduction

A good sensor management algorithm should only schedule those sensors
that extract the highest quality information from the measurements. In recent
years, several developers of new sensor management algorithms have used this
compelling ”folk theorem” as a fundamental design principle. This principle
relies on tools of information theory to quantify and optimize the information
collection capability of a sensor management algorithm. Any design method-
ology that uses such a guiding principle can be called an information theoretic
approach to sensor management. This chapter reviews several of these ap-
proaches and explains the relevant information theory behind them.

A principal motivation behind information theoretic sensor management
systems is that the system should be able to accommodate changing priori-
ties in the mission of the sensing system, e.g., target detection, classification,
or identification, as situational awareness evolves. Simply stated, the princi-
pal advantage of the information theoretic approach is that it simplifies system
design by separating it into two independent tasks: information collection and
risk/reward optimization. The sensor manager can therefore focus on the first
task, optimizing information extraction, leaving the more complicated mission-
specific details of risk-optimal tracking or classification to a downstream algo-
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rithm. In other words, information theoretic sensor management approaches
substitute a mission-independent surrogate reward function, the extracted in-
formation, for the mission-specific reward function of the standard POMDP
approach described in Chapter 3.

Information theoretic approaches to selecting between different sources (sen-
sors) of measurement have a long history that can be traced back to R. A.
Fisher’s theory of experimental design [87, 86], a field which remains very
active to this day. In this setting one assumes a parametric model for the mea-
surement generated by each sensor. Selecting a sensor is equivalent to selecting
the likelihood function for estimating the value of one of the parameters. The
mean (negative) curvature of the log likelihood function, called the Fisher in-
formation, is adopted as the reward. The optimal design is given by the choice
of sensor that maximizes the Fisher information. When combined with a max-
imum likelihood parameter estimation procedure, the mission-specific part of
the problem, this optimal design can be shown to asymptotically minimize the
mean squared error as the number of measurements increases. Such an ap-
proach can be easily generalized to multiple parameters and to scheduling a
sequence of sensor actions. However, it only has guaranteed optimality prop-
erties when a large amount of data is available to accurately estimate these
parameters.

If one assumes a prior distribution on the parameters one obtains a Bayesian
extension of Fisher’s approach to optimal design. In the Bayesian setting each
sensor’s likelihood function induces a posterior density on the true value of the
parameter. Posterior densities that are more concentrated about their mean val-
ues are naturally preferred since their lower spread translates to reduced para-
meter uncertainty. A monotone decreasing function of an uncertainty measure
can be used as a reward function. The standard measure of uncertainty is the
variance of the posterior, which is equal to the mean squared error (MSE) of
the parameter estimator that minimizes MSE. A closely related reward is the
Bayesian Fisher information, which is an upper bound on 1/MSE and has been
proposed by [111]. These measures are only justifiable when minimum MSE
makes sense, i.e., when the parameters are continuous and when the posterior
is smooth (twice differentiable). An alternative measure of spread is the en-
tropy of the posterior. Various measures of entropy can be defined for either
discrete or continuous parameters and these will be discussed below.

In active sensor management where sensors are adaptively selected as mea-
surements are made a more sensible strategy might be to maximize the rate
of decrease of parameter uncertainty over time. This decrease in uncertainty
is more commonly called the information gain and several relevant measures
have been proposed including: the change in Shannon entropy of successive
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posteriors [115, 114]; the Kullback divergence [211, 131, 168]; and the Rényi
divergence [148] between successive posteriors. Shannon and Rényi diver-
gence have strong theoretical justification as they are closely related to the rate
at which the probability of decision error of the optimal algorithm decreases to
zero.

The chapter is organized as follows. We first give relevant information
theory background in Sec. 2, describing various information theoretic mea-
sures that have been proposed for quantifying information gains in sensing and
processing systems. Then in Sec. 3 we describe methods of single stage opti-
mal policy search driven by information theoretic measures. In Sec. 5 we show
that in a precise theoretical sense that information gain can be interpreted as a
proxy for any measure of performance. We then turn to illustrative examples
including sensor selection for multi-target tracking applications in Sec. 6 and
waveform selection for hyperspectral imaging applications in Sec. 7.

2. Background

The field of information theory was developed by Claude Shannon in the
mid twentieth century [215] and has had an enormous impact on science in
general, and in particular on communications, signal processing, and control.
Shannon’s information theory was the basis for breakthroughs in digital com-
munications, data compression, and cryptography. A central result of infor-
mation theory is the data processing theorem: physical processing of a signal
cannot increase the amount of information it carries. Thus one of the main
applications of information theory is the design of signal processing and com-
munication systems that preserve the maximum amount of information about
the signal. Among many other design tools, information theory has led to opti-
mal and sub-optimal techniques for source coding, channel coding, waveform
design, and adaptive sampling. The theory has also given general tools for
assessing the fundamental limitations of different measurement systems, e.g.,
sensors, in achieving particular objectives such as detection, classification, or
tracking. These fundamental limits can all be related to the amount of informa-
tion gain associated with a specific measurement method and a specific class of
signals. This leads to information gain methods of sensor management when
applied to systems for which the user has the ability to choose among different
types of sensors to detect an unknown signal. This topic will be discussed in
the next section of this chapter.

Information theory provides a way of quantifying the amount of signal-
related information that can be extracted from a measurement by its entropy,
conditional entropy, or relative entropy. These information measures play cen-
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tral roles in Shannon’s theory of compression, encryption, and communication
and they naturally arise as the primary components of information theoretic
sensor management.

2.1 α-Entropy, α-Conditional Entropy, and
α-Divergence

The reader is referred to the Appendix Section 1 for background on Shan-
non’s entropy, conditional entropy, and divergence. Here we discuss the more
general α-class of entropies and divergence used in the subsequent sections of
this chapter.

Let Y be a measurement and S be a quantity of interest, e.g., the position
of a target or the target identity (i.d.). We assume that Y and S are random
variables with joint density fY,S(y, s) and marginal densities fY and fS , re-
spectively. As discussed in the Appendix, Section 1, the Shannon entropy of
S, denoted H(S), quantifies uncertainty in the value of S before any measure-
ment is made, called the prior uncertainty in S. High values of H(S) imply
high uncertainty about the value of S. A more general definition than Shannon
entropy is the alpha-entropy, introduced by I. Csiszár and A. Rényi [200]:

Hα(S) =
1

1 − α
logE[fα−1

S (S)] =
1

1 − α
log

∫
fα

S (s)ds, (3.1)

where we constrain α to 0 < α < 1. The alpha-entropy (4.1) reduces to the
Shannon entropy (13.1) in the limit as α goes to one:

H1(S)
def
= lim

α→1
Hα(S) = −

∫
fS(s) log fS(s)ds.

The conditional α-entropy of S given Y is the average α-entropy of the
conditional density fS|Y and is related to the uncertainty of S after the mea-
surement Y is made, called the posterior uncertainty. Similarly to (4.1) the
conditional alpha-entropy is defined as

Hα(S|Y ) =
1

1 − α
logE[fα−1

S|Y (S|Y)] (3.2)

=
1

1 − α
log

∫ ∫
fα

S|Y (s|y)fY (y)dsdy,

where again 0 < α < 1. A high quality measurement will yield a posterior
density with low Hα(S|Y ) and given the choice among many possible sensors,
one would prefer the sensor that yields a measurement that induces the lowest
possible conditional entropy. This is the basis for entropy minimizing sensor
management strategies.
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We will also need the α-entropy of S conditioned on Y defined as

Hα(S|Y) =
1

1 − α
logE[fα−1

S|Y (S|Y)|Y] =
1

1 − α
log

∫
fα

S|Y (s|Y)ds.

As contrasted with the conditional α-entropy Hα(S|Y ), which is a non-random
quantity, Hα(S|Y) is a random variable depending on Y. These two entropies
are related by E[Hα(S|Y)] = Hα(S|Y ).

A few comments about the role of the parameter α ∈ [0, 1] are necessary. As
compared to fS|Y , fα

S|Y is a function with reduced dynamic range. Reducing
α tends to make Hα(S|Y ) more sensitive to the shape of the density fS|Y in
regions of s where fS|Y (s|y) � 1. As will be seen in Section 6, this behavior
of Hα(S|Y ) can be used to justify different choices for α in measuring the
reduction in posterior uncertainty due to taking different sensor actions.

As discussed in the Appendix Section 1, given two densities f, g of a random
variable S the Kullback-Liebler divergence KL(f‖g) is a measure of similarity
between them. Rényi’s generalization, called the Rényi alpha-divergence, is

Dα(f‖g) =
1

α− 1
log

∫ (
f(s)

g(s)

)α

g(s)ds, (3.3)

0 < α < 1. There are other definitions of alpha-divergence that can be ad-
vantageous from a computational perspective, see e.g., [108], [6, Sec. 3.2]
and [229]. These alpha-divergences are special cases of the information diver-
gence, or f -divergence [71], and all have the same limiting form as α → 1.
Taking this limit we obtain the Kullback Liebler divergence

KL(f‖g) = D1(f‖g) def
= lim

α→1
Dα(f‖g).

The simple multivariate Gaussian model arises frequently in applications.
When f0 and f1 are multivariate Gaussian densities over the same domain
with mean vectors µ0, µ1 and covariance matrices Λ0, Λ1, respectively [112]:

Dα(f1‖f0) (3.4)

= − 1

2(1 − α)
ln

|Λ0|α|Λ1|1−α

|αΛ0 + (1 − α)Λ1|
+
α

2
∆µT (αΛ0 + (1 − α)Λ1)

−1∆µ

where ∆µ = µ1 − µ0 and |A| denotes the determinant of square matrix A.

2.2 Relations Between Information Divergence
and Risk

While defined independently of any specific mission objective, e.g., making
the right decision concerning target presence, it is natural to expect a good
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sensing system to exploit all the information available about the signal. Or,
more simply put, one cannot expect to make accurate decisions without good
quality information. Given a probability model for the sensed measurements
and a specific task, this intuitive notion can be made mathematically rigorous.

2.2.1 Relation to Detection Probability of Error: the Cher-
noff Information. Let S be an indicator function of some event, i.e.
S ∈ {0, 1} and P (S = 1) = 1 − P (S = 0) = p, for known parameter
p ∈ [0, 1]. Relevant events could be that a target is present in a particular cell
of a scanning radar or that the clutter is of a given type. After observing the
sensor output Y it is of interest to decide whether this event occurred or not
and this can be formulated as testing between the hypotheses

H0 : S = 0 (3.5)
H1 : S = 1.

A test of H0 vs. H1 is a decision rule φ that maps Y onto {0, 1} where if
φ(Y) = 1 the system decides H1; otherwise it decides H0. The 0-1 loss asso-
ciated with φ is the indicator function r0−1(S, φ(Y)) = φ(Y)(1 − S) + (1 −
φ(Y))S. The optimal decision rule that minimizes the average probability of
error Pe = E[r0−1(S, φ)] is the maximum a posteriori (MAP) detector which
is a likelihood ratio threshold test φ∗ where

φ∗(Y) =

{
1, if p(S=1|Y)

p(S=0|Y) > 1

0, o.w.
.

The average probability of error P ∗
e of the MAP detector satisfies the Cher-

noff bound [69, Sec. 12.9]

P ∗
e ≥ exp

(
log

∫
fα∗

Y |S(y|1)f 1−α∗

Y |S (y|S = 0)dy

)
, (3.6)

where
α∗ = amin0≤α≤1

∫
fα

Y |S(y|1)f 1−α
Y |S (y|0)dy.

The exponent in the Chernoff bound is identified as a scaled version of the α-
divergence Dα∗

(
fY |S(Y|1)‖fY |S(Y|0)

)
, called the Chernoff exponent or the

Chernoff information, and it bounds the minimum log probability of error. For
the case of n conditionally i.i.d. measurements Y = [Y1, . . . ,Yn]T given S,
the Chernoff bound becomes tight as n→ ∞ in the sense that

− lim
n→∞

1

n
logPe = (1 − α∗)Dα∗

(
fY |S(Y|1)‖fY |S(Y|0)

)
.
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Thus, in this i.i.d. case, it can be concluded that the minimum probability
of error converges to zero exponentially fast with rate exponent equal to the
Chernoff information.

2.2.2 Relation to Estimator MSE: the Fisher Information.
Now assume that S is a scalar signal and consider the squared loss (S −

Ŝ)2 associated with an estimator Ŝ = Ŝ(Y) based on measurements Y. The
corresponding risk E[(S − Ŝ)2] is the estimator mean squared error (MSE),
which is minimized by the conditional mean estimator Ŝ = E[S|Y]

min
Ŝ

E[(S− Ŝ)2] = E[(S−E[S|Y])2].

The minimum MSE obeys the so-called Bayesian version of the Cramèr-
Rao Bound (CRB) [234]:

E[(S −E[S|Y])2] ≥ 1

E[F (S)]
,

or, more generally, the Bayesian CRB gives a lower bound on the MSE of any
estimator of S

E[(S − Ŝ)2] ≥ 1

E[F (S)]
, (3.7)

where F (s) is the conditional Fisher information

F (s) = E

[
−
∂2fS|Y (S|Y)

∂S2
|S = s

]
. (3.8)

When the prior distribution of S is uniform over some open interval F (s) re-
duces to the standard Fisher information for non-random signals

F (s) = E

[
−∂

2fY |S(Y|S)

∂S2
|S = s

]
. (3.9)

2.3 Fisher Information and Information
Divergence

The Fisher information F (s) can be viewed as a local approximation to the
information divergence between the conditional densities fs

def
= fY |S(y|s) and

fs+∆ = fY |S(y|s + ∆) in the neighborhood of ∆ = 0. Specifically, let s be
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a scalar parameter. A straightforward Taylor development of the α-divergence
(4.3) gives

Dα(fs‖fs+∆) =
α

2
F (s)∆2 + o(∆2).

The quadratic term in ∆ generalizes to α
2 ∆TF(s)∆ in the case of a vector per-

turbation ∆ of a vector signal s, where F(s) is the Fisher information matrix
[6]. The Fisher information thus represents the curvature of the divergence in
the neighborhood of a particular signal value s. This gives a useful interpre-
tation for optimal sensor selection. Specializing to the weak signal detection
problem, H0 : S = 0 vs. H1 : S = ∆, we see that the sensor that minimizes
the signal detector’s error rate also minimizes the signal estimator’s error rate.
This equivalence breaks down when the signal is not weak, in which case there
may exist no single sensor that is optimal for both detection and estimation
tasks.

3. Information-Optimal Policy Search

At time t = 0, consider a sensor management system that direct the sensors
to take one of M actions a ∈ A, e.g., selecting a specific sensor modality,
sensor pointing angle, or transmitted waveform. The decision to take action
a is made only on the basis of past measurements Y0 and affects the distrib-
ution of the future measurement Y1. This decision rule is a mapping of Y0

to the action space A and is called a policy Π(Y0). As explained in Chap-
ter 3 of this book, the selection of an optimal policy involves the specification
of the reward (or risk) associated with different actions. Recall that in the
POMDP setting a policy generates a ”(state, measurement, action)” sequence
{(S0,Y0, a0), (S1,Y1, a1), . . .} and the quality of the policy is measured by
the quality of the sequence of rewards {r(S1, a0), r(S2, a1), . . . , }. In partic-
ular, with E[Y|Y] denoting the conditional expectation of Y given Y, under
broad assumptions the optimal policy that maximizes the discounted rewards is
determined by applying Bellman’s dynamic programming algorithm to the se-
quence of expected rewards {E[r(S1, a0)|Y0],E[r(S2, a1)|Y0,Y1], , . . . , }.

For simplicity, in this section we will restrict our attention to single stage
policies, i.e., myopic policies that seek only to maximize E[r(S1, a0)|Y0]. The
basis for information gain approaches to sensor management is the observation
that the expected reward depends on the action a0 only through the information
state fS1|Y0,a0

(s|Y0, a0):

E[r(S1, a0)|Y0] =

∫
r(s, a)fS1|Y0,a0

(s|Y0, a0)ds.



Information Theoretic Approaches 41

The information state is the posterior density of the future state and its spread
over state space s ∈ S is a measure of the uncertainty associated with pre-
dicting the future state S1 given the past measurement Y0 and the action a0

dictated by the policy. Information gain strategies try to choose the policy
that achieves maximum reduction in uncertainty of the future state. There are
several information measures that can capture uncertainty reduction in the in-
formation state.

Perhaps the simplest measure of uncertainty reduction is the expected re-
duction in the variance of the optimal state estimator after an action a0 is taken

∆U(a0) = E[(S1 −E[S1|Y0])
2|Y0] −E[(S1 −E[S1|Y1, a0])

2|Y0, a0]

This measure is directly related to the expected reduction in the spread of the
future information state fS1|Y1,ao

relative to that of the observed information
state fS1|Y0,ao

due to action a0. ∆U measures reduction in spread using the
mean squared error norm squared, denoted ‖e‖ = E[|e|2|Y0, a0], where e is
a prediction error. A wide variety of other types of norms can also be used,
e.g., the absolute error norm ‖e‖ = E [ |e| |Y0, a0], to enhance robustness
or otherwise emphasize/de-mphasize the tails of the posterior. Regardless of
which norm is used, the optimum policy Π∗ will achieve

Π∗(Y0) = amina0E [‖S1 −E[S1|Y1, a0]‖|Y0, a0] . (3.10)

Another natural measure of uncertainty reduction is the expected change in
entropy

∆U(a0) = Hα(S1|Y0) −E[Hα(S1|Y1)|Y0, a0]

The optimal policy Π∗ is obtained by replacing the norm ‖e‖ in (4.10) with
the function (e)α for α ∈ (0, 1) (Rényi entropy) or with log(e) (Shannon
entropy) for α = 1. The Shannon entropy version of this policy search method
was used by Hintz [115] in solving sensor management problems for target
tracking applications

The expected information divergence, called expected information gain, is
another measure of uncertainty reduction:

IGα(a0) = E
[
Dα

(
fS1|Y1,a0

(S1|Y1, a0)‖fS1|Y0
(S1|Y0)

)∣∣Y0, a0

]
, (3.11)

which, for fixed Y0 and a0, can be interpreted as the expectation over Y1 of
the unobservable Y1-dependent information gain:

IGα(Y1, a0) (3.12)

=
1

1 − α
log

∫ (
fS1|Y1,a0

(S1|Y1, a0)

fS1|Y0
(S1|Y0)

)α

fS1|Y0
(S1|Y0)dS1.
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When α approaches one the gain measure (4.11) reduces to the Kullback-
Liebler divergence studied by Schmaedeke and Kastella [211], Kastella [131],
Mahler [168], Zhao [260] and others in the context of sensor management.

When fS1|Y0
is replaced by the marginal density fS1 , as occurs when there

is no Y0 dependence, the α-divergence (4.12) reduces to the α-mutual informa-
tion (α-MI) . As α converges to one the α-MI converges to the standard Shan-
non MI (see Section 1.4 of the Appendix). The Shannon MI has been applied
to problems in pattern matching, registration, fusion and adaptive waveform
design. The reader is referred to Chapter 11 Section 8 for more details on the
latter application of MI.

Motivated by the sandwich bounds in Sec. 5, a definition of expected infor-
mation gain that is more closely related to average risk can be defined

∆IGα(a0) (3.13)

=
1

α− 1
logE

[(
fS1|Y1,a0

(S1|Y1, a0)

fS1|Y0
(S1|Y0)

)α∣∣∣∣Y0, a0

]
,

which can be expressed in terms of the unobservable Y1-dependent informa-
tion gain (4.12) as:

∆IGα(a0) =
1

α− 1
logE

[
e−(1−α)IGα(Y1 ,a0)

∣∣∣Y0, a0

]
.

The choice of an appropriate value of α can be crucial to obtaining robust
policies and this issue will be addressed in Section 6.

4. Information Gain Via Classification
Reduction

A direct relation between optimal policies for sensor management and asso-
ciated information divergence measures can be established using a recent re-
sult of Blatt and Hero [38] for reducing optimal policy search to an equivalent
search for an optimal classifier. This strategy is called classification reduction
of optimal policy search (CROPS) and leads to significantly more flexibility
in finding approximations to optimal sensor management policies (see [39] for
examples). The focus of this section is to show how CROPS leads us to a direct
link between optimal policy search and information divergence measures.

The process of obtaining this relation is simple. An average reward max-
imizing policy is also a risk minimizing policy. A risk minimizing policy is
equivalent to a classifier that minimizes a certain weighted probability of er-
ror for a related label classification problem. After a measure transformation
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the weighted probability of error is equivalent to an unweighted probability
of error, which is related to information divergence via the Chernoff bound.
For simplicity of presentation, here we concentrate on binary action space and
single stage policies.

Let the binary action space {A,B} consist of the two actions A,B and de-
fine the associated rewards rA = r(S1, A) and rB = r(S1, B), respectively,
when state S1 is observed after taking the specified action. Straightforward al-
gebraic manipulations yield the following expression for the reward associated
with policy Π [38]:

r(S1,Π(Y0)) = b− |rA − rB|I(Π(Y0) 6= C)

where I(A) denotes the indicator of the event A, C is the binary valued la-
bel C = amaxa=A,B{ra}, and b is a constant independent of Π. With this
expression the optimal single stage policy satisfies

amaxΠE[r(S1,Π(Y0))|Y0] = aminΠẼ[I(Π(Y0) 6= C)|Y0], (3.14)

where for any function g of the risk {rA, rB}, Ẽ(g(rA, rB)|Y0) denotes con-
ditional expectation

Ẽ(g(rA, rB)|Y0) =

∫ ∫
g(rA, rB)f̃rA,rB |Y0

(rA, rB |Y0)drAdrB ,

and f̃rA,rB |Y0
is the ”tilted” joint density function frA,rB

(rA, rB |Y0) of rA, rB :

f̃rA,rB |Y0
(rA, rB |Y0) = w(rA, rB)frA,rB |Y0

(rA, rB |Y0),

with weight factor

w(rA, rB) =
|rA − rB |

E [ |rA − rB | |Y0]
.

The relation (4.14) links the optimal risk minimizing policy Π to an optimal
error-probability minimizing classifier of the random label C with posterior
label probabilities: P (C = i|Y0) = Ẽ[I(C = i)|Y0], i = A,B. Furthermore,
by Chernoff’s bound (4.6), the average probability of error of this optimal clas-
sifier has error exponent:

(1 − α∗)Dα∗(fA‖fB), (3.15)

where fA = f(Y0|C = A) and fB = f(Y0|C = B) are conditional densities
of the measurement Y0 obtained by applying Bayes rule to P (C = A|Y0)
and P (C = B|Y0), respectively. This provides a direct link between opti-
mal sensor management and information divergence: the optimal policy is a
Bayes optimal classifier whose probability of error decreases to zero at rate
proportional to the information divergence (4.15).
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5. A Near Universal Proxy

Consider a situation where a target is to be detected, tracked and identified
using observations acquired sequentially according to a given sensor selection
policy. In this situation one might look for a policy that is ”universal” in the
sense that the generated sensor sequence is optimal for all three tasks. A truly
universal policy is not likely to exist since no single policy can be expected
to simultaneously minimize target tracking MSE and target miss-classification
probability, for example. Remarkably, policies that optimize information gain
are near universal: they perform nearly as well as task-specific optimal policies
for a wide range of tasks. In this sense the information gain can be considered
as a proxy for performance for any of these tasks.

The fundamental role of information gain as a near universal proxy has been
demonstrated both by simulation and by analysis in [147] and we summarize
these results here. First we give a mathematical relation between marginalized
alpha divergence and any task based performance measure. The key result
is the following simple bound linking the expectation of a non-negative ran-
dom variable to weighted divergence. Let U be an arbitrary r.v., let p and q
be densities of U , and for any bounded non-negative (risk) function g define
Ep[g(U)] =

∫
g(u)p(u)du. Assume that q dominates p, i.e. q(u) = 0 implies

p(u) = 0. Then, defining w = ess inf g(u) and W = ess sup g(u), Jensen’s
inequality immediately yields

wEq

[(
p(U)

q(U)

)α1
]
≤ Ep[g(U)] ≤WEq

[(
p(U)

q(U)

)α2
]
, (3.16)

where α1 ∈ [0, 1) and α2 > 1. Equality holds when p = q. This simple
bound sandwiches any bounded risk function between two weighted alpha di-
vergences.

Using the notation in Section 3 of this chapter, (4.16) immediately yields
an inequality that sandwiches the predicted risk after taking an action a0 by
the expected information gain of form (4.13) with two different values of the
Rényi divergence α parameter

we−(1−α1)∆IGα1 (a0) ≤ E[g(S1)|Y1, a0] ≤We−(1−α2)∆IGα2 (a0), (3.17)

where w = infy0 E[g(S1)|Y0 = y0], W = supy0
E[g(S1)|Y0 = y0]. This

inequality is tight when α1 and α2 are close to one, and the conditional risk
E[g(S1)|Y0] is only weakly dependent on the current measurement Y0.

In many cases of interest, one is only really concerned with estimation of a
subset of the state variables S. For example, for target tracking, the target state
may be described by position velocity and acceleration but only the position of
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the target is of interest. In such cases, the state can be partitioned into parame-
ters of interest U and nuisance parameters V, i.e., S = [U,V], and the risk
function is constant with respect to V, i.e., g(S) = g(U). According to (4.16),
the appropriate sandwich inequality is modified from (4.17) by replacing S by
U. Specifically, the expected information gain (4.13) in the resultant bounds
on the right and left of the inequality in (4.17) are replaced by expected IG
expressions of the form

∆IGα(a0) (3.18)

=
1

α− 1
logE

[(
fU1|Y1,a0

(U1|Y1, a0)

fU1|Y0
(U1|Y0)

)α∣∣∣∣Y0, a0

]
,

which, as contrasted to the information gain (4.11), is expected IG between
marginalized versions of the posterior densities, e.g.,

fU1|Y0
(U1|Y0) =

∫
fS1|Y0

(S1|Y0)dV1,

where S1 = [U1,V1]. We call the divergence (4.18) the marginalized infor-
mation gain (MIG).

The sandwich inequality (4.17) is a theoretical result that suggests that the
expected information gain (4.13) is a near universal proxy for arbitrary risk
functions. Figure 4.1 quantitatively confirms this theoretical result for a simple
single target tracking and identification example. In this simulation the target
moves through a 100 × 100 cell grid according to a two dimensional Gauss-
Markov diffusion process (see Sec. 6.1 for details). The moving target is one of
10 possible target types. At each time instant a sensor selects one of two modes,
identification mode or tracking mode, and one of the 10,000 cells to query. In
identification mode the sensor has higher sensitivity to the target type, e.g., a
high spatial resolution imaging sensor, while in tracking mode the sensor has
higher sensitivity to target motion, e.g., a moving target indicator (MTI) sensor.
The output of these sensors was simply an integer-valued decision function
taking values from 0 to 10. Output ”0” denotes the ”no target present” decision,
output ”Not 0” the ”target present” decision, and output ”k”, k ∈ {1, . . . , 10}
the ”target is present and of class k” decision. The parameters (false alarm and
miss probability, confusion matrix) of the sensor were selected to correspond to
a realistic multi-function airborne surveillance system operating at 10dB SNR
and to exhibit the tradeoff between tracking and identification performance.

The optimal target tracker and classifier are non-linear and intractable, as
the measurement is non-Gaussian while state dynamics are Gaussian, and they
were implemented using a particle filter as described in Chapter 6 of this book.
Several policies for making sequential decisions on sensor mode and point-
ing direction were investigated: (1) a pure information gain (IG) policy that
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Figure 3.1. Left: comparisons between target position tracking rms error of a tracker that
acquires data using sensor selection policies optimized under the information gain (IG), mar-
ginalized information gain (MIG), and tracking (rms) error reward functions. Right: same as
left for target classification performance (Figure 1 from [147] - used with permission).

maximizes divergence between predicted posterior distributions of the four di-
mensional target state (position and velocity); (2) the marginalized IG (MIG)
policy that maximizes the predicted divergence between posteriors of the two
dimensional sub-state corresponding to position coordinate only; (3) a policy
(rms) that minimizes predicted tracking mean squared error.

From the left panel of Fig. 4.1 it is evident that the IG optimized policy
is not optimal for tracking the target and the performance of the optimal non-
linear tracker suffers due to the suboptimal IG policy. On the other hand, even
though it is based only on information gain, the MIG optimized policy is nearly
optimal for tracking as measured by the performance of the optimal tracker
that uses MIG generated data. On the other hand, from the right panel of
Fig. 4.1, we see that the IG policy does a much better job at classifying the
target type. Thus, as predicted by the theoretical near-universality results in
this section, the IG policy achieves a reasonable compromise between tracking
and classification tasks.

6. Information Theoretic Sensor Management
for Multitarget Tracking

In this section, we illustrate the efficacy of a specific information theoretic
approach to sensor management which is based on the alpha divergence. We
specialize to a multiple target tracking application consisting of estimating po-
sitions of a collection of moving ground targets using a sensor capable of in-
terrogating portions of the surveillance region. Here the sensor management
problem is one of selecting, on-line, the portion of the surveillance region to
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be interrogated. This is done by computing the expected gain in information,
as measured by the Rényi divergence, for each candidate action and taking the
one with the maximum value.

6.1 The Model Multitarget Tracking Problem

The model problem is constructed to simulate a radar or EO platform, e.g.,
JSTARS, whose task is to track a collection of moving ground targets on the
ground, assumed to be a plane. Specifically, there are ten ground targets mov-
ing in a 5km× 5km surveillance region. Each target is described by its own 4
dimensional state vector x(t) corresponding to target position and velocity and
assumed to follow the 2D diffusion model: ẋi(t) = ρxi(t) + Bwi(t), where
ρ is the diffusion coefficient, b = [0, 0, σi, σi]

T , and w(t) is a standard (zero
mean and unit variance) Gaussian white noise. The probability distribution of
the target states is estimated on-line from sensor measurements via the JMPD
model (see Chapter 5 of this book). This captures the uncertainty present in the
estimate of the states of the targets. The true target trajectories come from a set
of recorded data based on GPS measurements of vehicle positions over time
collected as part of a battle training exercise at the Army’s National Training
Center.

The sensor simulates a moving target indicator (MTI) system in that at any
time tk, k = 1, 2, . . . ,, it lays a beam down on the ground that is one res-
olution cell (1 meter) wide and 10 resolution cells deep. The sensor is at a
fixed location above the targets and there are no obscurations that would pre-
vent a sensor from viewing a region in the surveillance area. The objective
of the sensor manager is to select the specific 10 meter2 MTI strip of ground
to acquire. When measuring a cell, the imager returns either a 0 (no detec-
tion) or a 1 (a detection) which is governed by a probability of detection (Pd)
and a per-cell false alarm rate (Pf ). The signal to noise ratio (SNR) links
these values together. In this illustrative example, we assume Pd = 0.5 and
Pf = P

(1+SNR)
d , which is a model for a doppler radar using envelope detec-

tion (thresholded Rayleigh distributed returns). When there are T targets in the
same cell the detection probability increases according to Pd(T )=P

1+SNR
1+T SNR

d ;
however the detector is not otherwise able to discriminate or spatially resolve
the targets. Each time a beam is formed, a vector of measurements (a vector
of zeros and ones corresponding to non-detections and detections) is returned,
one measurement for each of the ten resolution cells.
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6.2 Rényi Divergence for Sensor Scheduling

As explained above, the goal of the sensor is to choose which portion of
the surveillance region to measure at each time step. This is accomplished
by computing the value for each possible sensing action as measured by the
Rényi alpha-divergence (4.3). In this multi-target tracking application, uncer-
tainty about the multi-target state X = [x1, . . . ,xT ]T and number T of targets
at time conditioned on all the previous measurements Yk−1 = {Y1, . . . , Yk−1}
made up to and including time k − 1 is captured by the JMPD (see Chapter 5
of this book) f(Xk, T k|Yk−1, am). In this notation m (m = 1, . . . ,M ) will
refer to the index of a possible sensing action am ∈ {a1, . . . , aM} under con-
sideration, including but not limited to sensor mode selection and sensor beam
positioning.

First the Rényi divergence between the current JMPD f(Xk, T k|Yk−1) and
the updated JMPD f(Xk, T k|Yk) must be computed. Therefore, we need

Dα

(
f(·|Yk)||f(·|Yk−1)

)
(3.19)

=
1

α− 1
log

∫

X

fα(Xk, T k|Yk)f1−α(Xk, T k|Yk−1)dXk .

Using Bayes’ rule, we can write

Dα

(
f(·|Yk)||f(·|Yk−1)

)
(3.20)

=
1

α− 1
log

1

fα(Yk|Yk−1, am)

∫

X

fα(Yk|Xk, T k, am)f(Xk, T k|Yk−1)dXk .

Our aim is to choose the sensing action to take before actually receiving the
measurement Yk. Specifically, we would like to choose the action that makes
the divergence between the current density and the density after a new mea-
surement as large as possible. This indicates that the sensing action has max-
imally increased the information content of the measurement updated density,
f(Xk, T k|Yk), with respect to the density before a measurement was made,
f(Xk, T k|Yk−1). However, we cannot choose the action that maximizes the
divergence as we do not know the outcome of the action before taking it. As
an alternative, as explained in Section 5, we calculate the expected value of
(4.20) for each of the M possible sensing actions and choose to take the action
that maximizes the expectation. Given past measurements Yk−1, the expected
value of (4.20) may be written as an integral over all possible measurement
outcomes Yk = y when performing sensing action am as

E[Dα|Yk−1] =

∫
f(y|Zk−1, am)Dα

(
f(·|Yk)||f(·|Yk−1)

)
dy . (3.21)
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In analogy to (4.13) we refer to this quantity as the expected information gain
associated with sensor action am.

6.3 Multitarget Tracking Experiment

The empirical study shown in Figure 4.2 shows the benefit of the infor-
mation theoretic sensor management method. In this figure, we compare the
performance of the information theoretic method where sensing locations are
chosen based on expected information gain, a periodic method where the sen-
sor is sequentially scanned through the region, and two heuristic methods based
on interrogating regions where the targets are most likely to be given the kine-
matic model and the estimated positions and velocities at the previous time
step (see [150] for more detailed explanation). We compare the performance
by looking at root-mean-square (rms) error versus number of sensor resources
available (”looks”). All tests use the true SNR (= 2) and are initialized with
the true number of targets and the true target positions.

Figure 3.2. A comparison of the information-based method to periodic scan and two other
methods. The performance is measured in terms of the (median) rms error versus number of
looks and the (average) number of targets in track. The α-divergence strategy out performs the
other strategies, and at 35 looks performs similarly to non-managed with 750 looks. (Left panel
is Figure 6 of [150] - used with permission)

6.4 On the Choice of α

The Rényi divergence has been used in many applications, including content-
based image retrieval, image georegistration, and target detection [113, 112].
These studies provide guidance as to the optimal choice of α.
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In the georegistration problem [112] it was empirically determined that the
value of α leading to highest resolution clusters around either α = 1 or α = 0.5
corresponding to the KL divergence and the Hellinger affinity respectively. The
determining factor appears to be the degree of to which the two densities under
consideration are different. If the densities are very similar then the index-
ing performance of the Hellinger affinity distance (α = 0.5) was observed to
be better than that of the KL divergence (α = 1). Furthermore, the asymp-
totic analysis of [112] shows that α = .5 provides maximum discrimination
between two similar densities. This value of α provides a weighting which
stresses the tails, or the minor differences, between two distributions. In target
tracking applications with low measurement SNR and slow target dynamics,
with respect to the sampling rate, the future posterior density can be expected
to be only a small perturbation on the current posterior density, justifying the
choice of α = 0.5.

Figure 4.3 gives an empirical comparison of the performance under different
values of α. All tests use Pd = 0.5, SNR = 2, and Pf = P

(1+SNR)
d . We

find that α = 0.5 performs best here as it does not lose track on any of the 10
targets during any of the 50 simulation runs. Both cases of α ≈ 1 and α = 0.1
case cause frequent loss of track of targets.

Figure 3.3. A comparison of sensor management performance under different values of α.
On simulations involving ten real targets, alpha = 0.5 leads to the best tracking performance.
(Figure 5 of [150] - used with permission)

6.5 Sensitivity to Model Mismatch

Here we present empirical results regarding the performance of the algo-
rithm under model mismatch. Computation of the JMPD and information gain
requires accurate models of target kinematics and the sensor. In practice, these
models may not be well known. Figure 6.5 shows the effect of mismatch be-
tween the assumed target kinematic model and the true model. Specifically,
Fig. 6.5 shows the sensitivity to mismatch in the assumed diffusion coefficient
ρ and the noise variance σi = σ, equivalently, the sensor SNR, relative to their
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true values used to generate the data. The vertical axis of the graph shows the
true coefficient of diffusion of the target under surveillance. The horizontal
axis shows the mismatch between the filter estimate of kinematics and the true
kinematics (matched = 1). The color scheme shows the relative degradation
in performance present under mismatch (< 1 implies poorer performance than
the matched filer). The graph in Fig. 6.5 shows (a) how a poor estimate of
the kinematic model effects performance of the algorithms, and (b) how a poor
estimate of the sensor SNR effects the algorithm. In both cases, we find that
the information gain method is remarkably robust to model mismatch, with a
graceful degradation in performance as the mismatch increases.

Figure 3.4. Left: Performance degradation when the kinematic model is mismatched. Per-
formance degrades gradually particularly for high SNR targets.

6.6 Information Gain vs Entropy Reduction

Another information theoretic method that is very closely related to maxi-
mizing the Rényi divergence is maximization of the expected change in Rényi
entropy. This method proceeds in a manner nearly identical to that outlined
above, with the exception that the metric to be maximized is the expected
change in entropy rather than the expected divergence. It might be expected
that choosing sensor actions to maximize the decrease in entropy may be better
than trying to maximize the divergence since entropy is a more direct measure
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of concentration of the posterior density. On the other hand, unlike the di-
vergence, the Rényi entropy difference is not sensitive to the dissimilarity of
the old and new posterior densities and does not have the strong theoretical
justification provided by the error exponent (4.15) of Sec. 3. Generally we
have found that if there is a limited amount of model mismatch, maximizing
Rényi either divergence or entropy difference gives equivalent sensor schedul-
ing results. For example, for this multi-target tracking application, an empiri-
cal study (Figure 6.6) shows that the two methods yield very similar tracking
performance.

Figure 3.5. Performance, in terms of the number of targets successfully tracked, when using a
sensor management strategy predicated on either the Rényi divergence of the change in entropy.

7. Terrain Classification in Hyperspectral
Satellite Imagery

A common problem in passive or active radar sensing is the waveform se-
lection problem. For more detailed discussion of active radar waveform design
and selection the reader is referred to Chapter 11 of this book. Different wave-
forms have different capabilities depending on the target type, the clutter type
and the propagation characteristics of the medium. For example, accurate dis-
crimination between some target and clutter scenarios may require transmis-
sion of the full set of available waveforms while in other scenarios one may
get by with only a few waveforms. In many situations the transmitted energy
or the processed energy are a limited resource. Thus, if there is negligible loss
in performance, reduction of the average number of waveforms transmitted is
desirable. the problem of selection of an optimal subset of the available wave-
forms is relevant. This is an instance of an optimal resource allocation problem
for active radar.



Information Theoretic Approaches 53

This section describes a passive hyperspectral radar satellite-to-ground imag-
ing application for which the available waveforms are identified with different
spectral bands. To illustrate the methods discussed in this chapter we use the
Landsat satellite image dataset [222]. This dataset consists of a number of ex-
amples of ground imagery and is divided into training data (4435 examples)
and test data (2000 examples) segments. The ground consists of six differ-
ent classes of earth : “red soil”, “cotton crop”, “grey soil”, “damp grey soil”,
“soil with vegetation subtle”, and “very damp grey soil”. For each patch of the
ground, the database contains a measurement in each of four spectral bands,
ranging from visible to infra-red. Each band measures emissivity at a particu-
lar wavelength in each of the 6435 pixelated 3×3 spatial regions. Thus the full
four bands give a 36 dimensional real valued feature vector. Furthermore, the
database comes with ground truth labels which associates each example with
the type of earth corresponding to the central pixel of each 3× 3 ground patch.

We consider the following model problem. Assume that the sensor is only
allowed to measure a number p of the four spectral bands where p < 4. When
we come upon an unidentified type of earth the objective is to choose the col-
lection of bands that will give the most information about the class. Thus here
the state variable x is the unknown class of the terrain type. We assume that at
initialization only prior information extracted from the data in the training set
is available. Specifically, denote by p(x) the prior probability mass function
for class x, x ∈ {1, 2, 3, 4, 5, 7}. The set of relative frequencies of class labels
in the training database implies that p(x = 1) = 0.24, p(x = 2) = 0.11,
p(x = 3) = 0.22, p(x = 4) = 0.09, p(x = 5) = 0.11, and p(x = 7) = 0.23.
Denote by f(Y|x = c) the multivariate probability density function of the
(9p)-dimensional measurement Y = [Yi1 , . . . , Yip ]

T of the 3 × 3 terrain patch
when selecting the combination B = {i1, . . . , ip} of spectral bands and when
the class label of the terrain is x = c.

7.1 Optimal Waveform Selection

Here we explore optimal off-line waveform selection based on maximiz-
ing information gain as compared to waveform selection based on minimizing
miss-classification error Pe. The objective in off-line waveform selection is to
use the training data to specify a single best subset of p waveform bands that
entails minimal loss in performance relative to using all 4 waveform bands.
Off-line waveform selection is to be contrasted to on-line approaches that ac-
count for the effect on future measurements of waveform selection based on
current measurements Y0. We do not explore the on-line version of this prob-
lem here. Online waveform design for this hyperspectral imaging example
is reported in [39] where the classification reduction of optimal policy search
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(CROPS) methodology of Sec. 4 is implemented to optimally schedule mea-
surements to maximize terrain classification performance.

7.1.1 Terrain Miss-Classification Error. The miss-classification
probability of error Pe of a good classifier is a task specific measure of perfor-
mance that we use as a benchmark for studying the information gain measure.
For the Landsat dataset the k-nearest neighbor (kNN) classifier with k = 5 has
been shown to perform significantly better than other more complex classifiers
[107] when all four of the spectral bands are available. The kNN classifier
assigns a class label to a test vector y by taking a majority vote among the
labels of the k closest points to y in the training set. The kNN classifier is
non-parametric, i.e., it does not require a model for the likelihood function
{p(zB |x = c)}6

c=1. However, unlike model-based classifiers that only require
estimated parameter values obtained from the training set, the full training set
is required to implement the kNN classifier. The kNN classifier with k = 5
was implemented for all possible combinations of 4 bands to produce the re-
sults below (Tables 7.1.3-4.2).

7.1.2 Terrain Information Gain. To compute the information
gain we assume a multivariate Gaussian model for the likelihood f(Yk|Xk)
and infer its parameters, i.e., the mean and covariance, from the training data.
Since x is discrete valued the Rényi divergence using the combination of bands
B is simply expressed:

〈Dα〉B =

∫

zB

p(zB)
1

α− 1
log

6∑

x=1

p(x)αp(x|zB)1−αdzB , (3.22)

where

p(x|zB) =
p(x|∅)p(zB |x)

p(zB)
. (3.23)

All of the terms required to compute these integrals are estimated by empiri-
cal moments extracted from the training data. The integral must be evaluated
numerically as, to the best of our knowledge, there is no closed form.

7.1.3 Experimental Results. For the supplied set of Land-
sat training and test data we find the expected gain in information and miss-
classification error Pe as indicated in Tables 7.1.3, 7.1.3 and 4.2.

These numbers are all to be compared to the ”benchmark” values of in-
formation gain, 1.30, and the misclassification probability, 0.96, when all 4
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Single Band Mean Info Gain Pe(kNN)
1 0.67 0.379
2 0.67 0.347
3 0.45 0.483
4 0.75 0.376

Table 3.1. Expected gain in information and Pe of kNN classifier when only a single band
can be used. The worst band, band 3, provides the minimum expected gain in information and
also yields the largest Pe. Interestingly, the single bands producing maximum information gain
(band 4) and minimum Pe (band 2) are different.

Band Pair Mean Info Gain Pe(kNN)
1,2 0.98 0.131
1,3 0.93 0.134
1,4 1.10 0.130
2,3 0.90 0.142
2,4 1.08 0.127
3,4 0.95 0.237

Table 3.2. Expected gain in information and Pe of kNN classifier when a pair of bands can be
used. The band pair (1,4) provides the maximum expected gain in information followed closely
by the band pair (2,4), which is the minimum Pe band pair.

Band Triple Mean Info Gain Pe(kNN)
2,3,4 1.17 0.127
1,3,4 1.20 0.112
1,2,4 1.25 0.097
1,2,3 1.12 0.103

Table 3.3. Expected gain in information and Pe of kNN classifier when only three bands can
be used. Omitting band 3 results in the highest expected information gain and lowest Pe.

spectral bands are available. Some comments on these results will be useful.
First, if one had to throw out a single band, use of bands 1,2,4 entails only a
very minor degradation in Pe from the benchmark and the best band to elimi-
nate (band 3) is correctly predicted by the information gain. Second, the small
discrepancies between the ranking of bands by Pe and information criteria can
be explained by several factors: 1) the kNN is non-parametric while the in-
formation gain imposes a Gaussian assumption on the measurements; 2) the
information gain is only related to Pe indirectly, through the Chernoff bound;
3) the kNN classifier is not optimal for this dataset - indeed recent results show
that a 10% to 20% decrease in Pe is achievable using dimensionality reduction
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techniques [198, 107]. Finally, as these results measure average performance
they are dependent on the prior class probabilities, which have been determined
from the relative frequencies of class labels in the training set. For a different
set of priors the results could change significantly.

8. Conclusion and Perspectives

The use of information theoretic measures for sensor management and wave-
form selection has several advantages over task-specific criteria. Foremost
among these is that, as they are defined independently of any estimation of
classification algorithm, information theoretic measures decouple the problem
of sensor selection from algorithm design. This allows the designer to hedge on
the end-task and go after designing the sensor management system to optimize
a more generic criterion such as information gain or Fisher information. In this
sense, information measures are similar to generic performance measures such
as front end signal-to-noise-ratio (SNR), instrument sensitivity, or resolution.
Furthermore, as we have shown here, information gain can be interpreted as
a near universal proxy for any performance measure. On the other hand, in-
formation measures are more difficult to compute in general situations since,
unlike SNR, they may involve evaluating difficult non-analytical integrals of
functions of the measurement density. There remain many open problems in
the area of information theoretic sensor management, the foremost being that
no general real-time information theory yet exists for systems integrating sens-
ing, communication, and control.

A prerequisite to implementation of information theoretic objective func-
tions in sensor management is the availability of accurate estimates of the
posterior density (belief state) of the state given the measurements. In the
next chapter a general joint particle filtering approximation is introduced for
constructing good approximations for the difficult problem of multiple target
tracking with target birth/death and possibly non-linear target state and mea-
surement equations. In Chapter 6 this approximation will be combined with
the information gain developed in this chapter to perform sensor management
for multiple target trackers. Information theoretic measures are also applied in
Chapter 11 for adaptive radar waveform design.


