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ABSTRACT

This paper describes an experimental demonstration of a distributed, decentralized, low communication sensor
management algorithm. We first review the mathematics surrounding the method, which includes a novel com-
bination of particle filtering for predictive density estimation and information theory for maximizing information
flow. Earlier work has shown the utility via Monte Carlo simulations. Here we present a laboratory demonstra-
tion to illustrate the utility and to provide a stepping stone toward full-up implementation. To that end, we
describe an inverted Unmanned Aerial Vehicle (UAV) test-bed developed by The General Dynamics Advanced
Information Systems (GDAIS) Michigan Research and Development Center (MRDC) to facilitate and promote
the maturation of the research algorithm into an operational, field-able system. Using a modular design with
wheeled robots as surrogates to UAVs, we illustrate how the method is able to detect and track moving targets
over a large surveillance region by tasking a collection of limited field of view sensors.
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1. INTRODUCTION

This paper describes a demonstration of a distributed, decentralized, low communication information-based
sensor management algorithm developed at the The General Dynamics Michigan Research and Development
Center (MRDC). The method, which is based on a novel combination of particle filtering for predictive density
estimation and information theory for action selection, has been illustrated by simulation in a number of realistic
model problems.1, 2 In this paper, we focus on a laboratory demonstration of the system, and describe the
components needed to produce such a demonstration system and the engineering trades involved.

Sensor management, as defined here, is the process where an agile platform autonomously determines what
action it should take. Agility comes in many varieties - for example, platforms may be mobile, may be able
to point a sensor, and/or choose which mode to use. We focus on the distributed multi-platform case, where
the goal of a sensor management algorithm is to dictate the behavior of individual nodes so that the network
as a whole satisfies some global objective. The method we present is specifically designed for large networks
of sensor nodes that require limited communication and a decentralized approach. As such, it relies only on
communication between neighboring nodes and when communication is done, only a selected subset of a node’s
measurements are shared.

In previous work,2 we have focused on a model problem consisting of a collection of mobile unmanned
aerial vehicles (UAVs) that interrogate a surveillance region looking for moving ground targets. Each platform
is equipped with a down-looking sensor that measures the small portion of the surveillance region immediately
below. The purpose of the network is to determine the number of targets and the kinematic state (e.g., position
and velocity in 2-D) of each target through repeated interrogation of these small ground patches. The sensor
management problem then becomes one of choosing the movement each platform should take to reach the
goal as reliably and quickly as possible. Simulation results in those situations show order-of-magnitude type
improvement over simple periodic scan when measured by metrics such as time until detect, and the number of
resources needed to reliably survey a region.
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In this paper, we describe a demonstration of the method on a related surrogate problem. For logistical
convenience, we instead use a collection of ground platforms with up-looking sensors interrogating the sky for
moving targets. This “inverted UAV” problem serves to illustrate all of the relevant components of the algorithm
and illuminate the engineering challenges, while avoiding flight control and avionics issues that are not directly
related to the sensor management solution we wish to illustrate.

The paper proceeds as follows. In Section 2, we give a brief description of the mathematics behind the sensor
management algorithm used in the demonstration. Additional details are provided elsewhere.3, 4 In Section
3, we give describe the implementation, including the robotic platforms, the associated sensors, and the signal
processing algorithms used to provide platform self localization and sensor processing. Finally, we conclude in
Section 4 with some concluding remarks and thoughts on future work.

2. MATHEMATICAL BACKGROUND

This section briefly reviews our method of multiple platform control. More detail is given elsewhere.3, 4 As
discussed therein, the approach used here is related to the approach of others5–10

Our method of sensor management is based on maximizing information flow through the network. In a
network consisting of N agile sensors, we choose the action set (r1, r2, · · · , rN−1, rN ) that is expected to maximize
the total utility of the next measurements made. The utility is measured in terms of an information theoretic
metric known as the Renyi Divergence which, loosely speaking, values action sets that reduce uncertainty.

The method proceeds as follows. First, sensor models, target models, prior information and sensor measure-
ments are fused together in an entity known as the Joint Multitarget Probability Density (JMPD),11

p(X, T |Z) ≡ p(x1, x2, · · · , xT−1, xT , T |Z) = p(x1, x2, · · · , xT−1, xT |T, Z)p(T |Z) . (1)

The JMPD captures the uncertainty one has about the state of the system (both the uncertainty about the
number of targets T and the states of each individual target xi). As such, it is an ideal quantity to use for
sensor management, as the goal of sensor management is to choose actions which in some sense minimize the
uncertainty about the state of the system.

Because of its high dimensionality and non-parametric form, the JMPD is estimated using particle filter
methods.12 The JMPD is a hybrid continuous discrete distribution, which is defined over both the discrete
number of targets at time k, T k and the continuous target state space at time k, Xk ∈ �nT , i.e., the normalization
criteria is

∑∞
T=0

∫
dXp(X, T |Z) = 1, where the single integral sign is to be interpreted to represent the T

integrations required. This single probabilistic entity captures all of the uncertainty about a surveillance region,
including uncertainty about how many targets there are and what their kinematic states are (e.g., position and
velocity).

The second step in our approach is to use the uncertainty, as captured by the JMPD, to choose actions
for the sensors to take. Specifically, we we wish to choose the set of sensing actions for the N sensors,
(r1, r2, · · · , rN−1, rN ), that lead to the best possible measurements (z1, z2, · · · , zN−1, zN ). Here we define the a
measurement as valuable when it reduces the uncertainty present in the JMPD. There is both a theoretical and
practical reason for this choice of metric.13 Of course, we do not know the measurement set that will be received
until after the action is taken, so we instead advocate maximizing the expected uncertainty reduction an action
set will produce. Formally stated, we wish to maximize the expected uncertainty reduction as measured between
the JMPD before the latest set of measurements is taken (i.e., the prediction JMPD) and the JMPD after a set
of measurements (the posterior JMPD).

A commonly used measure of the difference between two probability densities is the divergence. In this work
we employ a particular type of divergence known as the Rényi Divergence, and use it to measure the amount of
information flow (or uncertainty reduction) an action set has produced. The Rényi Divergence between densities
p(x) and q(x) is denoted Dα(p||q), and its expectation (with respect to the measurements received) will be
denoted E(Dα(p||q)). We then seek the action set that maximizes the Divergence between the JMPD before new
measurements are made and the JMPD after new measurements are made, i.e., we seek the set
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Figure 1. The experimental setup. The demonstration described here is an “inverted UAV” experiment that consists of
ground platforms providing surveillance on an air region. Each ground platform has an EO sensor capable of interrogating
only a small region above it for targets. The platforms are mobile and can communicate with nearby neighbors thus
allowing them to reposition over time to survey the entire area.

(r̂1, r̂2, · · · , r̂N−1, r̂N ) = argmax
(r1,··· ,rN)∈C

E
[
Dα

(
p(·|Zk−1, z1, · · · , zN , r1, · · · , rN )||p(·|Zk−1)

)]
. (2)

Zk−1 refers to the set of measurements collected by all the platforms for all time up to and including time k− 1.

This is a constrained optimization because, among other things, platforms must not collide and platforms
must not violate kinematic constraints (i.e., maximum allowable acceleration). Straightforward application of this
approach is O(MN ) to compute, where M is the number of possible next-actions and N the number of platforms.
Therefore exact implementation of the method is intractable for large N . Therefore, we use a computational
method that combines Lagrangian relaxation and a physicomimetic approximation.2

3. DETAILS OF IMPLEMENTATION

In this section we describe an experimental demonstration of our multiplatform information based control algo-
rithm. This work complements earlier work2, 3, 14 which has illustrated the methods purely in simulation. Here,
we describe the components necessary to implement the information theoretic sensor management method on
real hardware, by discussing each of the components in the architecture.
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Figure 2. A system flowchart showing the process each platform follows. First, each platform acquires its own-ship posi-
tion using the ImageGPS capability. Next, each platform acquires and processes a camera image. Selected measurements
are then transmitted to neighbors, and measurements are received from neighbors. These measurements are used to
update the JMPD and compute the information theoretic optimization used for sensor management. Finally, the required
motion is sent to the robot and the robot moves. Each of the modules in this flowchart is described in the following
subsections.

The rest of this section proceeds as follows. We first describe the experimental setup and surrogate platform
used in the experiment. As discussed earlier, we invert the traditional UAV-based model problem for logistical
convenience. We then enumerate and describe in detail each of the major individual elements of the system,
from those that do sensor signal processing to those that effect robot motion.

3.1. Experimental Setup: The Inverted UAV

Our earlier simulation work2 has focussed on a unmanned aerial vehicle (UAV) model problem. In this model
problem, a collection of airborne platforms survey a ground area by repeated interrogation. Each UAV can only
see a small portion of the ground, but is mobile, so by cooperation amongst the platforms the entire ground can
be surveyed over time.

For reasons of convenience, we invert this model problem for the present demonstration. Instead of a collection
of airborne sensors interrogating a ground region, we use a collection of ground sensors interrogating an air region.
This defers the development and control issues associated with airborne sensors to experts in avionics and flight
control, while still allowing illustration of the control algorithm. The air region consists of a number of moving
targets (where the number, location, and velocity of each is unknown to the platforms at inception). All of
the analogous concerns are present in this demonstration: the network of platforms is to cooperate together to
perform surveillance on a region much larger than their instantaneous individual field of view; the number of
targets and their kinematic states are time varying and unknown to the network at initialization; each sensor
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Figure 3. The Inverted UAV experiment described in this paper uses a wheeled ground robot that carries a standard
laptop. The laptop executes the the sensor management algorithm described earlier and produces commands which dictate
the movement of the robot. The low-level robot motion is controlled via a 16-bit CPU system which communicates with
both the motor controller board and the laptop.

is imperfect (i.e., characterized by a detection probability and a false alarm probability); and each platform
has both the ability to communicate with neighbors and the ability to move. By repeated interrogation and
cooperation amongst the sensors, the surveillance region can be completely interrogated and moving targets
detected and tracked. Figure 1 illustrates the laboratory setup graphically, and Figure 2 shows a flowchart which
describes the actions each platform performs. Each important component in the illustration will be described in
future sections.

3.2. The Surrogate Platform

A collection of hobby-shop type ground robots with EO sensors was used to illustrate the methods. The robot
platform, shown in Figure 3, consists of a 16-bit CPU system with a serial port interface, an expansion backplane,
a dual-motor controller backplane card, two DC-driven motors attached to two wheels through gear boxes, and
two encoders to measure rotational movement of each wheel. A standard laptop computer sits on top of the
robot chassis and communicates to the 16-bit controller over a serial interface.

Decisions about robot movements are made using the information theoretic control algorithm outlined earlier.
The sensor used to gather measurements is a simple EO camera attached to each of the robots and pointing
directly up. It generates measurements that provide evidence as to the presence or absence of targets immediately
overhead. This information is used to construct the JMPD and compute the most valuable actions to take next.
This algorithm is run on the laptop computer in MatLabTM .

Desired movements are translated into commensurate requirements on how the robot wheels are to move, as
measured by encoder ticks. This is done taking into account the robot geometry, current heading angle, and
the relationship between encoder ticks and distance and angle movement. These requests are passed via serial
communication to the robot controller board. Software written for the robot controller interprets these requests
and does the low level control to actually make the wheels move in the prescribed fashion, complete with feedback
and error checking.
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Figure 4. Left: The view of the entire laboratory from above. Right: The image zoomed at the location of one of the
robots. The boxes drawn on each image show the result of the image GPS algorithm which has used signal processing
algorithms to extract the location of the platforms. Information about own-ship position and orientation is provided to
a platform upon request, analogous to traditional GPS.

3.3. The Image GPS Module

An important requirement of our method is that each platform knows its own location. In a fielded system this
will be done using GPS, inter-sensor communication techniques,15 dead reckoning or some other technique.

In our present laboratory implementation, however, there are several issues with GPS. The most significant
issue is that GPS signals will not penetrate into our lab environment - as line-of-sight to the orbiting satellites is
required. Additionally, given the relatively small area being used for the demonstration (approximately 15 feet
by 15 feet) and the relatively large size of the robots ( 16 inch diameter cylinders), a highly accurate position
estimate is required to avoid collisions - on the order of an inch.

A second, but equally important positioning constraint is the requirement to know the orientation (or compass
direction) of the robot. Several solutions are available in the real world including the use of a compass and the
accumulated movement vector information from GPS. As traditional GPS is not viable and the small package
size of the robot platform precludes the easy electromagnetic isolation of a compass required for an accurate
reading, another solution was required to address determining instantaneous orientation.

To deal with both position and orientation issues, a method of signal processing based on images collected
from an overhead camera, which we refer to as “ImageGPS” was employed. By affixing color coded arrows (see
Figure 4) to each robot oriented to point in the ‘forward’ movement direction, a camera mounted on the ceiling
of the lab space can be used to find both the position of a specific color-coded robot and its relative orientation.
A ‘position server’ module was written to run on a computer connected to both the ceiling camera and a wireless
router. This server constantly examines the images from the ceiling camera and determines the position and
orientation of each robot. PCs on each robot that control movement can query their position information via
the wireless connection through the wireless router. Note that the only information provided to a platform from
the ImageGPS is own-ship position. As such, the ImageGPS works similarly to a traditional GPS as it merely
provides a platform with its own-ship location when desired.

3.4. Sensor Signal Processing

In this “inverted UAV” problem, the sensor is mounted on the robot and interrogates the area directly above it
for targets. Targets are assumed to lie in a horizontal plane a fixed distance above the sensor. By knowing the
sensor’s position and orientation, each position in the sensor’s field of view can be mapped to location in the
target plane by a simple geometric transformation.
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Overhead Camera Image Sensor Images 

Figure 5. An illustration of the color camera images acquired by three platforms. Left: the location of a the platforms
as viewed from an overhead camera. Right: the ceiling images acquired by the platforms, rotated and placed relative
to the overall ceiling (note that each platform only knows about its own image and not those of others). The target is
a homogeneous colored square (here only partially in the camera field of view), and the background contains lighting
fixtures, duct work, ceiling, cords, and wire runs.

Detection of targets is color-based. This simplified method was chosen purposely as illustration of sensor
signal processing methods is not the main goal of this demonstration. Rather, the demonstration seeks to
illuminate the information theoretic method of control, so in that sense sensor signal processing is a nuisance
parameter. The sensor chosen is an inexpensive color camera that generates an image where each pixel contains
a three vector (R, G, B). Each target is a uniform color, distinct from the background (ceiling, lights and other
clutter in the ceiling plane). An illustration of a captured image is given in Figure 5. A linear transform is
used to convert the three color camera data into a single value per pixel detection map such that the target is
emphasized. A target measurement is made by choosing those pixels of the detection map that correspond to the
area to be measured, and averaging the values over those pixels. The threshold is chosen based on the desired
(pd, pfa). An empirical ROC curve, which traces out the (pd, pfa) relationship for this sensor is shown in Figure
6.

3.5. Inter-Platform Communication

For networked sensors, an important real-world issue is communications with other sensors. To emulate the
real-world fact that sensors have a limited communication capabilities (due to a number of factors including
line-of-sight, transmission power limitations, and receiver noise), each sensing platform has a module that only
allows it to communicate with neighboring sensors. By knowing where it is at any given time and by including
the current location in each message sent to each platform, other platforms can do a simple distance calculation
to decide if the message should be ‘heard’ and processed. In more complex implementations, probability models
can be used to vary the communications success rate as a function of distance. In the laboratory this function
is accomplished with wireless cards on each computer and a wireless router that handles the transmission of
messages between platforms.

Furthermore, when sensors communicate, the method adopted here is to send only selected measurements.
Sending measurements has the virtue of avoiding incest involved in sending probability densities as well as only
requiring a small bandwidth. Measurements are selected to be sent from the most recently acquired measurements
based on the likelihood (locally computed) that the measurement has originated from a target. Therefore, at
each time step, there may be zero or many measurements transmitted to neighboring platforms depending on
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Figure 6. The Sensor ROC, which describes the detection/false alarm tradeoff for our EO sensor looking for moving
targets in the ceiling plane. In our demonstration, we typically operate at Pd ≈ 0.85.

the locally computed probability that the measurement has originated from a target. In our experiments, we
find that approximately 5% of measurements are transmitted from each platform.

Finally, each platform also includes its own-ship position when sending messages to neighbors. This infor-
mation allows a platform to compute a local optimization of its actions that approximates the joint information
theoretic optimization (see Reference2 for details). Again, only those platforms that are within the communica-
tion radius of the transmitting platform receive this information. Those that are farther than the communication
radius hear nothing.

3.6. JMPD Update and Information Theoretic Movement Computation

The mathematics described in Section 2 is implemented on the laptop computers riding on each of the robot
chassis. Each robot does a local computation using only information known locally (i.e., measurements made
by the platform and those received from others) to compute a local JMPD. This is done by first updating the
JMPD temporally using models on target kinematics and arrival probability. This includes an prediction of the
probability density over kinematic states of known targets as well as prediction as to the number of targets.
Next, the most recently received measurements are used to measurement update the JMPD using Bayes’ rule
(see Reference12 for further discussion of this update).

As described earlier, the JMPD captures all of the uncertainty about the surveillance region. The sensor man-
agement method advocated here works by choosing actions that are expected to maximally reduce uncertainty
about the surveillance region (see Reference3 for further discussion of the information theoretic approach). In the
multiplatform low communication setting, this computation is effected locally using only the local JMPD and the
estimate of nearby neighbor positions (see Reference2 for further discussion of this optimization). What results
is a desired next position for a platform that is approximately the best next position in terms of maximizing
overall information flow through the network, taking into account the position of other platforms.

Figure 7 provides an illustration of the inner workings of the algorithm. Each platform uses a local estimate
of the JMPD to compute a local information gain surface. This local surface for the three platforms shown in the
figure is shown in the sub-figures. While qualitatively similar, the surfaces are slightly different, representing the
different measurement sets available at each sensor. This local gradient of this information gain surface (evaluated
at the platform location) is combined with physicomimetic forces derived from knowledge of neighboring platform
positions to generate a desired movement.
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Figure 7. A single frame illustration of the demonstration. Top left: the overhead camera image showing the location
of the three platforms. The FOV of each sensor is highlighted. Covariance ellipses are drawn to illustrate each platforms
estimate of target location. Top right: The sensor images acquired by each platform. Bottom: The expected information
gain surfaces computed by each of the three sensors. While qualitatively similar (as they should be as they are in neighbor
to neighbor communication), each platform has a more precise estimate of information gain in its local area.

3.7. Robot Motion

The decision as to the next position of the robot is made using the information theoretic sensor management
algorithms outline earlier. In short, a (local) potential field is computed which approximates the joint information
theoretic optimization. The robot then moves in the direction of the gradient, thereby making the movement
that maximizes expected gain in information. This computation is done on the laptop riding on the robot chassis.
Decisions first take the form of desired next positions of the robot and are next translated a pair of movement
commands (one indicating the angle the robot should turn and the second the distance to move forward once
reaching that angle) using simple geometry. These commands are converted into units of encoder ticks (related
to revolutions of each robot wheel) and send via serial cable to the robot controller.

Low-level robot motion is controlled by a Motorolla HC11 16-bit microprocessor. Software running on this
processor receives movement commands in the form of requested encoder ticks for each wheel via serial cable
with the laptop. This software than effects the required movement and provides feedback as to the successful
completion to the laptop. Several challenges present themselves when attempting to execute movement com-
mands. During forward movement, it is not sufficient that both wheels turn the same number of rotations, they
must in fact turn at the same rate to ensure the robot moves straight. This requires the software to to constantly
monitor the relative motion of the wheels and adjust voltage levels (actually PWM on-time). Furthermore, an
analogous requirement is present during robot rotations. We have chosen to have the robot rotate by fixing one
wheel and moving the other (this choice, where the robot does not rotate around its center, is compensated for
in geometric calculations earlier).

There are a number of error sources that may cause the robot to not arrive in the exact position desired
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Figure 8. Empirical CDF of robot movement errors. For the movement sizes and rotations used in our experiments, the
total position error is typically on the order of an inch.

by algorithm. First, battery charge and temperature effects the translation of movement in feet or angle to
movement in encoder ticks. Second, robot momentum makes it difficult to precisely stop the robot after a
certain number of encoder ticks (the control module may turn off power to the motors, but the robot still glides
a bit). Third, the finite rate of the motor control processor makes counting encoder ticks less than perfectly
precise, and hence the correction for non-uniform wheel spin rate is imperfect. This may result in slightly curved
motion when straight motion is desired. Finally, there are a number of smaller effects, such as wheel slippage (one
wheel spinning and registering encoder ticks, while not actually moving the robot) that happen in practice. All
of these issues are addressed with algorithmic compensations, but cannot be expected to be exactly eliminated.

The algorithm, as designed, is able to tolerate errors in positioning very well. In fact, as each platform receives
its actual position after movement is completed from the ImageGPS capability these errors are nearly transparent
to the algorithm. Obviously, if the positioning errors are significant, the total performance of the algorithm will
be worse than ideal. However, there is not a ripple effect of the error that leads to unstable behavior. If the
robot moves to a position different than requested, the ImageGPS reports the true actual position and the next
step in the information theoretic optimization computes the gradient at that new true point.

Despite the error sources outlined here, the ultimate performance of the motion algorithm is in fact very
good. Figure 8 is an experimental CDF illustrating the position error (in inches), which shows the majority of
the movements result in an error less than or equal to 2 inches. This is a combination of all of the error sources
outlined above, including errors in turning the robot, keeping the robot moving straight, momentum and things
like slippage.

4. CONCLUSIONS

This paper has described a laboratory demonstration of a distributed, decentralized, low-communication sensor
management algorithm. The sensor management algorithm, described in detail elsewhere,2 is a novel com-
bination of particle filtering for predictive density estimation, information theory for action selection, and a
physicomimetic relaxation for computational tractability. In simulation studies on a model problem reported
previously,1–3 this algorithm has shown order-of-magnitude type performance improvement over simple periodic
scan. The work reported in this paper adds a level of fidelity that simulations alone cannot provide by illustrat-
ing the algorithm in the lab using a collection of robots detecting and tracking an unknown number of moving
targets.

We have focused here on describing the engineering challenges associated with transitioning an algorithm
which is successful in the simulation environment to the laboratory. These include the logistics of reporting own-
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ship position, the mechanics of making a robot physically move from one position to another (and the associated
errors) and communication between platforms. What has resulted is a successful demonstration of the control
technology, providing a springboard for transition into a real field-able system.
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