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A Bayesian Approach to Multiple Target
Detection and Tracking

Mark R. Morelande, Christopher M. Kreucher, and Keith Kastella

Abstract—This paper considers the problem of simultaneously
detecting and tracking multiple targets. The problem can be for-
mulated in a Bayesian framework and solved, in principle, by com-
putation of the joint multitarget probability density (JMPD). In
practice, exact computation of the JMPD is impossible, and the
predominant challenge is to arrive at a computationally tractable
approximation. A particle filtering scheme is developed for this
purpose in which each particle is a hypothesis on the number of tar-
gets present and the states of those targets. The importance density
for the particle filter is designed in such a way that the measure-
ments can guide sampling of both the target number and the target
states. Simulation results, with measurements generated from real
target trajectories, demonstrate the ability of the proposed proce-
dure to simultaneously detect and track ten targets with a reason-
able sample size.

Index Terms—Bayes’ procedures, object detection and tracking,
particle filters.

I. INTRODUCTION

THE classical approach to multiple target tracking (MTT) is
exemplified by the technique commonly referred to as mul-

tiple hypothesis tracking (MHT) [1], [2]. This technique typ-
ically works with a set of detections comprised of both noisy
measuremements of the target position, in Cartesian or polar
coordinates, and false alarms due to clutter. The detections are
then either associated with existing tracks, used to create new
tracks, or deemed false alarms. Typically, Kalman-filter-type al-
gorithms are used to update the existing tracks after association.
Association between measurements and targets is done by enu-
merating and evaluating lists of feasible measurement-to-target
associations, which are managed through the use of hypothesis
management techniques.

A problem with this traditional approach to MTT is that in-
formation is removed when a set of detections is produced from
a collection of raw sensor returns. This information reduction
makes it difficult for the tracking algorithm to recognize and
accurately track targets that rarely produce returns above the de-
tection threshold. A more robust solution to MTT is possible if
the raw sensor returns are made available to the tracker. This
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approach is commonly referred to as track-before-detect (TBD)
[3]. Here, the surveillance region is divided into cells, and the
tracking algorithm is supplied with the intensity of the sensor re-
turn in each cell. Early approaches to TBD include dynamic pro-
gramming algorithms [4] and maximum-likelihood techniques
[5]. These approaches are not recursive and have difficulty mod-
elling complicated target motion. A more promising approach is
to adopt a fully Bayesian perspective where the quantity of in-
terest is a Markov process, the multitarget state, which is the
concatenation of several individual target states. Stone [6] de-
velops a mathematical theory of MTT from a Bayesian point of
view. Srivistava, Miller [7], Kastella [8], and Mahler [9] also
did early work in this area. The Bayesian approach has the ad-
vantages of providing a recursive solution with arbitrary target
dynamic models.

This paper presents a unified approach to multitarget de-
tection and tracking based on recursive approximation of the
joint multitarget probability density (JMPD). The approach is
developed for a pixelized measurement model similar to that
used in TBD. The JMPD is a single probabilistic entity that
captures uncertainty about the number of targets present in the
surveillance region as well as their individual states. While
developed independently [10], [8], the JMPD method can be
derived using the mathematics of random sets and expressed
in the finite-set statistics framework [9]. As discussed in [11],
JMPD can be traced back to the event-averaged maximum-like-
lihood estimation (EAMLE) work of Kastella [8], [10] and
many earlier works, e.g., [12]–[14].

Since the JMPD is a high-dimensional entity that cannot be
computed in closed form, sophisticated numerical techniques
are required to obtain a tractable approximation. Early work
used a deterministic grid approximation, which is practical
only for simple problems involving a small number of targets
moving in one dimension [15]. More recently, particle filters
(PFs) have been used to approximate the JMPD in realistic
scenarios involving large numbers of targets moving in two-di-
mensions [16], [17]. PFs provide a recursive stochastic grid
approximation to the exact solution of Bayesian state esti-
mation problems [18], [19]. The idea is that, by simulating
possible target trajectories and weighting them according to
their suitability, a set of particles will be obtained that move
of their own volition to the desired parts of the state space.
This avoids the computational and implementational com-
plexities of deterministic grid approximations [20]. PFs are
often implemented using sequential importance sampling in
which samples from the posterior are obtained by drawing from
an importance density which factorizes in such a way that a
sequential sampling procedure is obtained.
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Efficient particle proposals, in the sense that many particles
are placed in desirable parts of the state space, are necessary for
tractable approximation using PFs. This is particularly true for
MTT where the dimension of the state vector is proportional
to the number of targets in the surveillance region. Previous
PFs for MTT with pixelized measurement models have not ad-
dressed this issue. In [21], particle proposals are made using
the state transition density, a notoriously inefficient scheme for
any state dimension which quickly deteriorates as the state di-
mension increases. The lack of suitability of this scheme for
MTT has been demonstrated in [17]. The algorithm of [17] uses
measurement-directed proposals but samples inefficiently when
multiple targets are in close proximity. The work presented here
expands on [17] in two ways. First, an optimal importance sam-
pling procedure, in the sense described in [22], which enables
efficient tracking of persistent targets is developed. Second, the
algorithm is extended to provide simultaneous multitarget de-
tection and tracking.

The problem of tracking a known and fixed number of targets
is considered first. This is an extension of the work presented in
[23]. As in [17], the idea of clustering the multitarget state into
groups of closely spaced targets is used. This procedure was
originally suggested in [24] for MTT using sensor arrays where
it was referred to as the independent partition PF. Clustering
enables computationally tractable tracking of large numbers of
targets. Unlike [17], in the technique proposed here, samples
for each cluster of targets are drawn jointly enabling the filter
to better handle situations in which several targets are in close
proximity. This will be seen to have a dramatic effect on tracking
performance. An important issue in this approach is the distance
threshold used in the clustering. Selection of this threshold in-
volves balancing conflicting requirements. This issue is investi-
gated through the variances of the importance sampling weights.
Rao–Blackwellization [25] is used to reduce the dimension of
the PF.

If the number of targets is unknown and time varying, MTT
is performed by computing, or numerically approximating, the
JMPD of the extended multitarget state, a quantity that is the
concatenation of the number of targets and the state of each
target. Each particle in the PF approximation to the JMPD is
therefore a hypothesis of the number of targets present and the
state of each target. Thus, each particle can be comprised of a
different number of individual target states. A model for the time
evolution of the extended multitarget state is developed that al-
lows the rates at which targets arrive and depart to vary both
spatially and temporally. Sampling directly from this transition
model does not lead to a tractable algorithm since, depending
on the amount of prior information available, it is unlikely that
a sufficient mass of particles will be placed in the correct part
of the extended multitarget state space. Sampling is therefore
performed from an importance density, which uses a measure-
ment-directed method to decide which areas of the surveillance
region are more likely to have had a target arrive or leave.

The rest of this paper is organized in the following manner.
The target dynamic and measurement models along with some
notation are outlined in Section II. In Section III, the JMPD is
briefly introduced and it is shown how the rules of Bayesian fil-
tering are applied to produce a recursive filtering procedure. A

particle filter for track maintenance of persistent targets is given
in Section IV. This filter is extended in Section V to include
initiation and deletion of tracks in addition to maintenance of
existing tracks. Simulation results examining the filter perfor-
mance under various conditions are provided in both sections.
Finally, Section VI contains a brief summary and discussion.

II. NOTATION AND MODELING

Consider the presence of targets at time with the state of
the th target denoted as . The multi-
target state at time is defined as the concatenation of the indi-
vidual target states , where denotes the
matrix transpose. In general, the target number is unknown and
time varying and can therefore be considered a state variable
to be estimated with the individual target states. The extended
multitarget state is defined as . It is assumed the
extended multitarget state is a Markov sequence satisfying

(1)

where means that is a random variable with probability
density function . It is important to keep in mind that (1) in-
volves transitions in the target number in addition to the usual
transitions of the individual target states.

In this paper, it will be assumed that each target moves in
-dimensional space with individual target states composed of

position and velocity in each direction. The position elements
of the th target are collected into and the velocity elements
are collected into so that . The process noise
is assumed to be Gaussian distributed. Individual target states
then evolve independently according to

(2)

where denotes the Gaussian probability density
function evaluated at with mean and covariance matrix

is the covariance matrix for the process noise of the th
target at time and

(3)

with denoting the identity matrix, denoting the
Kronecker product, and denoting the sampling period. Mod-
eling of target number transitions will be discussed in Section V.
Equation (2) models the motion of a target moving with a ve-
locity subject to random perturbations. If the intensity of the
process noise is sufficiently large these perturbations can model
sudden changes in target velocity, i.e., maneuvers. A better ap-
proach to tracking maneuverring targets is to allow the target to
move in one of several possible motion modes. A Markov chain,
referred to as the maneuvering mode, switches between these
motion modes. The PF described in Sections IV and V can be
extended to handle multiple motion models by adding the ma-
neouvring mode to the target state and producing samples of
this discrete random variable along with the other elements of
the target state [26], [27].



MORELANDE et al.: A BAYESIAN APPROACH TO MULTIPLE TARGET DETECTION AND TRACKING 1591

Target states are observed using a procedure that distorts the
target states in a probabilistically known manner

(4)

where is the vector of measurements at time and the density
is a probabilistic description of the measurement procedure

at time . A description of the specific measurement model to be
used in this paper will now be given.

The observation region is divided into subre-
gions, referred to as cells, with the vector
containing the measurements obtained in each subregion. The
position elements of the target states are collected into

. Measurements are made independently in each
cell with the distribution of the measurement in a cell depending
on the number of targets in the cell. Note that a target affects
only the measurement of the cell which it occupies. This makes
the measurement model applicable primarily to low resolution
sensors such as ground moving target indicator (GMTI) sensors
in wide area search mode [28]. Although changes to the details
of the algorithm would be necessary, it is anticipated that the
general procedure proposed here would also be applicable to a
high resolution sensor in which targets affect the values of mul-
tiple cell measurements.

Let denote the number of targets occupying the th
cell at time . Then

(5)

The development of the tracking algorithm does not require
a particular form for the cell measurement likelihood , al-
though proper functioning of the algorithm will require that dif-
ferences in the number of targets in a cell are reflected in the
sensor return, e.g., should place more probability mass in
regions of large as increases. In this paper, Rayleigh-dis-
tributed measurements are assumed. Similar models have been
used in monopulse radar applications [29] and to model clutter
and target returns in turbulent environments [30]. In the case of
nonthresholded measurements, and the cell mea-
surement likelihood is, for

(6)

where is referred to as the signal-to-noise ratio (SNR). For
thresholded measurements, with corre-
sponding to a target detection in the th cell at time . The
threshold is set so that Pr
where is the desired false alarm probability. Then, for

(7)

III. JOINT MULTITARGET PROBABILITY DENSITY FUNCTION

MTT involves recursive computation of the JMPD ,
where is the extended multitarget state, com-
posed of the target number and the collection of individual target

states, and is the measurement history [15].
The JMPD provides a probabilistic description of the number
of targets present and their states from which quantities of in-
terest can be estimated. For instance, the posterior probability
that targets are present in region of the state space is

. Assuming is avail-
able the JMPD at time is updated via the recursion [13], [31]

(8)

The closed-form solution of (8) is generally not possible so it
is necessary to use an approximation. The development of a
tractable particle filtering approximation is the subject of this
paper. Before proceeding with a description of the proposed al-
gorithm, a review of particle filtering is presented. This material
is covered in greater depth in [18].

A. Approximation of the JMPD via Particle Filtering

In particle filtering using sequential importance sampling a
set of samples from the JMPD is obtained
by drawing from an importance density . The JMPD is
then represented by , where is a
sample drawn from is the ratio of the JMPD to the impor-
tance density evaluated at the th sample, and is the sample
size. The collection of weighted samples
will be referred to throughout the paper as an approximation,
or more specifically as the PF approximation, to the JMPD.
The word approximation is used in the sense that this is a finite
sample size approximation, which becomes exact as the sample
size approaches infinity, provided certain regularity conditions
are met [32]. Note that each particle proposes the existence of
a number of targets, denoted for the th particle at time , in
addition to the states for each of those targets, collected into
for the th particle at time . A sequential procedure is obtained
by selecting the importance density to factorize as [18]

(9)

The factorization (9) means that, given
, the PF approximation to the JMPD at

time can be found by performing the following steps for
:

(10)

(11)

In order to ensure that particles remain approximately evenly
weighted, a necessity for accurate approximation, the particle
set should be resampled at regular intervals [33]. Particles are se-
lected for inclusion in the resampled particle set based on their
weighting with highly weighted particles selected many times
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and lowly weighted particles selected rarely. The filtering den-
sity , of most interest in target tracking, is represented
by .

IV. TARGET TRACKING FOR A FIXED AND

KNOWN NUMBER OF TARGETS

The problem considered in this section is that of tracking a
known and fixed number of targets. Prior distributions for the
state of each target are assumed to be available. The PF designed
to solve this problem will form the basis of our solution to the
more interesting problem in which the number of targets is un-
known and varies in time. The fixed and known number of tar-
gets will be denoted as in this section.

A. Improvement Strategies

It is relatively straightforward to develop a PF which, given a
sufficient sample size, will provide an accurate approximation
to the JMPD. However a solution of minimal computational ex-
pense requires careful design of the PF by using the inherent
structure of the tracking model to reduce the amount of numer-
ical simulation the PF is required to perform. This aim can be
achieved by designing an importance density with the following
features.

1) Joint measurement-directed proposals: The importance
density should propose particles jointly for all target states
conditional upon all previous target states and the current
measurement. In [16] and [17], particles for each target
were proposed indepedently leading to many particles
being proposed in undesirable parts of the multitarget
state space when multiple targets are in close proximity.
A joint proposal overcomes this by taking into account the
presence of nearby targets. An importance density which
is conditional on the current measurement is commonly
referred to as the optimal importance density (OID) [22].
Here, we use the terminology joint OID (JOID) to empha-
size that target states are drawn jointly.

2) Target clustering: The computational expense of jointly
drawing samples for a group of targets increases expo-
nentially with the number of targets. An increase in the
number of target states being proposed jointly is also ac-
companied by performance degradation for smaller sample
sizes. Fortunately, the structure of the MTT problem is such
that joint sampling is required only for targets in close
proximity. Thus, the targets can be separated into
clusters such that and

(12)

where is the predicted position of the th target and
is a threshold. The positions of the targets in the th

cluster are collected into . For a sufficiently large value
of , the likelihood satisfies

(13)

where is a constant independent of , and is the
likelihood of the measurement vector conditional on the
target cluster under the assumption that only this target
cluster exists. The notation will be used throughout this
paper to indicate densities evaluated in this manner. The
approximate factorization of (13) is exploited in the sam-
pling procedure by drawing samples for each cluster inde-
pendently. The samples for each cluster are then combined
and weighted to account for the approximation involved in
assuming this factorization. This approach has been used
in [16], [17], and [24], where the primary motivation for
separating the targets into clusters was to improve perfor-
mance. When the JOID is used for each cluster the degree
of performance improvement gained by clustering, while
important, is perhaps of less significance than the compu-
tational savings.

3) Rao–Blackwellization: Nonlinearity in the tracking model
enters in the relationship between the measurements and
the position elements of the target state. Since the measure-
ments are generated independently of the target velocity
and the relationship between the velocity elements and po-
sition elements of the target state is linear and Gaussian,
there is no need to include the velocity elements in the
PF. Conditional upon a trajectory of the position elements,
which are obtained from a particle filter, the posterior dis-
tribution of the velocity elements can be computed using
a Kalman filter. This idea has been used, for instance, in
maneuvering target tracking [34].

B. Development of the Tracking Algorithm

An importance density employing the three refinements de-
scribed above will now be developed. Since the target number is
assumed known and fixed in this section it is not included in the
state vector so that . Let denote the position elements
and the velocity elements of the th target, . The
dynamic equation (2) for the th target can then be expanded as

(14)

(15)

where . Since (14) and (15) form
a linear/Gaussian stochastic dynamic system with (15) the
“process” equation and (14) the “measurement” equation,
the distribution of conditional upon the position trajec-
tory is Gaussian and can be found exactly using
the Kalman filter (KF). Equations (14) and (5) form a non-
linear/non-Gaussian stochastic dynamic system in which the
distribution of conditional on cannot be found exactly
but instead must be approximated. This suggests decomposing
the JMPD of as

(16)

The densities can be
computed using the KF and can be approxi-
mated using a PF. The posterior density of the velocity elements
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can be computed using well-known recursions after allowing for
the dependence between and [35]. The details are omitted
for the sake of brevity.

The PF approximation to the JMPD of the target positions at
time is represented by the particle set .
Note that for reasons that will be
explained below. With these weightings, the particle set can be
considered to approximate the JMPD as

(17)

where, for

otherwise
(18)

with denoting Dirac’s delta function. In this section, where the
number of targets is known, reduces to Dirac’s delta in (17).
The PF approximation to the JMPD at time can then be found
as

(19)

The PF seeks a set of samples from (19). In the case of MTT, it
is desired to increase the efficiency of the sampling process by
separating the targets into clusters based on the predicted po-
sition of each target. Using the notation established previously,
the indices of the targets in the th cluster are contained in .
The th particle is composed of clusters .
The basic idea is to construct particles at time from target clus-
ters that belonged to different particles at time . This is
suggested by the factorization (13) and results in a significant
decrease in computational expense, particularly if the number
of targets in the largest cluster is much smaller than the total
number of targets. Since (13) is approximate a weighting ad-
justment is required when clusters from different particles are
combined to form the reconstructed particles. This weighting
adjustment is derived below.

The process of constructing particles by collecting clusters
from several particles is equivalent to sampling from

(20)

where is the index of the par-
ticle from which the th cluster will be selected and

is the collection of particle positions at time .
This is similar to the formulation of the auxiliary PF in which
an auxiliary variable is used to aid selection of the best particles
[36].

Sampling from (20) is performed through an importance den-
sity, which factorizes as

(21)

where . The importance density for the th
cluster is taken to be

(22)

where is the probability of selecting the th cluster from the
th particle. The trajectory should be interpreted

to mean the collection of trajectories of positions in the cluster
at time . A draw from (22) consists of selecting a particle

index from according to the weights
and then drawing from the JOID conditional upon the position at
time of the selected particle. The weights can
be chosen arbitrarily although proper setting of these weights
is necessary to ensure that the best clusters are selected for in-
clusion in the reconstructed particles. The most sensible choice
seems to be the usual OID weight update [22]

(23)

The benefit of using (23) will become clear when the weight
update for the reconstructed particle is considered.

In the following, working expressions for the JOID and the
weights (23) are derived. Assume a cluster of targets and let

denote the collection of target positions and
denote a trajectory of positions for these targets

from time 0 to time . Using Bayes’ rule, the JOID can be
written as

(24)

Let and denote the posterior
mean and covariance matrix of the velocity of the th target con-
ditional on the position trajectory. The transition density for the
target positions can be found as

(25)

where and
with the process noise covariance matrix for the position
elements.

Since the value returned by a particular cell depends directly
on the number of targets occupying that cell, the likelihood can
be found by expanding over all possible occupation configura-
tions. Let denote measurement cells in the
neighborhood of the position of the th target. The neighborhood
can be thought of as the collection of cells which the target could
possibly occupy. Let denote the region of mea-
surement space occupied by the th measurement cell. These
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Fig. 1. A measurement grid of J = 20 cells for a two-dimensional surveil-
lance region occupied by one target. The region of space occupied by cell 2 is
indicated by the solid shaded area, denoted as V . The regions occupied by the
other measurement cells are similarly labeled. The predicted target position is
indicated by a cross with the neighborhood of the target indicated by the di-
agonally shaded area. The indices of the cells forming the neighborhood are
collected into M = f13; 14; 18; 19g. Note that the neighborhood can poten-
tially contain several cells due to uncertainty in the predicted target position, as
determined by the process noise and the uncertainty in the velocity elements.

quantities are depicted in Fig. 1 for a two-dimensional surveil-
lance region. The likelihood conditional on the target cluster can
be expanded as

(26)

where if and zero otherwise and

(27)

with the number of distinct cell indices in
the distinct cell indices, and the mul-

tiplicities of the distinct cells. For the Rayliegh-distributed
measurement model used here the cell measurement likelihood

is given by (6) for nonthresholded measurements and (7)
for thresholded measurements. The JOID can be found by
substituting (25) and (26) into (24) to obtain

(28)

where

(29)

(30)

(31)

with

(32)

It can be seen from (28) that the JOID is a mixture of truncated
Gaussian distributions. Each component can be interpreted as a
hypothesis on the cell locations of the targets in the cluster.
The components are weighted according to the chances of each
target moving to its assigned cell as determined by the received
measurements and the assumed model for the target dynamics.
A draw from (28) can be made by selecting a mixture compo-
nent using the probabilities of (29) and then drawing each target
position from the appropriate truncated Gaussian distribution.

In this paper, the collection of cells forming the neighbour-
hood of the th target is defined as

(33)

where is a small, predefined lower bound. The number of cells
in , and hence the computational expense, will obviously de-
crease as is increased. However, feasible target destinations
may be ignored if is too large. In this paper, is
used as an acceptable compromise between these conflicing re-
quirements.

The weights (23) are given by the normalization factor for the
JOID, which can be found as

(34)

It remains to compute the weight adjustment for the recon-
structed particles. Since reconstructed particles contain target
clusters originating from different particles the weight of a par-
ticle at time will have no connection to the reconstructed
particle at time . The reconstructed particles must therefore
be resampled at each time-step so that for

. Let denote the particles
drawn for the th target cluster. The weight of the th particle
can be found, by substituting (21), (22), (23), and (20) into (11),
as

(35)

Resampling based on is performed in order to ob-
tain an evenly weighted particle set, i.e., for

. It follows from (13) that for a sufficiently large clus-
tering threshold , a large number of distinct particles will be
selected so that particle duplication is minimized. Equation (35)
also motivates the choice of weighting given in (23) since any
other choice will not have the property that uniform weights are
obtained for a sufficiently large clustering threshold. This im-
plies that other weighting choices do not select the best clusters
for reconstruction.

The joint likelihoods required in (35) can be computed using
(26) with a singleton containing the cell oc-
cupied by the th target at time . Note that the computational
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expense of computing the joint likelihood does not increase ex-
ponentially with the number of targets as it is only necessary
to consider the given target positions at time . This is not true
of the sampling procedure, as can be seen from (28), because
there it is necessary to consider possible target locations at time

given the target locations at time .

C. Selecting the Clustering Threshold

The performance of an importance sampling scheme is
heavily influenced by the variance of the weights with a low
variance required for good performance [37]. In the MTT filter
described above there are two sets of weights to consider: the
first-stage weights defined in (23) and second-stage weights
of (35). Under given conditions, the variances of these two
sets of weights are determined by the clustering threshold. In
particular, the first-stage weights have a low variance when the
clustering threshold is small so that only small numbers of tar-
gets are sampled jointly. Conversely, the second-stage weights
will have a low variance when the clustering threshold is large
so that the factorization (13) is satisfied. In this section, the
variances of the first- and second-stage weights are examined
with a view to determining a clustering threshold that balances
these conflicting requirements. The relevant derivations have
been omitted for the sake of brevity but can be found in [38].

The weights variances are examined for a scenario containing
ten targets moving in a plane at a time at which there are sev-
eral targets in close proximity. The configuration of the targets
is given in Fig. 2(a). This is a snapshot taken at time 648 of the
scenario described in Section IV-D. The SNR is 6 dB, measure-
ments are thresholded to give a false alarm probability of 0.01
and the grid size is 100 m 100 m. Particles for each target
are distributed in a small region about the true target position.
The sample size is 50 particles. For a clustering threshold that
separates the targets into clusters, there will be first-stage
weight variances. The product of the first-stage weights vari-
ances is used as an overall measure of the first-stage weights
variances and will be referred to as the first-stage weight vari-
ance for convenience. In the top part of Fig. 2(b), the weight
variances are plotted on a log scale against clustering threshold
with the first- and second-stage weight variances shown as solid
and dashed lines, respectively. Shown on the lower part of the
same figure is a measure of tracking performance plotted against
clustering threshold. Tracking performance is measured by the
mean number of targets in track throughout the surveillance pe-
riod, as described in Section IV-D. This is computed for each
clustering threshold over 100 realizations.

Initially, for , no clustering is performed so that targets
are processed individually. This is seen to result in a negligible
first-stage weight variance and a very large second-stage weight
variance. As the clustering threshold increases, the factorization
(13) becomes increasingly valid and the second-stage weight
variance decreases. At the same time the cluster sizes increase
causing an increase in the first-stage weight variance. A final,
large decrease in the second-stage weight variance is obtained
for . This decrease corresponds to the addition of target
6 to a cluster containing targets 3, 4, and 5. Further increases in
the clustering threshold will cause an increase in the first-stage

Fig. 2. Ten target scenario for examining the effect of clustering on perfor-
mance. (a) Configuration of targets at time 648. (b) Top plot shows the variances
of the first-stage (solid line) and second-stage (dashed line) weights at time 648
plotted against clustering threshold. The bottom plot shows the mean number
of targets tracked plotted against clustering threshold.

weight variance with no compensating decrease in second-stage
weight variance.

The link between weights variance and performance is
clearly evident from the bottom part of Fig. 2. Performance
is largely determined by the second-stage weights variance
although increases in the first-stage weights variance for large
clustering thresholds do have some impact on performance.
The best performance is achieved for clustering thresholds in
the range . A clustering threshold in this range
provides excellent performance with only a small increase
in computational expense compared to a threshold of zero.
Note that the performance obtained for a clustering threshold
of zero is that achieved by a procedure that draws samples
independently for each target, as in [17]. The significant per-
formance benefits of joint sampling over independent sampling
are clearly evident.
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Fig. 3. Simulation scenario: (a) target trajectories with positions at time zero
indicated by crosses and periods in which multiple targets are in close proximity
highlighted and (b) the largest cluster size for the true target positions plotted
against time for a clustering threshold of 250.

D. Simulations

The scenario considered here involves ten targets moving in
a two-dimensional region of size 5500 m 5500 m for 1000
time-steps of 1 s each. The target trajectories belong to ground
vehicles involved in an exercise at the U.S. Army’s National
Training Center. A plot showing the target trajectories for the
entire surveillance period is given in Fig. 3(a). Target positions
at time zero are indicated by crosses and time-steps at which
multiple targets are in close proximity are highlighted. The ob-
servation region is divided into 100 m 100 m cells with mea-
surements generated from the target trajectories according to the
thresholded measurement model described in Section II. Monte
Carlo realizations are obtained by generating independent mea-
surement sequences from the same set of target trajectories. The
filter uses the dynamic model (2) with process noise covariance
matrix

(36)

This process noise attempts to accommodate the actual target
behavior which contains periods of constant velocity motion in-
terspersed with sudden accelerations and move–stop–move be-

havior. The initial distribution for the th target is ,
where is the true state of the th target at time zero and

(37)

The sampling procedure of Section IV-B is applied with a
clustering threshold of 250 m. Since the complexity of a mul-
tiple target tracking problem generally increases as the number
of targets in close proximity increases it is of interest to examine
the degree of closeness implied by this clustering threshold.
Based on the true target positions, the largest cluster size at each
time-step using a clustering threshold of 250 m is plotted in
Fig. 3(b). It can be seen that multiple targets are in close prox-
imity for much of the time with as many as four targets forming
a cluster. The cluster sizes used by the filter may differ since
clustering is performed based on estimated target positions.

The reliability and tracking accuracy of the algorithm are
measured in the performance analysis. Assume that Monte
Carlo measurement sequences are generated from target tra-
jectories of length time-steps to assess algorithm performance.
Let denote the
position estimate of the th target on the th realization at time .
Reliability is measured by the mean number of targets in track
averaged over all time-steps and all realizations. This statistic is
computed as

(38)

where is a threshold. The root mean square (RMS) position
error averaged over targets that are deemed to be in track at
each time-step is also computed. The idea here is to capture
the tracking accuracy by considering only those targets that the
filter is actually following. Let

denote the set of time-steps at which the th
target is in track on the th realization. The tracking accuracy is
then measured by

(39)

Good tracking performance requires both reliability, i.e., the
filter should not “lose” the targets, and accuracy, i.e., filter es-
timates of the targets being tracked should be close to the true
values.

In the following analysis 100 realizations are used for
several values of the SNR and detection threshold. The detec-
tion threshold is characterized here by the probability of reg-
istering a detection in a cell occupied by one target. This will
be referred to as the detection probability and denoted as
although it should be kept in mind that it is actually the single
target detection probability. The results are given in Tables I and
II for SNRs of 10 and 5 dB, respectively. The
false alarm probabilities for each case are computed using (7)
as . The threshold is set to 150 m. The results
indicate that good tracking performance, in terms of both relia-
bility and accuracy, is achieved for both SNRs considered here.
Importantly, this performance is achieved using sample sizes
of no more than 500 particles. This implies a computational
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TABLE I
PERFORMANCE OF THE PROPOSED ALGORITHM AT AN SNR OF 10 dB

TABLE II
PERFORMANCE OF THE PROPOSED ALGORITHM AT AN SNR OF 5 dB

tractability which would permit real-time tracking of multiple
targets. For instance, with a sample size of 500 particles, the C
implementation of the algorithm takes 0.18 s to process a set
of measurements on a Pentium IV with a 2.4-GHz processor.
Note that although reasonable accuracy is obtained with small
sample sizes, the reliability of the filter is significantly worse
than that obtained with larger sample sizes, particularly for the
lower SNR.

It can be seen that, provided the filter has a target in track,
the accuracy is only marginally affected by SNR, detection
threshold or even sample size. The factor most influencing
performance is then the ability of the filter to maintain track on
a target, referred to here as reliability. As expected, a decrease
in SNR causes the reliability of the algorithm to deteriorate.
This decline is most apparent when using smaller sample sizes.
The choice of detection threshold appears to depend on both the
SNR and the sample size. The optimum detection threshold, in
the sense that it maximizes the reliability, increases as the SNR
increases. The degree to which the optimum detection threshold
depends on SNR increases as the sample size decreases. For
the SNRs considered here, increases in the sample size beyond
500 provide only marginal improvements in either reliability
or accuracy.

V. TARGET TRACKING AND DETECTION FOR AN UNKNOWN

NUMBER OF TARGETS

In this section, MTT is considered for the general case where
the number of targets is unknown and/or time varying. As dis-
cussed in Section III, the JMPD provides a framework for gen-

eral MTT. The previous section demonstrated that, for the case
of a known number of targets, the JMPD can be approximated
in a computationally efficient manner using a carefully designed
PF. The aim of this section is to build on this design to develop
an efficient procedure for approximation of the JMPD when the
number of targets is unknown.

Numerical approximation of the JMPD is much more diffi-
cult when the number of targets is unknown. The state variable
is now the extended multitarget state , which re-
sides in the space with . Efficient par-
ticle proposals are essential for computationally feasible explo-
ration of this space. The approach taken here will be to extend
the idea of measurement-directed particle proposals to ensure
that particles with the correct target number are proposed with
high probability. Intuitively, if the target number element of

is correct, then the procedure of Section IV will ensure ef-
ficient exploration of the space . Before proceeding with
the design of the PF, it is necessary to formulate a model for the
time evolution of the extended multitarget state .

A. Development of the Transition Model

The transition density for the extended multi-
target state can be written as

(40)

The two terms in the product (40) will be considered separately
in the following development. These terms are referred to as
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the target number and the target state conditionals, respectively.
These terms are derived under the following assumptions: a) At
each time-step at most one target may arrive in each unoccupied
cell, b) targets depart only from occupied cells, and c) target
arrivals and departures are independent.

1) The Target Number Conditional: A change in the target
number of can be achieved through the removal of targets
and the addition of targets. Thus, using the total probability
theorem, the target number conditional can be expanded as

Pr

Pr targets are removed

Pr targets are added (41)

The probabilities Pr targets are added and Pr targets
are removed are determined from prior arrival and removal
probabilities. Let denote the number of cells in the measure-
ment region. At time is the set of cells in
which new targets can be added. This could be, for instance,
the set of cells that are not occupied by existing targets. The
number of elements of will be denoted . Let
denote the prior probability of adding a target in the th cell
at time and denote the prior probability
of removing the th target at time . These spatially varying
priors can be used to encode domain specific knowledge, e.g.,
that targets tend to arrive or leave around the boundaries of the
surveillance region.

For a set of integers , let

denote the th combination of integers from . Also, if
, let denote the th selection

of integers from . Equation (41) can then be written explic-
itly as, for

Pr

(42)

where is the probability of adding targets in the th combi-
nation of cells from and is the probability of removing
the th combination of targets. These probabilities are given
by

(43)

(44)

2) The Target State Conditional: The second term in (40)
is the transition for the multitarget state conditional on target
number. Notionally, this can be expressed as a product of mix-
ture densities

Pr removing these targets

transition of remaining targets

Pr adding in these cells

initial dist. of targets in these cells (45)

Equation (45) allows for a degree of flexibility regarding the
initial velocities and placement of new targets within cells. In
the following a specific distribution for the within cell distri-
bution of new targets is used. It is assumed that, given a new
target has appeared in a particular cell, its position within that
cell is uniformly distributed. Let U denote the density of a uni-
formly distributed random variable over the region . The prior
density for the velocity elements will remain unspecified and is
denoted . Let and for

, let be the collection of target states
excluding targets with an index in . Equation (45) then be-
comes

(46)
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where

(47)

Equation (46) is a mixture density with components weighted
according to the prior arrival and removal probabilities. Com-
paring (45) with (46), it can be seen that, if targets are to be
removed, the probability of removing a particular combination
of targets is given by where indexes the possible combina-
tions. The states of persistent targets evolve according to the as-
sumed dynamic model, as given in (2). Similarly, given that
targets are to be added, the probability of adding the targets in
a particular combination of cells is determined by where

indexes the possible combinations. For a particular combina-
tion of cells, the positions of the new targets are uniformly
distributed in the given cells and the velocities are distributed
according to . The transition density for can be found by
substituting (42) and (46) into (40).

B. A Measurement-Directed Proposal Scheme

A straightforward PF implementation that draws proposals
from the prior (40) will perform poorly, particularly if little prior
information is encoded in the addition and removal probabili-
ties. For instance, if the addition probabilities are uniform across
the observation region sampling from (40) will result in many
targets being initiated in areas of no interest. Even if reasonably
useful prior information is available, measurement-directed re-
moval and addition of targets can only enhance efficiency.

The key idea in our development of a tractable PF for inte-
grated target detection and tracking is that of an existence grid.
For each cell in the surveillance region, the existence grid pro-
vides a measure of the chances that a target is located in that
cell, denoted as in cell at time . The existence grid is not in-
tended to be composed of the probabilities that a target exists in
each cell. To compute such a grid is a goal of the tracking filter.
The purpose of the existence grid is to act as a prop in achieving
this goal. The following simplifications are used in the compu-
tation of the existence grid: a) Each cell is maintained indepen-
dently of the surrounding cells. The time evolution of the exis-
tence grid therefore considers only the arrival and departure of
targets in each cell according to the prior model for these events.
It does not consider the movement of existing targets from one
cell to another. b) The existence grid is concerned only with
whether there are one or zero targets in each cell. With these
simplifications the existence grid is computationally simple to
maintain while providing some indication of the interesting re-
gions of the measurement space.

Maintenance of the existence grid is performed as follows.
Each cell is initialized with a prior existence probability

, which may vary spatially if prior information justifies.

The predicted probability of target existence in a cell is found
using the total probability theorem. Expanding over the events
that a target leaves or enters the cell gives, for

(48)

where is the probability a new target appears in cell at time
, and is the probability a target leaves cell at time . When

new measurements become available, the existence grid is
updated using Bayes’ rule to give

(49)

where is the number of targets occupying cell at time .
Under the measurement-directed proposal scheme, each par-

ticle receives a new target in cell at a rate dictated by rather
than at the nominal rate . Particles are used more efficiently as
new targets are added only in areas deemed suitable by the mea-
surements. Similarly, targets are removed at the rate dictated by

rather than the nominal rate given by . This prevents unnec-
essary removal of targets which are supported by the measure-
ments. This particle proposal procedure is expressed explicitly
in the following importance sampling version of (42):

(50)

for , where and are generated from
the existence grid as

(51)

(52)

with

(53)

where denotes the cell oc-
cupied by the th target. Note that the importance density for
the target number, (50), is structurally identical to the transi-
tion density for the target number (42). However, the importance
density uses the existence probabilities rather than the prior ar-
rival and removal probabilities to weight the transitions in target
number. This permits the measurements to influence sampling
of the target number.
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For , let be the collection of target
positions excluding targets with an index in . The importance
density for the target positions conditional on target number can
be found by analogy with (46) as

(54)

where

(55)

The importance density (54) has the same structure as the tran-
sition density (45). However, mixture components in the impor-
tance density, which correspond to the different ways of adding
and removing targets, are weighted according to the existence
probabilities and the states of persistent targets are drawn from
the JOID rather than the prior target dynamics.

The weight update implied by this choice of importance den-
sity can be found by introducing the auxiliary variables and

which are indices on the number of targets to be removed,
the combination of targets to be removed and the combination
of targets to be added, respectively. Using (25), (42), and (46),

the transition density for the position elements of the extended
multitarget state with these auxiliary variables is

(56)

A similar equation can be obtained for the importance density:

(57)

Substituting (56) and (57) into (11) gives the weight update
factor for the importance density that uses the JOID for per-
sistent targets and the measurement-directed method of adding
and removing new targets as

(58)

where are the clusters of positions of the persistent
targets .

A summary of the integrated tracking and detection algorithm
is given in Table III. The main issue in the computer imple-
mentation is the maintenance of target correspondences between
particles. The convention that all particles which initiate a target
in a particular cell at a particular time are initiating the same
target is adopted. If a new target is initiated in any particle, a new
partition is added to all particles. Particles in which this target is
added will place the proposed initial state in this partition while
particles which do not initiate this target assign a placeholder
to this partition. A given partition then corresponds to the same
target in all particles so that state estimates, required for clus-
tering, can be obtained. If a partition is empty in all particles it
is removed. This procedure corresponds to adding a set of labels
to the extended multitarget state. Given labels for each particle,
denoted by for the th particle, and assuming a maximum of

targets at time , the th target state is estimated at time as
(59), shown at the bottom of the page, where
contains the indices of particles that contain the th target. The

E exists
Pr exists

Pr exists

(59)
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TABLE III
PROPOSED ALGORITHM FOR DETECTION AND TRACKING OF MULTIPLE TARGETS

procedure is applied with equal to the total number of dis-
tinct targets proposed across all particles.

C. Simulation Results

The detection and tracking algorithm is tested using the sce-
nario described in Section IV-D and illustrated in Fig. 3. Mea-
surements are generated using the thresholded model described
in Section II. No prior knowledge of the number of targets or
their locations is assumed. Targets are observed for 250 time-
steps of 1 s.

Target velocity is initialized as follows. When a target
is added to a particle, draw two integers such that
Pr for and then select the initial
distribution of the target velocity to be . The
arrival and removal probabilities are assumed to be spatially
and temporally constant and are set to and ,
respectively. The single target detection probability is set to

so that , where is the SNR.
The performance of the algorithm is measured by the mean

number of true and false targets in track at each time-step.
Specifically, let denote the total number of distinct targets
across all particles at time and

(60)

where is the collection of particle indices in
which the th target exists. The quantity can be interpreted as
the probability that the th partition belongs to an actual target
at time . In the following analysis, the th partition is said to
belong to a target if where is a user-defined
threshold. Let denote the set
of presumed targets. For , state estimates are computed as
shown in (59). These estimates are matched up with the ground

truth to determine which of the presumed targets are true targets
and which are false targets. A presumed target is said to be a
true target if its position estimate lies within 150 m of the actual
target position. At most one presumed target can be matched to
each true target.

Fig. 4 shows the average number of true and false targets
plotted against time for sample sizes from 25 particles to 500
particles with an SNR of 10 dB. The filter is quick to estab-
lish tracks on all targets for all sample sizes considered here. In
particular, less than 15 time-steps are sufficient to achieve true
target averages of close to ten. Variations in sample size mainly
affect false track discrimination. For a sample size of 25 parti-
cles the average number of false targets considered across the
surveillance period is never less than one and reaches as high
as 3.5. Performance improves considerably as the sample size
increases so that the average number of false tracks is less than
0.2 for most of the surveillance period when 500 particles are
used. The slight dip in performance between times 150 and 200
corresponds to a period of time where two targets occupy the
same detection cell. This drop in performance may be attributed
to the subtlety with which the thresholded measurement model
indicates the presence of multiple targets in a single cell. This
information will be reflected only in that detections will be reg-
istered in a cell containing multiple targets with a higher proba-
bility than if only one target occupied the cell. It appears that
larger sample sizes are required to resolve the difference be-
tween these two situations. The use of a nonthresholded mea-
surement model or the incorporation of the sensor management
techniques of [31] may enable the difficulty to be resolved with
a smaller sample size.

Fig. 5 shows the average number of true and false targets
plotted against time for SNRs from 4 to 10 dB with a sample
size of 200 particles. It can be seen that variations in SNR mainly
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Fig. 4. Number of true and false targets detected by the proposed algorithm
plotted against time for sample sizes from 25 particles to 500 particles. The ar-
rival and removal probabilities were assumed spatially and temporally invariant
and set at � = 0:02 and � = 0:005, respectively. The SNR is 10 dB.

effect the number of true targets detected. The false track dis-
crimination is remarkably constant across the range of SNRs
considered here. Excellent performance is achieved for SNRs
greater than 8 dB with only a small drop in performance evi-
dent for a SNR of 6 dB. Even so, the results achieved for an
SNR of 4 dB are quite good when it is considered that a single
target detection probability of 0.5 results in a false alarm prob-
ability of 0.088 at this SNR. Significant improvements can be
expected with larger sample sizes, particularly for small SNRs.

VI. CONCLUSION

A procedure based on approximation of the joint multitarget
probability density was proposed for simultaneously detecting
and tracking multiple targets. Approximation of the joint mul-
titarget probability density is achieved by an efficient particle
filtering scheme. The key elements of the filter design are clus-
tering of targets based on position, joint sampling for targets

Fig. 5. Number of true and false targets detected by the proposed algorithm
plotted against time for SNRs from 4 to 10 dB. The arrival and removal prob-
abilities were assumed spatially and temporally invariant and set at � = 0:02

and � = 0:005, respectively. The sample size is 200 particles.

within clusters and measurement-directed placement of new tar-
gets and removal of existing targets. Simulation results attest to
the performance of the proposed algorithm in a variety of condi-
tions. The performance analyses were performed using a mea-
surement model in which continuous-valued intensities gener-
ated in each cell of the surveillance region are thresholded to
produce either a one, indicating the presence of a target/s, or
a zero. The thresholded measurement model presents a more
challenging tracking environment than the nonthresholded mea-
surement model since a loss of information is incurred when
thresholding is performed. Preliminary results indicate that sig-
nificantly improved results are obtained using nonthresholded
measurements.

Although we believe that the general formulation used here
is applicable to a range of target dynamic and measurement
models, some modifications specific to the particular models
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under consideration would be required. Adaptation of the pro-
cedure to models of practical concern other than those used here
would be of interest.

The arrival and removal probabilities required for the transi-
tion model of the extended multitarget state will, in many cases,
have only a partial physical interpretation in the sense that the
use of any available physical knowledge will not necessarily re-
sult in the best possible performance. Rather, the physical rate
of target arrival acts as a nominal level about which the arrival
probability parameter can be varied in order to improve per-
formance. Similarly for the removal probability parameter. The
natural question is then how to select these tuning parameters.
The authors have noted that, within the range of values which
may be deemed suitable, significant variations in performance
arise. The possibility of selecting these parameters in a manner
that is in some way optimal is well worth exploring.

The computational expense of the algorithm is essentially
determined by the number of targets in the largest cluster. This
suggests that the computational tractability of the algorithm
should scale well in the number of targets, provided that large
numbers of targets are not clustered together. If large num-
bers of targets are in close proximity computational expense
can be reduced by either reducing the clustering threshold
or increasing the neighborhood threshold. The deficiencies
of the former alternative have been well documented in this
paper. Although the latter alternative has not been investigated
in depth by the authors, preliminary results suggest that the
neighborhood threshold can be made reasonably large without
affecting performance. Further investigation of the effect of
varying the neighborhood threshold as a means of reducing
computational expense is warranted.

The proposed algorithm allows only one target to be initi-
ated in a measurement cell. This imposition is motivated by the
subtle manner in which the sensor conveys target number infor-
mation in each cell. A topic for future work will be to extract
this information from the sensor returns and permit the initia-
tion of multiple targets in a single measurement cell.
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