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multiple overall goals.

By Christopher M. Kreucher, Alfred O. Hero, III, Fellow IEEE,

Keith D. Kastella, and Mark R. Morelande

ABSTRACT | This paper addresses the problem of sensor

management for a large network of agile sensors. Sensor

management, as defined here, is the process of dynamically

retasking agile sensors in response to an evolving environ-

ment. Sensors may be agile in a variety of ways, e.g., the ability

to reposition, point an antenna, choose sensing mode, or

waveform. The goal of sensor management in a large network

is to choose actions for individual sensors dynamically so as to

maximize overall network utility. Sensor management in the

multiplatform setting is a challenging problem for several

reasons. First, the state space required to characterize an

environment is typically of very high dimension and poorly

represented by a parametric form. Second, the network must

simultaneously address a number of competing goals. Third,

the number of potential taskings grows exponentially with the

number of sensors. Finally, in low-communication environ-

ments, decentralized methods are required. The approach we

present in this paper addresses these challenges through a

novel combination of particle filtering for nonparametric

density estimation, information theory for comparing actions,

and physicomimetics for computational tractability. The effi-

cacy of the method is illustrated in a realistic surveillance

application by simulation, where an unknown number of

ground targets are detected and tracked by a network of

mobile sensors.

KEYWORDS | Information theory; joint multitarget probability

density; multiplatform sensor management; multitarget track-

ing; particle filtering

I . INTRODUCTION

Large networks of inexpensive sensors provide a means for

performing persistent and ubiquitous surveillance over a

wide region. Such networks have found use in diverse
areas including habitat monitoring, the biomedical arena,

industrial robotics, and defense. In this paper, we address

the problem of managing the resources of a network

consisting of a large number (tens to thousands) of agile

sensors. Agility, as defined here, refers to any property of a

sensor that can be dynamically tasked so that the network

of sensors will be better able to perform surveillance on a

region. In the general case, each sensor in the network is
capable of a variety of actions, including where to move,

which direction to emit energy, what mode to use, what

waveform to transmit (if active), or which direction to

listen (if passive). The goal of network sensor management

is to develop a methodology where each node in the

network adjusts its behavior dynamically so that the overall

utility of the network is maximized.

Sensor management in large networks is challenging
for a host of reasons. First, the state space required to

characterize the region under surveillance is typically of

extremely high dimension and is poorly represented by a
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parametric form (e.g., a Gaussian or a sum of Gaussians). It
is this state space that the network of nodes is to estimate,

so proper mathematical formulation and efficient algo-

rithmic implementation is key. Second, the sensor

network must simultaneously address many competing

goals (e.g., detection of new areas of interest and

monitoring known areas of interest), so the scheduling

metric must be suitably chosen to appropriately balance

between these goals. Third, exact maximization of overall
network utility is intractable as the number of actions

available to the network at each decision epoch is ex-

ponential in the number of nodes and the number of

actions each node can take. Therefore, a principled ap-

proximation to simultaneous multiplatform scheduling

must be employed. This method must be robust and, while

not solving the joint optimization problem exactly, en-

courage collaboration between sensor nodes in the manner
that joint optimization would if it were practical to

implement. Fourth, there must be information sharing

between the individual sensor nodes (or the nodes and a

central controller) so that the sensing workload is ap-

propriately divided up amongst the collection of sensors.

Information collected by the individual nodes must be

fused (either centrally or at each node individually) to

yield a single picture that characterizes the knowledge of
the system under surveillance. This fused picture must

then drive the actions of the sensors at the next decision

epoch.

In this paper, we describe a method of scheduling the

nodes in a large agile network that addresses each of the

challenges outlined above. This method is a novel com-

bination of adaptive importance density particle filtering

for nonparametric density estimation, information theo-
retic measures for estimating the value of possible future

actions, and physicomimetics for providing a tractable

approximation to the joint optimization. An outline of the

paper is as follows.

First, in Section II, we describe a mathematical

formulation called the joint multitarget probability density

(JMPD). This work has been reported previously [1], [2]

and is reviewed briefly here as required background
material for the following sections. The JMPD is used to

capture the estimate of the state of the surveillance area,

and is constructed on-line using statistical models of how

the surveillance area evolves coupled with statistical

models of how sensors work and actual measurements.

This method is related to the approach of others, including

Stone [3], Srivastava and Miller [4], and others [5]–[7] as

discussed in [1] and elsewhere. Our model problem
consists of a surveillance area encompassing a number of

moving ground targets. The number of targets and their

positions, velocities, and classes are unknown at startup

and (potentially) time varying from then on. The JMPD is a

single probabilistic entity that simultaneously describes

uncertainty about the number of targets, as well as the

positions, velocities, and identifications of those targets.

The JMPD is estimated on-line using a novel multitarget
particle filtering [8] technique, which relies on an

importance density specifically designed for this problem.

Others have used particle filtering approaches for multi-

target filtering, including Orton [9], Maskell [10], and

others [11]–[14].

Second, in Section III, a method of using an

information theoretic measure called the Rényi Diver-

gence for sensor management is discussed. Portions of
this work have been reported previously in [15]. The

repetition here is minimal and serves to establish the

required background and notation for the following

sections. Specifically, the quality of a proposed action

(be it moving the sensor to another location, or pointing

an antenna in a particular direction) is measured by the

amount of information that is expected to be gained by its

execution. This approach is related to that of others,
including Zhao [16], Hintz [17], Schmaedeke [18], and

others [19]–[21] as discussed in [15] and elsewhere. At

each epoch when a decision is to be made, the uncertainty

about the surveillance region (as captured by the JMPD)

is used to compute the value of each of the possible

sensing actions using an information theoretic measure

called the Rényi (alpha-) Divergence. Information theo-

retic metrics have the compelling property that different
types of information (e.g., information about the presence

or absence of targets, the position, velocity, and iden-

tification of targets) can all be compared on an equal

footing. For example, by using an information-based

approach, the value of an action that extracts information

about the class of a firm target can be compared directly

to the value of an action that is meant to search for new

targets. We restrict our attention in this paper to single-
stage (myopic) scheduling. Of course, the most general

dynamic sensor scheduling problem is a partially observed

stochastic control problem over a finite or infinite

horizon. Such problems are formulated in terms of the

information state and therefore exactly solving the result-

ing dynamic programming problem is computationally

intractable in most cases [22]. Multistage extensions to

our approach using a partially observable Markov deci-
sion process (POMDP) [23], [24] formulation and ap-

proximation techniques have been discussed elsewhere

[25], [26]. Others have used POMDP approaches with

other metrics and approximation methods for related

problems, e.g., [27]–[30].

The method of multiplatform information-based

sensor management that is the central contribution of

this paper is given in Section IV. It is shown therein that
the multiplatform optimization can be written as a sum of

single platform optimizations and a correction term. The

correction term can be explicitly written for a limiting

case of the Rényi Divergence, but it can be qualitatively

described in the general case. A physicomimetic term is

used to approximate the correction term and properly

enforce collaboration and cooperation between the large
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number of sensor nodes. Physicomimetics (or Bartificial
physics[) [31] refers to a class of approximation methods

motivated by natural physical forces, e.g., the intermo-

lecular forces of liquids. Due to the exponential explosion

in the number of possible actions the network can take at

any decision epoch, it is impractical to enumerate all

possible combinations of sensing actions for the nodes in

the network and choose the best. The physicomimetic

approach is a tractable and robust approximation that
allows each sensor to be scheduled locally while pro-

viding an impetus for working together with the other

sensors. While this does not precisely get at the globally

optimum sensor management solution, it provides a

tractable approximation with robust performance. Others

have used physicomimetic approaches for multiplatform

scheduling [32], but to our knowledge this is the first

time this approach has been combined with information
theory, and more importantly the first time this approach

has been directly related to a constrained joint informa-

tion theoretic optimization.

Fourth, we show that by having each sensor compute a

local estimate of the JMPD, the method can be employed

in a decentralized setting. Therefore, it is possible to

implement this method with no centralized controller,

where each sensor is responsible for making its own
sensor management decisions. When bandwidth is limit-

ed, only a subset of measurements may be shared among

sensors, leaving each local estimate of the JMPD sub-

optimal. However, it is shown by simulation that adequate

performance is still achieved as each sensor has a very

good local estimate of the JMPD.

Finally, we give a series of simulations in Section V

that show the performance of the method in detecting
and tracking an unknown number of moving ground

targets in a model problem. We consider large-scale

problems involving tens to hundreds of platforms

cooperating together to perform surveillance on a large

region. The simulations illustrate several key features of

the approach.

(a) The Rényi Divergence metric combined with the

JMPD estimate of uncertainty allows platforms to
trade between the competing goals of detection

and tracking, resulting in a system that performs

well under both criteria.

(b) As the amount of communication available in the

system changes, different behavior patterns

emerge from the collection of platformsV
although the platforms are always controlled by

maximization of information flow through the
network.

(c) The combination of a physicomimetic force and a

(single-platform) information seeking force, as

dictated by the joint information theoretic op-

timization, properly balances the exploitation and

exploration goals in a manner that the individual

forces themselves cannot.

II . THE JOINT MULTITARGET
PROBABILITY DENSITY (JMPD)

This section describes the JMPD and its particle filter (PF)
implementation. Our model problem focuses on using a

network of sensors to provide surveillance on a region to

determine the number and states of a collection of moving

targets in the region. The JMPD is a single probabilistic

entity that captures all of the uncertainty about a

surveillance region. This includes uncertainty about the

number of targets present in the region, as well as the

kinematic state, class, and mode of each. The JMPD is
computed recursively by fusing measurements, target

models, sensor models, and ancillary information such as

roadway and terrain elevation maps. This nonlinear

filtering approach is appropriate rather than other

methods such as the MHT [33] because it captures all

uncertainty (i.e., uncertainty about target number, kine-

matic state, and class) under one framework, and linear/

Gaussian assumptions typically do not apply in this setting.
As will be discussed in Sections III and IV, the method of

multiplatform sensor management advocated here uses

reduction in uncertainty as measured by the JMPD to drive

future sensing actions. A high level overview of this

process is illustrated in Fig. 1.

The material in this section is largely drawn from a

series of previously published papers [1], [2], [34], [35].

More detail on the formulation and implementation can
be found therein. The summary discussion here is

provided as background material necessary before intro-

ducing the main topic of this paper, multiplatform sensor

resource allocation via maximizing information flow. As

discussed in [1] and elsewhere, the JMPD approach

presented is related to the approach of others, e.g.,

[5]–[7], [36].

A. Formulation of the JMPD
Recursive estimation of the JMPD provides a means

for simultaneously estimating the number of targets and

their kinematic states by fusing models and measure-

ments. The joint multitarget conditional probability

density

p x1
k; x2

k; . . . xT�1
k ; xT

k ; Tkjz0:k

� �
¼ p x1

k; x2
k; . . . xT�1

k ; xT
k jTk; z0:k

� �
pðTkjz0:kÞ (1)

is the probability density for exactly T targets with states
x1; x2; . . . xT�1; xT at time k based on a set of past ob-

servations z0:k. We abuse terminology by calling the JMPD

pðx1
k; x2

t ; . . . xT�1
k ; xT

k ; Tkjz0:kÞ a density since Tk is a discrete

valued random variable. In fact, as (1) shows, the JMPD is

a continuous discrete hybrid as it is a product of the

probability mass function pðTkjz0:kÞ and the probability

density function pðx1
k; x2

k; . . . xT�1
k ; xT

k jTk; z0:kÞ.

Kreucher et al. : An Information-Based Approach to Sensor Management in Large Dynamic Networks

980 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



The observation set z0:k refers to the collection of

measurements up to and including time k, i.e., z0:k¼
:

fz0; z1; � � � ; zkg, where each of the zi may be a single

measurement or a collection of measurements made at

time i (e.g., a vector, matrix, or cube of measurements

from a single sensor or a concatenation of measurements

from multiple sensors made at the same time). We will

refer to measurements made at a specific time i as zi, all

measurements made from time 0 to time k as z0:k, and a

generic measurement set (either a collection of measure-
ments or a measurement at a single time) as simply z,

which will be clear by context. Furthermore, in future

sections we will also find it necessary to explicitly include

the sensing action r (e.g., the choice of sensor mode or

sensor movement) that resulted in the measurement z. In

this case, the JMPD will be more explicitly written as

pðx1
k; x2

k; . . . xT�1
k ; xT

k ; Tkjz0:k; r0:kÞ and measurement likeli-

hood will be written as pðzkjx1
k; x2

k; . . . xT�1
k ; xT

k ; Tk; rkÞ. For
simplicity, this extended notation is suppressed in the

present discussion.

Each of the single target states xi in the density

pðx1
k; x2

k; � � � ; xT�1
k ; xT

k jTk; z0:kÞ is a vector quantity. We will

typically use the 2-D target state idealization ½x; _x; y; _y

when providing concrete examples in this paper,

although the notation will be kept general until examples

are presented. In other problems where the mode is to
be estimated [37], we have used ½x; _x; y; _y;m
 and when

the class is to be estimated [38] we have used

½x; _x; y; _y; c
.
For convenience, the JMPD will be written more

compactly in the traditional manner as pðXk; Tkjz0:kÞ,
which implies that the system state-vector Xk represents a

collection of Tk targets each possessing their own state

vector. This can be viewed as a hybrid stochastic system

where the discrete random variable Tk governs the

dimensionality of Xk.
The number of targets at time k, Tk, is a variable to be

estimated simultaneously with the states of the Tk

targets. The JMPD is defined for all Tk, Tk ¼ 0 � � �1.

Therefore the normalization condition that the JMPD

must satisfy is

X1
T¼0

Z
dx1 � � � dxTpðx1; � � � ; xT; TjzÞ ¼ 1 (2)

where the single integral sign is used to denote the T
integrations required (note that we have dropped the time

subscripts here to lighten the notation). This can

alternatively be written in the shorthand notation

X1
T¼0

Z
dXpðX; TjzÞ ¼ 1 (3)

where it is understood again that T determines the

dimensionality of X and the single integral sign represents

the T integrations required.
The likelihood pðzjX; TÞ and the joint multitarget

probability density pðX; TjzÞ are conventional Bayesian

objects manipulated by the usual rules of probability and

statistics. Specifically, the temporal update of the posterior

density proceeds according to the usual rules of Bayesian

filtering. The model of how target state and target number

evolve over time is given by pðXk; TkjXk�1; Tk�1Þ and will be

referred to as the kinematic prior. The kinematic prior

Fig. 1. An illustration of the recursive state estimation and sensor management process described in this paper. In general, one performs

state estimation to capture the uncertainty about the surveillance region. Here, the state of the surveillance region is captured by the joint

multitarget probability density, which is approximated using a particular method of state estimation based on particle filtering. This estimate

is passed to a sensor management algorithm which decides what action(s) to take next. Our method of sensor management is based on a

constrained joint information theoretic optimization. This action is then executed, resulting in a measurement of the environment which

is used to update the state estimate.
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includes models of target motion, target birth and death,
and any additional prior information on kinematics that

may exist such as terrain and roadway maps. In the case

where target identification is part of the state being

estimated, different kinematic models may be used for

different target types.

The time-updated (prediction) density is computed via

the model update equation as

pðXk; Tkjz0:k�1Þ ¼
X1

Tk�1¼0

Z
dXk�1pðXk; TkjXk�1; Tk�1Þ

�pðXk�1; Tk�1jz0:k�1Þ: (4)

Note that the formulation of the time evolution of the

JMPD given in (4) makes several assumptions. First, as is

commonly done, we assume that state evolution is
Markovian. Furthermore, we assume the action at time

k � 1 does not influence state evolution, i.e., if the sen-

sing action performed at time k � 1 is denoted rk�1 then

by assumption pðXk; TkjXk�1; Tk�1; rk�1Þ ¼ pðXk; TkjXk�1;
Tk�1Þ. In some situations this assumption is not valid,

including the Bsmart[ target problem [39]. If either of

these assumptions is invalid in a particular setting, (4)

would be generalized appropriately.
The measurement update equation uses Bayes’ rule to

update the posterior density with a new measurement

zk as

pðXk; Tkjz0:kÞ ¼
pðzkjXk; TkÞpðXk; Tkjz0:k�1Þ

pðzkjz0:k�1Þ
: (5)

B. The Particle Filter Implementation of the JMPD
The sample space of the JMPD is very large since it

contains all possible configurations of state vectors

Xk ¼ fx1
k; � � � ; xTk

k g for all possible values of Tk. Thus,
for computational tractability, a sophisticated approxi-

mation method is required. This section briefly describes

our particle filter implementation with special attention

given to the adaptive importance density that allows

tracability. Measurements of the computational com-

plexity of this estimation algorithm versus number of

targets in the surveillance area on standard equipment

are given in [1].

1) Notation: In particle filtering, the probability

density of interest (here the JMPD) is represented by a

set of N weighted samples (particles). Since a particle is

a sample from the PDF of interest, here a particle is

more than just the estimate of the state of a target; it

is an estimate of the state of the surveillance region. In

particular, it incorporates both an estimate of the states

of all of the targets as well as an estimate of the number
of targets.

The multitarget state vector for T targets is simply

the concatenation of T single target state vectors (again

here the time subscript is dropped for notational

simplicity)

X ¼ ½x1; x2; � � � ; xT�1; xT
: (6)

A particle i is similarly expressed as a concatenation of

TðiÞ state estimates as

XðiÞ ¼ xðiÞð1Þ; xðiÞð2Þ; � � � ; xðiÞ TðiÞ�1ð Þ; xðiÞ TðiÞð Þ
h i

(7)

which says particle i estimates there are TðiÞ targets, where

TðiÞ can be any nonnegative integer, and in general is

different for different particles.

To formalize, let �D denote the ordinary Dirac delta,
and define a delta function between the T-target state

vector X and the TðiÞ-target state vector XðiÞ as

� X � XðiÞ
� �

¼ 0 T 6¼ TðiÞ

�D X � XðiÞ� �
otherwise.

	
(8)

Then the particle filter approximation to the JMPD is

given by a set of particles XðiÞ and corresponding weights

wðiÞ as

pðX; TjzÞ �
XN

i¼1

wðiÞ� X � XðiÞ
� �

(9)

where
PN

i¼1 wðiÞ ¼ 1.

The JMPD is defined for all possible numbers of

targets, T ¼ 0; 1; 2; � � �. As each of the particles is a

sample drawn from the JMPD, a particle may estimate

0, 1, 2,� � � targets. Here, different particles in the ap-

proximation may correspond to different estimates of the

number of targets.

2) Multitarget SIR: With these definitions, the tradi-

tional sampling importance resampling (SIR) particle filter

extends directly to filtering with the JMPD. The method is

to simply propose new particles at time k from the particles

at time k � 1 by projecting through the kinematic prior.

This kinematic model includes both the dynamics of

persistent targets (e.g., a nearly constant velocity model)

and the model of how targets enter and exit the

Kreucher et al. : An Information-Based Approach to Sensor Management in Large Dynamic Networks

982 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



surveillance region (e.g., a spatially uniform birth/death
process). Specifically, targets entering or leaving the

surveillance region are accounted for as the proposed

particle X
ðiÞ
k may have either fewer targets or more targets

than X
ðiÞ
k�1 (i.e., T

ðiÞ
k ¼ T

ðiÞ
k�1 � 1 or T

ðiÞ
k ¼ T

ðiÞ
k�1 þ 1). The

weight update when particles are proposed in this manner
is simply

w
ðiÞ
k ¼ w

ðiÞ
k�1p zkjXðiÞ

k

� �
: (10)

3) The Inefficiency of the SIR Method: The SIR particle

filter has the benefit of being simple to describe and easy to

implement. However, SIR is too numerically inefficient for

multitarget problems.
Assume for discussion that the sensor is pixelated,

returning energy in one of C sensor cells. Target birth may

occur in any unoccupied cell at any time step. Target death

may occur in any occupied cell at any time step. One

method of handling this would be to have a very large

number of particles, capable of encoding all possibilities of

the next state, i.e., no new target, one new target (in each

of the possible unoccupied cells), two new targets (in each
possible pair of unoccupied cells), etc., and likewise with

target removal. This must still retain the particle diversity

required for efficient filtering of the persistent targets.

This method requires an enormous number of particles for

successful approximation.

Furthermore, even with no birth and death, target

proposals using kinematics are too inefficient for multi-

target problems. Consider the simple case where there
are T targets in the surveillance region, and this is

known to the filter. In order for a particle to be a Bgood[
estimate of the multitarget state, all T targets must be

proposed to Bgood[ locations. Without knowledge of

measurements, the probability an individual target is

proposed to a Bgood[ location is � G 1. Therefore, as the

number of targets grows, the probability of a Bgood[
multitarget proposal becomes significantly less than one
(goes as �T). Hence, the number of particles required to

perform adequate tracking with high probability grows

exponentially.

Both of these problems are remedied via an importance

density that more closely approximates the optimal

importance density (OID) [8]. The OID is the density

that minimizes the conditional variance of particle weights

by most efficiently combining current measurements, the
kinematic prior, and the prior to direct proposals to higher

likelihood multitarget states. This is in contrast to simply

sampling from the kinematic prior, which as illustrated

above is in general very inefficient. Typically, the OID is

prohibitive to sample from exactly, but in some applica-

tions an approximate OID can be constructed, drawn from,

and any mismatch corrected precisely in the weight

update. In the following subsections, we briefly summarize
the method of approximately sampling from the OID

developed for efficient estimation in this setting. Addi-

tional detail can be found in [1], [2].

4) Importance Density Design for Target Birth/Death: In

order to reach the efficiency required for tractable

detection and tracking of multiple targets, we advocate

a measurement directed sampling scheme for target birth
and death. As described in detail in [2], the key idea in

the development of a tractable method to handle target

birth and death is an existence grid. The existence grid

contains the probability that a single target is in cell i at

time k given the measurements made up to and including

time k. Qualitatively, the existence grid describes those

regions of the measurement space that deserve attention.

The existence grid cells are initialized with a prior pro-
bability which may be spatially varying. The probability of

target existence in each cell is propagated forward via a

simple addition/removal model, and updated with new

measurements according to Bayes’ rule. In our applica-

tion, we have chosen to use a spatially and temporally

constant arrival and removal rate. These simplifications

make the existence grid computationally simple to

maintain.
To handle target birth, new targets are preferentially

proposed in locations according to the rate dictated by the

existence grid. This bias is removed during the weight

update process so that the Bayesian recursions are still

exactly implemented. This implementational technique

allows particles to be used more efficiently as new targets

are only proposedd in highly probable areas. Target death

is handled analogously.

5) Importance Density Design for Persistent Targets: The

kinematic prior does not take advantage of the fact that the

JMPD state vector is made up of individual target state

vectors. In particular, targets that are far apart in

measurement space are uncoupled and should be treated

as such. Furthermore, similar to that of the uninformed

birth/death proposal, the current measurements are not
used when proposing new particles. These two considera-

tions taken together result in an inefficient use of particles

and therefore require a large number of particles to

successfully track. Empirical results illustrating this

assertion are given in [1].

To overcome these deficiencies, we use a technique

which biases proposals towards measurements and allows

for factorization of the multitarget state when permissible.
These strategies propose each target (or cluster of coupled

targets, as will be clarified later) in a particle separately,

and form new particles as the combination of the proposed

clusters. We describe the use of two sample-based methods

here, the independent partitions (IP) method of [9] and

the coupled partitions (CP) method. The basic idea of both

CP and IP is to construct particle proposals at the target
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(or group-of-targets) level, incorporating measurements to
bias proposals toward the optimal importance density. This

bias is removed in the weight update stage, and therefore

the Bayes recursions are still exactly implemented. We

advocate an adaptive partition (AP) method which per-

forms a clustering on targets and automatically switches

between the two methods as appropriate. Finally, we

mention an improved method of target (or group-of-

targets) proposal that is based on directly sampling from
the optimal importance density. This method is applicable

in some situations (as discussed in [2]) and has been shown

to increase algorithm efficiency significantly in those

cases. All of the methods are performed only on the per-

sistent targets, and the algorithm is done in conjunction

with the addition and removal of targets as described in the

preceding section.

The IP Method: The IP method given by Orton [9] is a
convenient way to propose particles when part or all of the

joint multitarget density factors. As employed here, the IP

method proposes a new target as follows. For a target p,

each particle at time k � 1 has its pth partition proposed via

the kinematic prior and weighted by the measurements.

From this set of N weighted estimates of the state of the pth

target, we select N samples with replacement to form the

pth partition of the particles at time k.
With well separated targets, this method allows many

targets to be tracked with the same number of particles

needed to track a single target (although the dimension of

each particle is larger). Indeed, in the case of well

separated targets, the multitarget tracking problem breaks

down into many single-target problems. The IP method is

useful for just this case, as it allows the targets to be treated

independently when their relative spacing deems that
appropriate. Note, however, that applying this method on a

target by target basis is not appropriate when there is any

measurement-to-target association ambiguity. Therefore,

when targets are close together in sensor space, an

alternative approach must be used.

The CP Proposal Method: When the posterior

distributions on target position begin to overlap, we call

the corresponding partitions coupled. In these instances,
another method of particle proposal such as CP must be

used. An alternative method would be to use the IP

strategy on groups of partitions as alluded to in [9]. As

discussed below, the CP method proposes multiple

possible future realizations for each partition (as opposed

to the IP method which proposes a single future realization

for each particle). This additional sampling fidelity can be

viewed as a better approximation to the optimal impor-
tance density than a method that simply proposes one

possible realization for each particle. In practice, we find

that the CP method provides a benefit by giving extra

computation at those points where it is most necessary.

We apply the CP method as follows. To propose

partitions p1 � � � pM of particle i, CP proposes R possible

realizations of the future state using the kinematic prior.

The R proposed futures are then given weights according
to the current measurements and a single representative is

selected. This process is repeated for each particle until the

partitions for all particles has been formed. As in the IP

method, the final particle weights are adjusted for this

biased sampling.

Adaptive Particle Proposal Method: A more efficient

method is to use a hybrid of the IP and CP method, called

the AP method [1], [34]. The AP method again considers
each target separately. Those targets sufficiently well

separated from all other targets are treated as independent

and proposed using the IP method. When targets are not

sufficiently distant, the CP method is used on those groups

(clusters) of targets that are coupled. To determine when

targets are sufficiently separated, we use filter estimate of

targets states and then perform a clustering procedure

based on distance in sensor space between the estimated
target states.

An Improvement: In certain circumstances, the

optimal importance density can be more efficiently

approximated than the sample based approach discussed

here. In particular, if target dynamics are linear/Gaussian

and measurements are made on a grid, the optimal

proposal involves sampling from a mixture of truncated

normals [2], [35]. In this case, a similar AP approach is
used wherein partitions are first separated into groups that

are uncoupled and then each group is treated by sampling

from the optimal importance density. In the most general

case, one does not have a convenient (semi-) closed form

and instead relies on the purely sample driven methods of

IP and CP as described above.

III . INFORMATION THEORY FOR
SINGLE-SENSOR MANAGEMENT

This section describes a method of sensor management

based on maximizing information flow. We focus here on

the single platform case and describe the multiplatform

case in the following section. Sensor management, as

defined here, refers to choosing the best action for an agile

sensor to take. This may include where to point, what
mode to use, or where to move. In this method of sensor

management, actions are ranked based on the amount of

information expected to be gained from their execution. In

principle, this is accomplished by computing the expected

gain in information between the current JMPD and the

JMPD that would result after taking action r and making a

measurement, for all feasible r. Then the sensor manage-

ment decision is to select the best r using expected
information gain as the metric. The method presented in

this section is generic with respect to what r representsV
i.e., r may represent the choice of a waveform, the choice

of a pointing direction, or the choice movement for the

platform (or all three).

The material in the first half of this section is largely

drawn from a series of previously published papers [15],
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[38], [40]. It provides the background and notational
conventions necessary before introducing the main topic

of this paper, multiplatform sensor resource allocation via

maximizing information flow. These references also

include measurements of the computational complexity

of the algorithms on standard equipment. The informa-

tion-based approach presented here is related to the

approach of others, e.g., [18], [19], [41] as discussed in [15]

and elsewhere.

A. The Rényi Divergence
In our approach, the calculation of information gain

between two densities p1 and p0 is done using the Rényi

information divergence [42], also known as the �-

divergence

D�ðp1kp0Þ ¼
1

�� 1
ln

Z
p�1 ðxÞp1��

0 ðxÞdx: (11)

The � parameter adjusts how heavily the metric

emphasizes the tails of the two distributions p1 and p0.

In the limiting case of � ! 1 the Rényi divergence be-

comes the commonly utilized Kullback–Leibler (KL)

discrimination

lim
�!1

D�ðp1jjp0Þ ¼
Z

p0ðxÞ ln
p0ðxÞ
p1ðxÞ

dx: (12)

If � ¼ 0:5, the Rényi information divergence becomes

the Hellinger affinity 2 ln
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1ðxÞp0ðxÞ
p

dx, which is

related to the Hellinger–Battacharya distance squared
[42] via

DHellingerðp1jjp0Þ ¼ 2 1 � exp :5D1
2
ðp1jjp0Þ

� �� �
: (13)

B. Rényi Divergence Between the Prior and
Posterior JMPD

The function D� in (11) is a measure of the divergence

between the densities p0 and p1. In our application, we

wish to compute the divergence between the prediction

density pðXk; Tkjz0:k�1; r0:k�1Þ and the updated density after
a measurement zk when taking action rk, denoted

pðXk; Tkjz0:k�1; r0:k�1; zk; rkÞ. Notice that we now include

the action taken at time k, rk, and the history of actions

r0:k�1 explicitly into the notation for clarity. This

divergence measures the amount of information that the

new measurement has provided and allows us to rank the

utility of different actions according to the information

flow they produce. The relevant divergence for our setting
is thus given by

D� pð�jz0:k�1; r0:k�1; zk; rkÞkpð�jz0:k�1; r0:k�1Þð Þ

¼ 1

�� 1
ln
X

Tk

Z
p�ðXk; Tkjz0:k�1; r0:k�1; zk; rkÞ

� p1��ðXk; Tkjz0:k�1; r0:k�1ÞdXk (14)

where the integral is interpreted as in (3).

Using Bayes’ formula applied to the JMPD (5), we
obtain

D� pð�jz0:k�1; r0:k�1; zk; rkÞjjpð�jz0:k�1; r0:k�1Þð Þ

¼ 1

�� 1
ln

1

p�ðzkjz0:k�1; r0:k�1; rkÞ

�
X

Tk

Z
p�ðzkjXk; Tk; rkÞpðXk; Tkjz0:k�1; r0:k�1ÞdXk

(15)

which shows that the ingredients to computing the
divergence are the prediction JMPD pðXk; Tkjz0:k�1;
r0:k�1Þ, the measurement likelihood pðzkjXk; Tk; rkÞ and

the received measurements zk.

C. The Expected Rényi Divergence for a
Sensing Action

To determine the best action to take next, we must in

fact predict the value of taking action rk before actually
receiving the measurement zk. Therefore, we calculate the

expected value of the divergence for each possible action

and use this to select the next action. The expectation may

be written as an integral over all possible outcomes zk

when taking action rk as

E D� pð�jz0:k�1; r0:k�1; zk; rkÞkpð�jz0:k�1; r0:k�1Þð Þ½
jz0:k�1; r0:k�1; rk


¼
Z

dzkpðzkjz0:k�1; r0:k�1; rkÞ

� D�

�
p �jz0:k�1; r0:k�1; zk; rkð Þjjp �jz0:k�1; r0:k�1ð Þ

�
:

(16)

The expectation in (16) is across the measurement

outcome zk and is to be interpreted as a conditional

expectation where the past sensor measurements z0:k�1,
past sensor actions r0:k�1, and current sensing action rk

are known.

Then the method of scheduling we advocate is to

choose the best action r̂k as the one that maximizes the
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expected gain in information, i.e.,

r̂k ¼ arg max
rk

IE D� pð�jz0:k�1; r0:k�1; zk; rkÞð½

kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1; rk
:
(17)

In practice, certain rk are infeasible. There are kinematic
constraints of the platform which make certain locations

unreachable in a single time step, including maximum

platform velocity and maximum platform acceleration.

Also there are physical constraints which prevent certain

motions, including the topology of the surveillance region

(i.e., a sensor should not collide with anything). Therefore,
we actually need the constrained optimization

r̂k ¼ arg max
rk2c

IE D� pð�jz0:k�1; r0:k�1; zk; rkÞð½

kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1; rk
 (18)

where C is the set of actions that meet both the kinematic
and physical constraints. For single-sensor scheduling,

these constraints are handled in practice by simply

removing those actions that violate the constraints from

consideration.

D. Theoretical Motivation for the Information
Gain Metric

Consider a situation where a target is to be detected,
tracked, and identified using observations acquired sequen-

tially according to a given sensor selection policy. In this

situation one might look for a policy that is Buniversal[ in

the sense that the generated sensor sequence is optimal for

all three tasks. A truly universal policy is not likely to exist

since no single policy can be expected to simultaneously

minimize target tracking MSE and target misclassification

probability, for example. Remarkably, policies that optimize
information gain are near universal: they perform nearly as

well as task-specific optimal policies for a wide range of

tasks. In this sense the information gain can be considered

as a proxy for performance for any of these tasks. The fun-

damental role of information gain as a near universal proxy

has been demonstrated both by simulation and by analysis in

[38], [43]. The key result is a bound that shows any bounded

risk function is sandwiched between two weighted alpha
divergences. This inequality is a rigorous theoretical result

that suggests that the expected information gain is a near

universal proxy for arbitrary risk functions.

E. Computational Method
When there are only a small number of actions to

choose from, application of this method is straightforward.

For each possible action, we compute the expected gain in
information as given by (16). This computation is OðMÞ
where M is the (small) number of (discrete) actions

possible for the sensor to take. Of course, each of the M
computations has complexity that scales with the number

of particles used in the particle filter approximation to the

JMPD ðNÞ and the number of targets predicted to be in the

surveillance region ðTÞ. Furthermore, when the measure-

ment z is continuous (or multidimensional), advanced
numerical techniques are required to evaluate the

expectation.

However, when the action space is continuous, simple

enumeration is not feasible. We now specialize to the case

where the action r refers to a new positioning of the

sensor (i.e., the platform is mobile and the sensor

management problem is one of deciding where to move

the platform) to illustrate control in the continuous action
setting. The new position r of the sensor is in principle a

3-D vector from the continuum IR3 specifying the ðx; y; zÞ
coordinates of the next platform position. In this sit-

uation, we use ideas from earlier works that employ

Bvirtual force[ or Bpotential field[ methods [32], [44],

[45]. In the field approach, one computes a force that

compels a sensor to move rather than explicitly calculat-

ing the value of all possible next positions and choosing
the best.

In our method, the value of a potential next position is

given by the expected information gain (16). Therefore,

the force that drives platform action in the continuous

action space case is the gradient of the information gain

field at the current location, as given by

FIðrkÞ ¼ ��rrk
IE D� pð�jz0:k�1; r0:k�1; zk; rkÞð½

kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1; rk

(19)

where � is simply a scaling constant. This force then drives
the sensor to move in the manner that maximally provides

information flow (subject to the constraints discussed

above).

IV. MULTIPLATFORM INFORMATION
BASED SENSOR MANAGEMENT

In this section, we present our method of information-
based multiplatform sensor management. The method

works by maximizing the expected information gain be-

tween the posterior JMPD and the JMPD after a new set

of measurements are made by the P platforms. It builds on

the ideas and notation developed in Section III for the

single-sensor case but now has the additional constraints

imposed by multiple sensors in a single surveillance area

(i.e., the sensors should not collide and sensors should not
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be redundantly tasked unless there is compelling reason
to do so). Additionally, it is ultimately desired to employ

the technique in a decentralized low-communication

environment so the technique should lend itself to this

setting. Some of this material has appeared in previous

conference papers [45], [46]. As mentioned earlier,

others have approached this problem from a similar

viewpoint, e.g., [19], [47].

This section proceeds by first giving the formulation of
optimal multisensor information theoretic scheduling

assuming the scheduler is centralized. This is seen to be

a joint constrained information theoretic optimization by

natural extension of the ideas in Section III, but the

constraint set has changed. Furthermore, the optimization

is now seen to be combinatoric in nature (i.e., the joint

action space grows exponentially with the number of

sensors) so relaxation is required. We next show that the
joint constrained information theoretic optimization can

be written as a sum of single-sensor optimizations and a

correction term. The correction term can be explicitly

written in a limiting case of the Rényi Divergence. The

correction term is then approximated to produce a

tractable method computationally. Finally, if we allow

each sensor to compute a local estimate of the JMPD and

use limited message passing between neighboring sensors,
we show the entire procedure can be done approximately

in a decentralized manner.

A. Optimal Multisensor Information
Theoretic Scheduling

Information theoretic scheduling for a collection of P
platforms requires choosing the set of P next-actions for

the P platforms. The formulation for the multiple platform
case can be given as a direct extension of the single-sensor

case. First, let ri
k and zi

k denote the sensing action and

measurement received, respectively, for the ith sensor at

time k. Next, let~rk and ~zk denote the sensing actions and

measurements for the P platforms at time k, respectively.

That is, let

~rk ¼ r1
k; r2

k; � � � ; rP�1
k ; rP

k

� �
(20)

and

~zk ¼ z1
k; z2

k; � � � ; zP�1
k ; zP

k

� �
: (21)

Once again, we highlight that at this point, we do not

make assumptions on what the actions ~rk are. An action

may be, for example, the choice of sensor position, the
choice of waveform to emit, the choice of pointing angle,

and so on.

By direct extension of the single-sensor approach, the
multisensor information theoretic scheduling method is to

find the sensor actions ~̂rk that maximize the expected gain

in information, i.e., choose ~̂rk such that

~̂rk ¼ arg max
~rk2c0

IE D� pð�jz0:k�1; r0:k�1;~zk;~rkÞð½

kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1;~rk


¼ arg max
~rk2c0

Z
d~ztpð~zkjz0:k�1; r0:k�1;~rkÞ

� D�

�
pð�jz0:k�1; r0:k�1Þkpð�jz0:k�1; r0:k�1;~zk;~rkÞ

�
(22)

where the integral is to be interpreted as performing the P
integrations required.

Analogously to (16), the expectation in (22) is taken

over the measurement outcomes ~zk and is conditioned on
knowing the past measurements z0:k�1, the past actions

r0:k�1, and the current action set~rk.

Note that direct computation of this quantity requires

comparison of MP possible sensing actions (in the case

where there are M discrete actions for each of the P
platforms). This is clearly not tractable for large P, and

therefore approximate techniques are required.

Note further that this is also a constrained optimi-
zation. In the multisensor case, the constraint set C0 is

expanded beyond the single-sensor constraint set to now

include both the original constraints of C and a new

constraint that sensors do not collide with each other.

That is

C0 ¼ C \ kri � rjk9d 8i; j where i 6¼ j
� �

: (23)

B. Connection to Single-Sensor Optimization
The joint optimization can be rewritten as a sum of

single-sensor optimizations plus a correction factor as

arg max
~rk2c0

XP

i¼1

IE D� p �jz0:k�1; r0:k�1; zi
k; ri

k

� ���
kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1;~rk


þ IE hð~zk;~rk; z0:k�1; r0:k�1Þjz0:k�1; r0:k�1;~rk½ 
: (24)

where the function h is an Binformation coupling[ term

which accounts for the fact (among other things) that the

gain in information for two sensors taking the same action

is not double the information gain for a single sensor
taking the action.
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In the limiting case as � ! 1, the correction term can
be written explicitly and the simplification becomes (25)

(see bottom of the page), i.e., the multisensor optimization

can be written explicitly as a sum of single-sensor

optimizations and a correction term which is simply the

expected value of the log of the joint measurement

likelihood over the product of the individual measurement

likelihoods. The proof of this statement is given in the

Appendix.
The correction term has this intuitive form related to

mutual information when the KL divergence ð� ! 1Þ is

used. It reflects the utility that other sensor measurements

provide in predicting a sensors measurement. In the

limiting case of independence, this term vanishes.

The correction term is still OðMPÞ to compute, where M
is the number of potential actions each platform could take

and P is the number of platforms, and therefore must be
approximated. Note also, that it is this correction term that

hinders distributed implementation.

C. Computational Method
The new constraint that sensors cannot collide deals

with action sets and not simply with individual actions and

so it cannot be handled by simply censoring actions that

violate the constraint. Therefore, we address this con-
straint by defining the Lagrangian

Lð~rkÞ¼IE D� pð�jz0:k�1; r0:k�1;~zk;~rkÞkpð�jz0:k�1; r0:k�1Þð Þ½
jz0:k�1; r0:k�1;~rk
 þ �fð~rkÞ

¼
XP

i¼1

IE D� pð�jz0:k�1; r0:k�1; zi; riÞ
��

kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1;~rk

þ IE hð~zk;~rk; z0:k�1; r0:k�1Þ½ 
 þ �fð~rkÞ (26)

where the function f is a term that penalizes action sets

that move the sensors too close together. The joint

optimization then becomes an unconstrained optimization

~̂rk ¼ arg max
~rk

Lð~rkÞ: (27)

This optimization can be looked at as a sum of three

terms: a collection of single-sensor optimizations, an

information coupling (or correction) term, and a collision
avoidance term.

At this point, we again specialize to the situation where

the sensor control action r refers to choosing the next

position for the sensor. With this assumption, we choose to

simultaneously approximate both the information coupling

term involving the expectation of h and the collision

prevention term f by introducing a single function which

reduces the value of action sets that involve sensors
moving close together. We have chosen to use a physi-

comimetic force [32] to provide this approximation, al-

though other similar approximations are also valid.

Evaluating this force has a very small computational

burden, and requires only that a node know the positions

of its neighbors. Different approximation methods may be

more appropriate in other settings. For example, in cases

where teams of sensors must work to interrogate a single
target one may use a second-order expansion of the in-

formation gain and a third-order correction term. If there

are additional obstacles in the region (e.g., buildings or

no-fly zones) the collision avoidance term would be

suitably modified.

We provide an empirical comparison between the

correction term (exactly computed at a small number of

points) and the Lennard–Jones force used as the approx-
imation for the correction term and the relaxation term on

a model problem in Section V-A2.

Since we remain in a continuous action space

environment, we must cast this approximation term via a

vector force as well. We use a generalization of the

Lennard–Jones potential that serves as a zeroth-order

model of the intermolecular forces of liquids [48]. The

Lennard–Jones force for a pair of platforms i; j separated by
a distance di;j is radial with magnitude

FLJðdi;jÞ ¼ �� m
	m

dmþ1
i;j

� n
	n

dnþ1
i;j

" #
: (28)

For the standard Lennard–Jones potential m ¼ 12 and

n ¼ 6, and is referred to as the B6–12 potential.[ Observe

that this is strongly repulsive as the radius between

sensors di;j gets small. The terms 	 and � are chosen based

on platform kinematic properties. The total force

platform i feels is simply the vector sum of the forces

argmax
~rk2c0

XP

i¼1

IE D� p �jz0:k�1; r0:k�1; zi
k; ri

k

� �
kpð�jz0:k�1; r0:k�1Þ

� �
jz0:k�1; r0:k�1;~rk

� �

þ IE ln
p z1

k; � � � ; zP
kjr1

k; � � � ; rP
k; z0:k�1; r0:k�1

� �
p z1

kjr1
k; z0:k�1; r0:k�1

� �
� � � p zP

kjrP
k; z0:k�1; r0:k�1

� �
 !

jz0:k�1; r0:k�1;~rk

" #
(25)

Kreucher et al. : An Information-Based Approach to Sensor Management in Large Dynamic Networks

988 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



from all other platforms. To compute the total force, a
platform need only know the positions of the other nodes;

in fact, since the force falls off so rapidly those sensors

that are much more distant that 	 have negligible effect

on the computation. Therefore, for practical purposes, a

node only needs to know the positions of nearby

neighbors.

Denote by F
i;j
LJðriÞ the vector force node i feels from

node j when positioned at ri [which is radial in direction
with magnitude given by (28)]. Then the total force

node i feels from all other nodes when positioned at ri is

simply Fi
LJðriÞ ¼

P
j6¼i F

i;j
LJðriÞ. Using this approximation

approach to the joint constrained information theoretic

optimization of (22) results in the final approximate

multiplatform optimization

~̂rk ¼ arg max
~rk

XP

i¼1

IE D� p �jz0:k�1; r0:k�1; zi
k; ri

k

� ����
kpð�jz0:k�1; r0:k�1ÞÞjz0:k�1; r0:k�1;~rk
þ�Fi

LJ ri
k

� ��
: (29)

This approximation can be viewed as driving sensors to

compute greedy actions (i.e., ignoring the actions of other
sensors) and correcting overzealous information seeking

behavior by compelling sensors to stay away from others.

These two forces are balanced through the choice of �,

which when properly chosen, allows sensors to come near

when the situation warrants (i.e., in cases where the

maximal joint utility is gained from close positioning of

sensors), while staying apart in general.

D. Distributed Implementation
Notice that the method of (29) allows each sensor to

compute its next action in a completely distributed

manner, assuming each sensor has: 1) knowledge of the

other sensors’ positions and 2) knowledge of the JMPD (or

alternatively has access to all measurements the network

has made). The first portion of (29) simply requires the

expected information gain computed at each node without
regard to the actions of other nodes. The second portion

requires only that each node know of the position of the

nearby nodes.

We are further interested here in a low-

communication version of this optimization. Therefore,

only selected measurements may be transmitted by the

network. What results in this case is that each sensor in

the network has an approximate JMPD, computed only
using locally made measurements and measurements

shared by nearby neighbors. There are many reasonable

ways a node may decide what measurements should be

transmitted to its neighbors and many reasonable ways to

define a neighborhood. In this work, we employ a method

where a node sends measurements based on the likelihood

that they originate from a target. This information is

directly calculable from the (locally estimated) JMPD by
marginalization. Furthermore, when a node transmits

measurements, it also must also share its position so that

the physicomimetic force may be computed by its

neighbor. Our simulation studies assume a Bradius of

communication[ which defines the neighborhood of a

sensor. It is assumed all sensors within the communication

radius can hear the transmission, and no sensor outside

can. This results in a nice practical situation where no
static interconnection of nodes is required. If a node does

not hear from another, it knows the other is outside of

range and therefore should have no bearing on current

decisions.

Therefore, in practice the distributed version of this

optimization works as follows. Each sensor collects

measurements at its current position. Selected measure-

ments (based on the likelihood they originate from a target
as determined by the local estimate of the JMPD) are

broadcast along with an estimate of platform position.

Those platforms within the communication radius receive

this transmission, and likewise a platform receives the

transmission from all other platforms for which it is in the

communication radius. The locally made measurements

and measurements received from neighbors are used to

update the local JMPD as described in Section II. Each
platform than computes the greedy (single-sensor) infor-

mation-based utility for future positionings and corrects

this impetus with the repulsive Lennard–Jones force. The

platform then moves and the process starts anew.

V. SIMULATION RESULTS

In this section, we present two simulation case studies that
illustrate the efficacy of the sensor management method

given in Section IV.

The first case study uses a small number (15) of very

capable platforms to provide region surveillance. This

simulation implements the decentralized version of the

algorithm by: 1) estimating the (local) JMPD at each

platform from local measurements and measurements re-

ceived from neighbors (if any) and 2) computing platform
movements by combining locally computed information

theoretic forces with locally computed physicomimetic

forces. The simulation analyzes performance in terms of

detection and tracking capabilities as a function of com-

munication radius.

The second case study focusses on a large number (as

many as 500) of platforms with very limited sensing

capabilities. For the purposes of simulation, the central-
ized version of the algorithm is used. Although simulation

of the entire decentralized algorithm is near real-time on a

per-platform basis (as would be required for implementa-

tion), simulation of 500 platforms requires significantly

longer than real-time (500 times the single platform

simulation time). The centralized algorithm is significantly

cheaper computationally, owing to the fact that only one
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JMPD must be estimated (rather than 500 separate
JMPDs). The communication burden is significantly

increased, however. This simulation illustrates surveil-

lance performance in a similar model problem, and also

compares the performance of the proposed algorithm with

an algorithm that uses only the physicomimetic force and

one that only uses the information gain force. It is shown

that the proposed algorithm, which combines these two

forces as motivated by the joint constrained information
theoretic optimization approximation, significantly out-

performs algorithms based on the constituent forces alone.

A. A Simulation With a Small Number of
Very Capable Platforms

1) Description of the Model Problem: The following

simulation uses 15 platforms with decentralized control to

provide surveillance on a large region. The model problem
uses a 5000 m � 5000 m surveillance area that contains

ten moving ground targets (the number of targets and their

positions and velocities are initially unknown). Each

sensor has an imaging sensor with a wide field of view

that provides evidence as to the presence or absence of

targets in a subsection of the region at any time. The goal is

for the network of sensors to collaborate together in a low-

communication setting so that the number of targets and
their individual states is learned as quickly and accurately

as possible.

Target trajectories for the simulation come directly

from a set of recorded data based on GPS measurements of

vehicle positions over time collected as part of a battle

training exercise at the Army’s National Training Center.

Targets routinely come within sensor cell resolution (i.e.,

cross). Persistent targets are modeled in the JMPD time

Fig. 2. Left: The model problem setup. The network is to determine the number and kinematic states of a group of moving ground targets.

Each node stares directly down making measurements of the surveillance region. The sensor management algorithm described here provides

a distributed, decentralized, low-communication method for controlling the motion of nodes over time so as to best learn the contents of the

surveillance region. Right: Each node in the network repeatedly follows the procedure of generating measurements, transmitting them to

neighbors, receiving measurements, updating its probability density, and finally computing the information theoretic and physicomimetic

forces to decide where to move next.
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evolution using a simple nearly constant velocity approach,

which is in fact mismatched to the actual targets as they

routinely perform move-stop-move and other maneuvers.
Target birth and death is modeled in the JMPD time

evolution as spatially and temporally constant.
Each platform is idealized to hover above the

surveillance region and has an imaging sensor that stares
directly down. At each time step, the imager measures
cells in the surveillance area by making measurements on a
grid with 100 m � 100 m detection cell resolution. The
model problem setup is illustrated in Fig. 2.

When measuring a cell, the imager returns either a 0

(no detection) or a 1 (detection) which is governed by a

probability of detection ðpdÞ and a per-cell false alarm rate

ðpf Þ. The sensor is modeled to have a field of view with
radius 5 cells from its center and hence measures a

circular patch on the ground. The effective SNR is

maximum at the center and falls off as r2 at the periphery.

We fix SNRmax ¼ 16 dB, pf ¼ 0:01, and use pd ¼

p
1=ð1þSNRÞ
f , which is a standard model for thresholded

detection of Rayleigh returns [49]. When there are T
targets in the same cell, the detection probability

increases according to pdðTÞ ¼ p
1=ð1þSNR�TÞ
f . Fig. 3 illus-

trates the SNR and pd as a function of distance from field

of view center.
Each platform computes a local estimate of the JMPD

using measurements it has made and measurements

Fig. 3. A description of the capability of the sensors used in this

simulation. Each sensor has a footprint on the ground of radius 5 cells.

The effective SNR is modeled to fall off as 1=r2 from the field of view

center. (a) SNR loss as a function of distance from the center of the field

of view. (b) pd as a function of distance from the center of the field

of view for SNR = 16 dB with pf ¼ :01 in the Rayleigh model.

Fig. 4. The random positioning of the 15 platforms at initialization

(top) and after some time (bottom). The platform position is given

by the blue number and its field of view is described by the circle

surrounding the number. The true position of each of the ten moving

ground targets is shown by the green numbered circles. The estimate

of the position for the targets (taken from the omniscient fuser)

is given by the red covariance ellipses. Qualitatively, after some time,

the platforms have preferentially aligned themselves over the targets

while still allocating some network resources to look for incoming

(new) targets. (a) The initial (randomly placed) deployment of

15 sensors in a surveillance region. (b) The configuration of the

sensors after 250 time steps.
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received from neighbors. Platforms then use the joint
constrained information theoretic optimization approxi-
mation described in the previous section to compute next
best movements.

Fig. 4 shows an initial (random) positioning of the
15 sensors and the position after some time. As can be seen
from the figure, over time the sensors preferentially align
themselves around the targets (which were discovered
through repeated interrogation of the ground) while still
allocating some resources to look for new targets.

2) A Comparison of the Correction Term and the
Physicomimetic Approximation: As described in Section IV,
the joint constrained information theoretic optimization
is rewritten as a sum of single information theoretic
optimizations, a correction term, and a relaxation term.
These last two terms are approximated with a physico-
mimetic term resulting in a computationally tractable
approach. In this section, we provide a comparison
between the approximation term and the correction term
in the model problem as motivation for its use.

We consider two sensors that are each able to measure
cells in the surveillance region as described above. Of
interest is the difference between the information gain for
a pair of actions ðr1; r2Þ when evaluated jointly as compared
to the sum of individual information gains (i.e., the
correction term). We can examine the discrepancy as a
function of the distance d between the platforms. This is
illustrated in Fig. 5.

When the platforms are far apart, there is very little
difference between the sum of individual platform
information gains and the full joint information gain. As
the platforms move closer, the sum of individual in-
formation gain terms overestimates the value actions by
Bdouble-counting[ information (among other things).
Fig. 6 illustrates the discrepancy in information gain
estimation (i.e., the difference between the full joint
optimization and the sum of individual optimizations) as a
function of platform distance d. Additionally, the (scaled)

Lennard–Jones force is superimposed to provide motiva-
tion for its use.

3) Emergent Behavior as a Function of Communication
Radius: Fig. 7 illustrates the effect of communication ra-

dius on network behavior. When the communication

radius is high, platforms spread out nearly evenly (while

preferentially staying with targets) as each platform

knows where (most of) the others are and that the

existing targets are being covered. Conversely, in the low-

communication radius setting, platforms tend to cluster
near targets. This is because a platform does not know

where other platforms are unless they are close (within

the communication radius) and furthermore does not

know if targets are being effectively maintained by other

platforms until they are nearby. Despite this difference in

behavior, in both cases the number and position of targets

has been correctly learned by the network. However, in

the high-communication radius case, each individual
sensor knows much more. The net effect of this additional

knowledge present in the high-communication setting is

that if a platform were to fail, its duties would be picked

up by another platform in the network much more

quickly.

4) Monte Carlo Simulation of Performance: Fig. 8 presents

the results of a Monte Carlo simulation of performance in
this model problem. We illustrate the network knowledge

in three ways.

• At the Average Sensor: Each sensor has a local

estimate of the JMPD whose fidelity is governed by

the communication radius. Therefore, at low-

communication radius, each sensor only has

knowledge only of the local area, and hence will

Fig. 5. Two platforms are a distance d apart. When d is large, their

fields of view do not overlap, and the sum of individual information

gains is close to the joint information gain. Conversely, when the

platforms are close, the joint information gain differs significantly

from the sum of individual information gains.

Fig. 6. A comparison of the correction term and the physicomimetic

approximation as a function of distance between two platforms.
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only provide estimates of nearby targets. As

communication radius increases, sensors become

more aware of the entire region.

• At the Track Fuser: Aperiodically, individual

sensor estimates must be coalesced to provide a

single picture of the surveillance region. We
assume for bandwidth conservation purposes that

sensors transmit estimates about confirmed targets

only to a base station rather than the entire (local)

JMPD estimate. The base station then fuses these

tracks to provide an estimate of the entire sur-

veillance region.

• At the (hypothetical) Omniscient Fuser: To

benchmark performance, we also include a

(hypothetical) omniscient fuser that receives all

measurements made by all nodes in the network
and constructs the optimal JMPD estimate. Note:

this entity is used only for constructing the figure

and is not used in the simulation in any way. In

particular, all sensor management decisions are

Fig. 7. The qualitative behavior of the platforms as a function of communication radius. In each graphic, the top plot shows the position of

the platforms and targets in the surveillance region. The bottom plot shows which sensors (1. . .15) know about which of the ten targets

(a black square indicates that a sensor knows about the target). The omniscient fuser and track fuser performance are included for reference.

In both cases, all targets are successfully detected and tracked with no false targets at the displayed time. However, the behavior of the

system as communication radius changes is markedly different. In the low-communication radius case (top-left), platforms tend to group

heavily around existing targets, while in the high-communication radius case (top-right), platforms spread out more. Furthermore, as the

bottom plots indicate, in the low-communication radius case (bot-left) platforms tend to only know about nearby targets, whereas in the

high-communication radius case (bot-right), platforms have a very global picture. (a) Steady-state behavior when the communication radius

is low (r = 500 m). (b) Steady-state behavior when the communication radius is high (r = 5000 m).
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computed locally using the local estimate of the
JMPD.

The performance of the network is measured in

two ways.

• The number of True Targets detected and tracked.

This measures the number, of ten possible, of

actual targets that have been successfully detected

and tracked (i.e., have position estimates that are

within some allowable amount).
• The number of False Targets incorrectly thought

to exist. This measures the number of targets that

are thought to exist when in fact they do not.

Sensors receive false alarms (detections when in

fact no target exists) according the false alarm rate

pf . When a number of false alarms occur in a row

or when the sensor does not properly reinterro-

gate, a false target may be created.
Additionally, we look at the Communication Require-

ments of the method in terms of the percent of

measurements that each node transmits. A node measures

some number of cells at each time step. It then uses the

(local) JMPD to compute the likelihood that each

measurement originated from a target. Those measure-

ments (along with the platform position) that have likely

originated from a target are broadcast to be received by any
neighbor within the broadcast radius. Since the target

density in this experiment is low, the number of

measurements truly originating from targets is also low.

Therefore it is to be expected that the number of

transmitted measurements will be small.

Each simulation runs 250 time steps. Fig. 8 presents

the results of the average number of true targets, average

number of false targets from time step 50 on (after the
burn-in time where the initially ignorant network has been

able to learn about the surveillance region), and commu-

nication burden for each of the three entities (the average

sensor, the track fuser, and the omniscient fuser).

B. A Simulation With a Large Number of Very
Limited Capability Platforms

1) Description of the Model Problem: In this subsection,

we turn our attention to a setting where surveillance is

to be performed with a large number (hundreds or

thousands) of inexpensive low-capability sensors. The

simulation uses the same region size and target motion

data as the previous simulation. Again, the platforms are
idealized to hover above the surveillance region and

stare directly down. However, in this simulation each

sensor is capable of only measuring a single detection

cell immediately below the platform and has degraded

detection capabilities ðSNR ¼ 10 dBÞ. Fig. 9 shows a

typical (random) initial deployment of sensing assets.

2) Emergent Behavior With Different Scheduling Methods:
In Section IV, we saw that the optimal multiplatform

information theoretic scheduling criteria was in fact a

joint constrained information theoretic optimization.

Through algebraic manipulation, Lagrangian relaxation,

and direct approximation we proposed a method of

approximate scheduling that ultimately results in a sensor

being compelled to move by two competing forces: one

based on greedily maximizing information gain, and one
based on physicomimetics that acts to keep sensors apart

and promote region exploration in just the correct

manner.

In this section, we illustrate how the combination of

these two forces promotes just the correct platform

behavior and that the individual forces themselves are

not sufficient. Specifically, we compare both qualitatively

and quantitatively the surveillance performance of a
network of sensors with three different scheduling

algorithms:

• the proposed Combination of Information

Theoretic Forces and Physicomimetic Forces,

Fig. 8. Monte Carlo performance results for the 15 sensor region surveillance application. (a) The average number of true targets correctly

detected (ten is perfect)for the average sensor, the omniscient fuser, and the track fuser as a function of communication radius.

(b) The average number of false targets incorrectly detected (zero is perfect) for the average sensor, the omniscient fuser, and the track

fuser as a function of communication radius. (c) The average communication burden of the proposed decentralized approach as a function

of communication radius.
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which provides a balance between information

seeking behavior and explorative behavior and is

connected directly with the optimal multiplat-
form scheduling method;

• a purely Information Theoretic Method, which

tasks sensors to take actions that maximize

information gain (only);

• a purely Physicomimetic Method, which main-

tains separation between sensors using the repul-

sive force (only).

Fig. 10 shows the steady-state platform positioning of
500 platforms under each of the three methods.

3) Monte Carlo Simulation of Performance: We again
display the performance of the scheduling algorithm based

on: 1) the number of true targets detected and 2) the

number of false targets reported. Fig. 11 shows the

performance of the proposed scheduling algorithm versus

the number of platforms in comparison to the behavior of

the two constituent components alone.

This figure shows that the proposed method effectively

combines the strengths of the constituent methods. The
physicomimetic method enforces collaboration and ex-

plorative behavior by encouraging platforms to maintain

spatial separation. When used alone, this results in good

detection capability but poor tracking capability, as once a

target is found there is no impetus to continue to follow its

motion. Furthermore, spurious detections that are the

result of the false alarm process are not tracked down

through reinterrogation, resulting in more false targets.
Conversely, the information theoretic method encourages

exploitative behavior. When used alone, this results in

poor detection capability but good tracking capability.

Platforms tend to cluster around known targets and track

them very well but do not have the impetus to look for new

targets in unsurveyed regions. False targets are minimized

but real targets are less likely to be found. The proposed

method, which combines these two forces, as motivated by
the approximation to the joint constrained information

theoretic optimization, manages to use the strengths of

both of the constituent methods by both exploring and

exploiting in just the right ratio.

VI. CONCLUSION

This paper has addressed the problem of sensor manage-
ment for a large network of dynamic sensors. The method

presented is a novel combination of particle filtering for

Fig. 9. The (random) initial deployment of 500 platforms in a

surveillance region. The position of each of the platforms is shown

by a red dot. The true location of the ground targets is shown by

the green dots (of course, both the number of targets and their

kinematic states are unknown at initialization). Each platform has a

low-capability sensor that merely measures a single 100 m � 100 m

pixel immediately below for the presence or absence of targets.

Fig. 10. The combination of information theoretic forces and physicomimetic forces drives the sensors to behave in a manner that combines

the explorative nature of physicomimetics and the exploitative nature of information theoretic optimization. (a) Steady-state positioning

of platforms controlled by the physicomimetic force only. Notice that the platforms simply spread out in the region to avoid collision.

(b) Steady-state positioning of platforms controlled by the information theoretic force only. Notice that the platforms overcluster near

the true target positions and have large regions that are not explored. (c) Steady-state positioning of platforms controlled by the

combination physicomimetic and information theoretic forces. Here, platforms both explore the entire region and preferentially cluster

near real targets.
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nonparametric density estimation, information theoretic

measures for comparing possible action sequences, and

artificial physics for providing approximate cooperation

between sensor nodes.

This paper has provided three main contributions.

First, it has described a mathematical formulation for

estimation of the state of the surveillance region based
on recursive estimation of the joint multitarget proba-

bility density. Numerical estimation of this high dimen-

sional nonparametric density is done online via a novel

multitarget particle filter. Second, this paper has

presented a new method of sensor management for large

dynamic networks that combines information theory and

physicomimetics. Use of information theory allows this

method to have the property that potential actions which

provide different types of information can be compared
on a common footing, that of information gain. Use of

physicomimetics provides a tractable and robust approx-

imation to the joint optimization problem. As the

number of possible network actions grows exponentially

with the number of sensors and number of actions each

sensor can take, finding the globally optimum action set

is not tractable. Finally, this paper has shown that the

method can be decentralized method wherein each sen-
sor generates a picture of the surveillance region based

on its own measurements and measurements received

from neighboring nodes. This local picture then drives

the actions of each sensor at the next decision epoch, and

also drives which measurements are sent to other

sensors.

Future work in this area includes the extension of the

methods to long-term (nonmyopic) scheduling. In a
manner analogous to multisensor scheduling, (naive)

multistep scheduling results in an exponential explosion

of potential actions. Therefore, principled approximation

methods (perhaps domain-specific) must be developed for

tractable implementation. As alluded to earlier, some

work has been done in extending the information

theoretic scheduling metrics discussed here to the

multistep setting, but has focussed mainly on the single
platform setting. h

APPENDIX
In this appendix, we show how the multisensor divergence

can be written as sum of single-sensor divergences and an

explicit correction term. As in the text, we specialize to the

case of the Rényi Divergence where � ! 1 which becomes
the Kullback–Leibler Divergence [42].

The KL divergence between two densities p0ðxÞ and

p1ðxÞ is defined as

KLDðp1kp0Þ ¼
Z

p0ðxÞ ln
p0ðxÞ
p1ðxÞ dx: (30)

In the JMPD setting, the divergence between the
prediction density and the updated density after all P
sensors have made measurements z1; � � � ; zP is from the

definition

KLD pð�jz0:k�1; z1; � � � ; zPÞkpð�jz0:k�1Þ
� �

¼
X

Tk

Z
pðXk; Tkjz0:k�1Þ

� ln
pðXk; Tkjz0:k�1Þ

pðXk; Tkjz0:k�1; z1; � � � ; zpÞ dXk: (31)

Fig. 11. Performance of the proposed method versus number of

platforms in terms of true targets detected and false targets reported.

For comparison purposes, the performance of each of the

constituent forces (the physicomimetic force and the information

theoretic force) are included. As can be seen in the figures, the

combined force method significantly outperforms each of the

constituent methods. In fact, the performance of the constituent

methods at 500 platforms is similar to the combined method

with 50–100 platforms.
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(Note that we omit from the notation conditioning on past
measurements r0:k�1 and current action r1; � � � ; rP for

notational simplicity).

Using Bayes rule (5) on the denominator of the log

term, this can be simplified to

X
Tk

Z
pðXk; Tkjz0:k�1Þ ln

pðz1; � � � ; zPjz0:k�1Þ
pðz1; � � � ; zPjXk; TkÞ

dXk: (32)

Further simplifying algebraically on the log term,

we have

ln pðz1; � � � ; zPjz0:k�1Þ �
X

Tk

Z
pðXk; Tkjz0:k�1Þ

� ln pðz1; � � � ; zPjXk; TkÞdXk: (33)

Both log terms can expanded giving

ln pðz1jz0:k�1Þ � � � pðzPjz0:k�1Þ
pðz1; � � � ; zPjz0:k�1Þ

pðz1jz0:k�1Þ � � � pðzPjz0:k�1Þ

� �

�
X

Tk

Z
pðXk; Tkjz0:k�1Þ

� ln

�
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

� pðz1; � � � ; zPjXk; TkÞ
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

�
dXk: (34)

And distributing the logs, the multisensor KLD becomes

ln pðz1jz0:k�1Þ þ � � � þ ln pðzPjz0:k�1Þ

þ ln
pðz1; � � � ; zPjz0:k�1Þ

pðz1jz0:k�1Þ � � � pðzPjz0:k�1Þ

�
X

Tk

Z
pðXk; Tkjz0:k�1Þ ln pðz1jXk; TkÞdXk � � � �

�
X

Tk

Z
pðXk; Tkjz0:k�1Þ ln pðzPjXk; TkÞdXk

�
X

Tk

Z
pðXk; Tkjz0:k�1Þ ln

pðz1; � � � ; zPjXk; TkÞ
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

:

(35)

Recognizing the components as the individual sensor
divergences by comparison to (33), we have

KLD pð�jz0:k�1; z1Þkpð�jz0:k�1Þ
� �

þ � � �
þ KLD pð�jz0:k�1; zPÞkpð�jz0:k�1Þ

� �
þ ln

pðz1; � � � ; zPjz0:k�1Þ
pðz1jz0:k�1Þ � � � pðzPjz0:k�1Þ

�
X

Tk

Z
pðXk; Tkjz0:k�1Þ ln

pðz1; � � � ; zPjXk; TkÞ
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

:

(36)

The integral term is 0 since

pðz1; � � � ; zPjXk; TkÞ
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

¼ pðz1jXk; TkÞpðz2jXk; Tk; z1Þ � � � pðzPjXk; Tk; zP�1; � � � ; z1Þ
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

¼ pðz1jXk; TkÞ � � � pðzPjXk; TkÞ
pðz1jXk; TkÞ � � � pðzPjXk; TkÞ

¼ 1 (37)

i.e., as the likelihood in the numerator is conditioned on

the truth at the current time ðXk; TkÞ, the additional
measurements from other platforms add no information.

Note the subtlety that this is not the case with the

likelihood conditioned on past measurements. Here

knowing other sensor measurements does add additional

information.

Therefore, the result is that the Kullback–Leibler

Divergence between the prediction JMPD and the JMPD

after P sensors have made measurements z1 � � � zP is simply
the sum of the P single-sensor divergences and a correction

term, given explicitly by the log ratio of Binformed[
likelihoods to Buninformed[ likelihoods, i.e.,

KLD pð�jz0:k�1; z1; � � � ; zPÞkpð�jz0:k�1Þ
� �

¼
XP

i¼1

KLD pð�jz0:k�1; ziÞkpð�jz0:k�1Þ
� �

þ ln
pðz1; � � � ; zPjz0:k�1Þ

pðz1jz0:k�1Þ � � � pðzPjz0:k�1Þ
: (38)

By taking the expected value of both sides and recognizing

that the Rényi Divergence becomes the Kullback Leibler

Divergence as � ! 1, we have the desired result.

Kreucher et al.: An Information-Based Approach to Sensor Management in Large Dynamic Networks

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 997



REF ERENCE S

[1] C. Kreucher, K. Kastella, and A. Hero,
BMultitarget tracking using the joint
multitarget probability density,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 41, no. 4,
pp. 1396–1414, Oct. 2005.

[2] M. Morelande, C. Kreucher, and K. Kastella,
BA Bayesian approach to multiple target
detection and tracking,[ IEEE Trans. Signal
Process., to be published.

[3] L. D. Stone, T. L. Corwin, and C. A. Barlow,
Bayesian Multiple Target Tracking. Norwood,
MA: Artech House, 1999.

[4] M. I. Miller, A. Srivastava, and
U. Grenander, BConditional mean estimation
via jump-diffusion processes in multiple target
tracking/recognition,’’ IEEE Trans. Signal
Process., vol. 43, no. 11, pp. 2678–2690,
Nov. 1995.

[5] I. Goodman, R. Mahler, and H. Nguyen,
Mathematics of Data Fusion. Norwell, MA:
Kluwer, 1997.

[6] S. Mori, C. Y. Shong, E. Tse, and
R. P. Wishner, BTracking and classifying
multiple targets without a prior
identification,’’ IEEE Trans. Autom.
Control, vol. AC-31, no. 5, pp. 401–409,
May 1986.

[7] E. W. Kamen, BMultiple target tracking
based on symmetric measurement functions,’’
IEEE Trans. Autom. Control, vol. 37, no. 3,
pp. 371–374, Mar. 1992.

[8] A. Doucet, N. de Freitas, and N. Gordon,
Sequential Monte Carlo Methods in Practice.
New York: Springer, 2001.

[9] M. Orton and W. Fitzgerald, BA Bayesian
approach to tracking multiple targets using
sensor arrays and particle filters,’’ IEEE Trans.
Signal Process., vol. 50, no. 2, pp. 216–223,
Feb. 2002.

[10] S. Maskell, M. Rollason, N. Gordon, and
D. Salmond, BEfficient particle filtering for
multiple target tracking with application to
tracking in structured images,[ in Proc. SPIE
Conf. Signal and Data Processing of Small
Targets, 2002, vol. 4728, pp. 251–262.

[11] M. Isard and J. MacCormick, BBraMBLe:
A Bayesian multiple-blob tracker,[ in Proc. 8th
Int. Conf. Computer Vision, 2001, vol. 2,
pp. 24–31.

[12] H. Sidenbladh, BMulti-target particle filtering
for the probability hypothesis density,[ in
Proc. Int. Conf. Information Fusion, 2003,
pp. 800–806.

[13] C. Hue, J.-P. Le Cadre, and P. Perez,
BTracking multiple objects with particle
filtering,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 38, no. 3, pp. 791–812, Jul. 2002.

[14] A. Doucet, B.-N. Vo, C. Andrieu, and
M. Davy, BParticle filtering for multi-target
tracking and sensor management,[ in Proc.
5th Int. Conf. Information Fusion, 2002,
vol. 1, pp. 474–481.

[15] C. Kreucher, K. Kastella, and A. Hero,
BSensor management using an active sensing
approach,’’ Signal Process., vol. 85, no. 3,
pp. 607–624, Mar. 2005.

[16] F. Zhao, J. Shin, and J. Reich,
BInformation-driven dynamic sensor
collaboration,’’ IEEE Signal Process. Mag.,
vol. 19, pp. 61–72, Mar. 2002.

[17] K. J. Hintz and E. S. McVey, BMulti-process
constrained estimation,’’ IEEE Trans. Man,
Syst. Cybern., vol. 21, no. 1, pp. 434–442,
Jan./Feb. 1991.

[18] W. Schmaedeke and K. Kastella,
BEvent-averaged maximum likelihood
estimation and information-based
sensor management,’’ Proc. SPIE,
vol. 2232, pp. 91–96, Jun. 1994.

[19] R. Mahler, BGlobal optimal sensor
allocation,[ in Proc. 9th Nat. Symp.
Sensor Fusion, 1996, vol. 1, pp. 167–172.

[20] J. Denzler and C. M. Brown, BInformation
theoretic sensor data selection for active
object recognition and state estimatation,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 2, pp. 145–157, Feb. 2002.

[21] J. Manyika and H. Durrant-Whyte,
Data Fusion and Sensor Management:
A Decentralized Information-Theoretic
Approach. New York: Ellis Horwood, 1994.

[22] D. P. Bertsekas, Dynamic Programming and
Optimal Control. Belmont, MA: Athena
Scientific, 1995, vol. 1–2.

[23] R. D. Smallwood and E. J. Sondik, BThe
optimal control of partially observable Markov
processes over a finite horizon,’’ Oper. Res.,
vol. 21, pp. 1071–1088, 1973.

[24] L. Meier, J. Perschon, and R. M. Dressler,
BOptimal control of measurement systems,’’
IEEE Trans. Autom. Control, vol. AC-12, no. 5,
pp. 528–536, Oct. 1967.

[25] C. Kreucher, A. Hero, K. Kastella, and
D. Chang, BEfficient methods of non-myopic
sensor management for multitarget tracking,[
in Proc. 43rd IEEE Conf. Decision and Control
(CDC), 2004, vol. 1, pp. 722–727.

[26] E. K. P. Chong, C. Kreucher, and A. Hero,
‘‘Pomdp approximation methods based on
heuristics and simulation,[ in Foundations and
Applications of Sensor Management, K. Kastella,
D. Cochran, A. Hero, and D. Castañon, Eds.
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