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ABSTRACT

This paper describes a decentralized low communication approach to multi-platform sensor management. The
method is based on a physicomimetic relaxation to a joint information theoretic optimization, which inherits the
benefits of information theoretic scheduling while maintaining tractability. The method uses only limited message
passing, only neighboring nodes communicate, and each node makes its own sensor management decisions.

We show by simulation that the method allows a network of sensor nodes to automatically self organize
and perform a global task. In the model problem, a group of unmanned aerial vehicles (UAVs) hover above a
ground surveillance region. An initially unknown number of moving ground targets inhabit the region. Each
UAV is capable of making noisy measurements of the patch of ground directly below, which provide evidence as
to the presence or absence of targets in that sub-region. The goal of the network is to determine the number of
targets and their individual states (positions and velocities) in the entire surveillance region through repeated
interrogation by the individual nodes. As the individual nodes can only see a small portion of the ground, they
must move in a manner that is both responsive to measurements and coordinated with other nodes.

Keywords: distributed multi-sensor management, information theory, self organizing coherent systems

1. INTRODUCTION

This paper presents a decentralized approach to multi-platform sensor management. Sensor management, as
defined here, is the process whereby an agile sensor node autonomously determines what action it should take.
The goal of a sensor management algorithm in a decentralized multi-platform environment is to control the
behavior of the individual sensor nodes so that the network as a whole satisfies some global objective. The
method we present is specifically designed for large networks of sensor nodes that require limited communication
and a decentralized approach. As such, it relies only on communication between neighboring nodes and when
communication is done, only a selected subset of a node’s measurements are shared.

Our method is based on a physicomimetic relaxation of a constrained joint information theoretic optimization.
The method builds on earlier work1–3 which has shown that information theoretic sensor scheduling provides
significant gains over other methods. The principle behind information theoretic methods is that nodes should
take actions that are expected to gain information, where information may be measured by the Kullback-Leibler
divergence,1 relative entropy3 or the Rényi Divergence.2

We illustrate our method by simulation on the following model problem. A collection of unmanned aerial
vehicles (UAVs) hover above a ground surveillance region. There are an unknown number of moving ground
targets in the region. Each UAV is capable of making measurements of the patch of ground directly below, and
these measurements provide evidence as to the presence or absence of targets in that sub-region. The goal of
the network is to determine the number of targets and their individual states (positions and velocities) through
repeated interrogation of the ground. As individual nodes can only see a small portion of the ground, they need
to move in response to the measurements to both completely survey the entire region and ensure that detected
targets are accurately tracked. Thus, in this setting each node uses a sensor management algorithm to chose
how to move. Fig. 1(a) provides a visual depiction of this model problem.
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(a) The network is to determine the number and kinematic
states of a group of moving ground targets. Each node
stares directly down making measurements of the surveil-
lance region. The sensor management algorithm described
here provides a distributed, decentralized, low communica-
tion method for controlling the motion of nodes over time.

(b) Each node in the network repeatedly follows
the procedure of generating measurements, trans-
mitting them to neighbors, receiving measure-
ments, updating its probability density, and finally
computing the information theoretic and physi-
comimetic forces to decide where to move next.

Figure 1. The model problem. L: A visual depiction of the scenario. R: An outline of the algorithm used by each sensor.

Our application has several unique characteristics. First, the action space is continuous, which implies that
simply enumerating all possible future actions and choosing the best is infeasible. Second, we want to jointly opti-
mize the actions of N sensors which is a formidable computational task. Third, we have a constraint that sensors
must not collide. Fourth, the method must be distributable and use limited communication. For these reasons,
our approach is a “vector field”4 method that addresses the constrained joint optimization problem by com-
bining an information theoretic force with a collaboration force based on physicomimetics. This method allows
tractability and low communication while still maintaining the benefits of information theoretic optimization.

The algorithm executed by each node in the network is illustrated in Fig. 1(b). As the figure shows, nodes
communicate with their neighbors only. The combination of measurements made by a node and measurements
received from others is used to update a probability density which describes the surveillance area. This probability
density, combined with knowledge of nearby node positions, is used to select what actions the nodes should take
next.

The paper proceeds as follows. In Section 2, we show how the joint multitarget probability density (JMPD)
captures uncertainty about the surveillance region, and give a brief description of how it is estimated. Second, in
Section 3, we show how the JMPD is used to compute the expected utility (as measured by information gain) of
each possible future positioning of a node. The information theoretic method directly extends to the multisensor
case. However, it becomes impractical computationally for more than a few nodes. Therefore, in Section 4,
we give a method of approximate multisensor control based on physicomimetics. This method approximates
the exponentially difficult problem of choosing the best combination of sensing actions by one that uses greedy
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(single-sensor) optimal actions combined with a secondary physicomimetic force that encourages cooperation.
Section 5 gives simulation results for the model problem that illustrate the efficacy of the method. Finally, in
Section 6, we give some remarks on the application of this method in a network centric warfare environment.

2. THE JMPD FOR CAPTURING NODE UNCERTAINTY

Each node in the network estimates the state of the surveillance region conditioned on the measurements it has
access to. The estimate captures the uncertainty the node has about the contents of the surveillance region. As
we will see in Section 3, we use reduction in uncertainty as a method for selecting future sensing actions.

Uncertainty comes in many forms. For example, a node may be uncertain about a portion of the region
because it has never received measurements pertaining to that region. This is uncertainty in number of targets
as well as the states of the targets (if there are any). Alternatively, a node may have surveyed a portion of
the region well and be confident that there are some number of targets, but since targets are moving there is
uncertainty about their kinematic state. Finally, the number and location of targets may be well known but
other parameters – such as velocity, acceleration, identification, or mode – may by uncertain.

Estimation of the joint multitarget probability density (JMPD) is a Bayesian method of fusing models of
target behavior, sensor capability, and actual measurements into a single picture which captures these and other
uncertainties. Others have studied related methods based on Bayesian reasoning, e.g., the work in.5–8

Each node recursively estimates the JMPD as a means of describing the uncertainty about the surveillance
region. If there were infinite communication ability, each node would have the same estimate and hence have
the same JMPD. However, in our approach, each node only has access to measurements it has made and those
it has received from neighbors, meaning that in general each node will have a different estimate of the JMPD.

2.1. The JMPD

The joint multitarget probability density (JMPD)

p(xk
1 ,xk

2 , ...xk
T−1,x

k
T , T k|Zk) = p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |T k,Zk)p(T k|Zk) , (1)

is the probability density for exactly T targets with states x1,x2, ...xT−1,xT at time k based on a set of past
observations Zk. We abuse terminology by calling p(xk

1 ,xk
2 , ...xk

T−1,x
k
T , T k|Zk) a density since T k is a discrete

valued random variable. In fact, the JMPD is a continuous discrete hybrid as it is a product of the probability
mass function p(T k|Zk) and the probability density function p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |T k,Zk).

The number of targets at time k, T k, is a variable estimated simultaneously with the states of the T k

targets. The JMPD is defined for all T k, T k = 0 · · ·∞. The observation set Zk refers to the collection of all
measurements that the node has had access to over time, i.e. Zk = {z1, z2, ...zk}, where each of the zi may be a
single measurement or a vector of measurements from time i. Each of the zi may be a different size depending
on the number of measurements a node has received from others at time i.

Each xt in p(xk
1 ,xk

2 , ...xk
T−1,x

k
T , T k|Zk) is a vector quantity and may (for example) be of the form [x, ẋ, y, ẏ].

For convenience, the JMPD will be written more compactly in the traditional manner as p(Xk, T k|Zk), which
implies that the state-vector Xk represents a variable number of targets each possessing their own state vector.
We will omit the time subscript k when convenient and no confusion will arise, and e.g., write simply p(X, T |Z).

The likelihood p(z|X, T ) and the JMPD p(X, T |Z) are conventional Bayesian objects manipulated by the
usual rules of probability and statistics. Thus, a multitarget system has state X = (x1, · · · ,xT ) with probability
distribution p(x1, · · · ,xT , T |Z). This can be viewed as a hybrid stochastic system where the discrete random
variable T governs the dimensionality of X. Therefore the normalization condition the JMPD must satisfy is

∞∑

T=0

∫
dXp(X, T |Z) = 1 , (2)

where the single integral sign is used to denote the T integrations required.
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The temporal update of the posterior likelihood proceeds according to the usual rules of Bayesian filtering.
The model of how the JMPD evolves over time is given by p(Xk, T k|Xk−1, T k−1) and will be referred to as
the kinematic prior (KP). The kinematic prior includes models of target motion, target birth and death, and
any additional prior information that may exist such as terrain and roadway maps. In the case where target
identification is part of the state being estimated, different kinematic models may be used for different target
types. The time-updated (prediction) density is computed via the model update equation as

p(Xk, T k|Zk−1) =
∞∑

T k−1=0

∫

X

dXk−1p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Zk−1) (3)

The measurement update uses Bayes’ rule to update the posterior density with a new measurement zk as

p(Xk, T k|Zk) =
p(zk|Xk, T k)p(Xk, T k|Zk−1)

p(zk|Zk−1)
. (4)

2.1.1. Kinematic Modeling

The Bayesian framework outlined above requires a model of how the surveillance region evolves with time,
p(Xk, T k|Xk−1, T k−1). This includes both how the number of targets changes with time (i.e. T k versus T k−1)
and how individual targets that persist over time evolve (i.e. xk versus xk−1). This model is chosen using the
physics of the particular system under consideration. The simulation studies used herein come from a set of real
ground targets recorded during a military exercise. Therefore, we specialize the models to this application.

We first define a set of spatially varying priors on target arrival and death. Let αk(x) denote the a priori
probability that a target will arrive at location x at time k. Similarly, let the a priori probability that a target in
location x will die be denoted by βk(x). For the simulation studies, we assume temporally and spatially invariant
(i.e. constant) rates for the birth and death and specify only α and β. The more general case is straightforward
to implement, however it significantly complicates the notation. For more detail see.9

For persistent targets, we model the target motion as linear and independent for each target, i.e. if the state
of a target is given by x = (x, ẋ, y, ẏ) the model is

xk
i = Fxk−1

i + wk
i , (5)

where wk
i is 0-mean Gaussian noise with covariance Q, and

F =

⎛

⎜⎜⎝

1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

⎞

⎟⎟⎠ , Q = q

⎛

⎜⎜⎝

τ3/3 τ2/2 0 0
τ2/2 τ 0 0

0 0 τ3/3 τ2/2
0 0 τ2/2 τ

⎞

⎟⎟⎠ . (6)

We emphasize here that Linear/Gaussian models are not a requirement of the formulation, but are used as
they have been found to perform well in simulation studies with the real data. More complicated models of
target motion can be inserted where appropriate without directly effecting computations in the algorithm.

2.1.2. Sensor Modeling

The Bayesian framework further requires a model of how measurements are related to the state being tracked.
The model problem considered in Section 5 consists of N sensors that make detections on a pixelated grid for
the purposes of detecting and tracking a group of moving targets.

The measurement process is idealized as follows. The surveillance region is broken into Nx × Ny contiguous
pixels. The x- and y- ground-plane projection of each pixel is ∆x and ∆y. The sensor response within pixel i is
uniform for targets in pixel i and vanishes for targets outside pixel i. Define the occupation number ni(X) for
pixel i as the number of targets in X that lie in i. The single target signal-noise-ratio (SNR), assumed constant
across all targets, is denoted λ. We assume that when multiple targets lie within the same pixel their amplitudes
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add non-coherently (this will be accurate for unresolved optical targets and radar targets not moving as a rigid
body). Then the effective SNR when there are n targets in a pixel is λn = nλ and we use pn(zi) to denote the
pixel measurement distribution (note that the background distribution is obtained by setting n = 0).

A node hovers above the surveillance region and measures a set of P (<< Nx × Ny) pixels directly below.
Furthermore, some measurements may be received from neighboring sensors. We assume homogenous sensors
and identical SNR targets for the purposes of this paper, but the method easily generalizes. Hence a measurement
z consists of the pixel output vector z = [z1, . . . , zM ], where zi is the output of pixel i and M is the total number
of measurements available to the sensor (consisting of its own measurements and those received from neighbors).

We model both measurements of spatially separated pixels and multiple measurements of the same pixel at
as conditionally independent given the state, i.e.,

p(z|X, T ) =
∏

i

p(zi|X, T ) . (7)

Let χi(xt) denote the indicator function for pixel i, defined as χi(xt) = 1 when a (single) target in state xt

projects into sensor pixel i (i.e., couples to pixel i) and χi(xt) = 0 when the target does not project into sensor
pixel i. Observe a pixel can couple to multiple targets and single target can contribute to the output of multiple
pixels, say, by coupling through side-lobe responses. The indicator function for the joint multitarget state is
constructed as the logical disjunction

χi(X, T ) =
T∨

t=1

χi(xt) . (8)

The set of pixels that couple to X is iX = {i|χi(X, T ) = 1}. For the pixels that do not couple to X, the
measurements are characterized by the background distribution, p0(zi). With this, (7) can be written as

p(z|X, T ) ∝
∏

i∈iX

p(zi|X, T )
p0(zi)

. (9)

With these modeling assumptions, the measurement distribution in pixel i depends only on its occupation number
and (9) becomes

p(z|X, T ) ∝
∏

i∈iX

pni(X),T (zi)
p0(zi)

. (10)

To complete the specification of the sensor model, we must give its dependence on SNR. Many models are
plausible, depending on the detailed nature of the sensor physics. Here we have elected to use Rayleigh-distributed
measurements. This distribution corresponds to envelope detected signals under a complex Gaussian radar return
model, and has been used to model interfering targets in a monopulse radar system10, 11 and to model clutter
and target returns in turbulent environments. Rayleigh models are also often used for diffuse fading channels.
We assume thresholded measurements and use a constant false-alarm rate (CFAR) model for the sensor. If the
background false alarm rate is set at Pf , then the detection probability when there are n targets in a pixel is

Pd,n = P
1

1+nλ

f . (11)

2.2. Estimation of the JMPD
Even for modest problems, the sample space of the JMPD is enormous as it contains all possible configurations
of state vectors xt for all possible values of T . For example, if the state of an individual target is given by the
4-tuple

(
x, ẋ, y, ẏ

)
, the sample space of the JMPD contains vectors of length 4N for all positive finite N . Thus,

to estimate the JMPD in a computationally tractable manner, a sophisticated approximation method is required.

We use a particle filter to represent the JMPD, i.e.,

p(X, T |Z) ≈
Npart∑

p=1

wpδ(X − Xp) (12)
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where

δ(X − Xp) =
{

0 T �= Tp

δD(X − Xp) otherwise . (13)

and approximately implement the time and measurement update equations (3) and (4).
In earlier works,9, 12 we describe the novel importance density design that makes this tractable. The impor-

tance density is designed to recognize when it is permissible to factor the JMPD, and also addresses the issues
of new targets arriving and exiting targets. For the purposes of this paper, we assume the JMPD has been
efficiently estimated and is available for use by the sensor management algorithm.

3. INFORMATION THEORETIC SCHEDULING FOR A SINGLE SENSOR
In this section, we give an overview of information theoretic sensor scheduling in the single sensor setting. This
method is extended to the multisensor case in the Section 4.

In our method of sensor management, actions are ranked based on the amount of information expected to be
gained from their execution. In our model problem, nodes are mobile and so the management problem becomes
one of choosing the next position for the node. In principle, we can compute the expected gain in information
between the current JMPD and the JMPD that would result after moving to the new position r = (x, y, z)
meters and making a measurement, for all r . Then the sensor management decision is to select the best r based
on expected information gain. Since in our application, the action r is to be chosen from the continuum, simple
enumeration of possible actions is infeasible. Therefore, we instead sample a small number of possible r and use
this sampling to derive a force to move the sensor. The rest of this section lays out the details of this approach.

3.1. The Rényi Divergence
The calculation of information gain between two densities p1 and p0 is done using the Rényi information diver-
gence,13 also known as the α-divergence:

Dα(p1||p0) =
1

α − 1
ln
∫

pα
1 (x)p1−α

0 (x)dx (14)

The α parameter adjusts how heavily one emphasizes the tails of the two distributions p1 and p0. In the
limiting case of α → 1 the Rényi divergence becomes the commonly utilized Kullback-Leibler (KL) discrimination

lim
α→1

Dα(p1||p0) =
∫

p0(x) ln
p0(x)
p1(x)

dx . (15)

If α = 0.5, the Rényi information divergence becomes the Hellinger affinity 2 ln
∫ √

p1(x)p0(x)dx, which is
related to the Hellinger-Battacharya distance squared13 via

DHellinger(p1||p0) = 2
(

1 − exp
(
.5D 1

2
(p1||p0)

))
. (16)

3.2. Rényi Divergence Between the Prior and Posterior JMPD
The function Dα in (14) is a measure of the divergence between the densities p0 and p1. In our application,
we compute the divergence between the predicted density p(Xk, T k|Zk−1) and the updated density after a
measurement z is made at new location r, denoted p(Xk, T k|Zk−1, z, r). Therefore, the relevant divergence is

Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

)
=

1
α − 1

ln
∑

T k

∫
p(Xk, T k|Zk−1, z, r)αp(Xk, T k|Zk−1)1−αdXk , (17)

where the integral is interpreted as in (2). Using Bayes’ formula applied to the JMPD (4) we obtain

Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

)
=

1
α − 1

ln
1

p(z|Zk−1, r)α

∑

T k

∫
p(z|Xk, T k, r)αp(Xk, T k|Zk−1)dXk , (18)

which shows that the ingredients to computing the divergence are the prior JMPD, the measurement likelihood
p(z|Xk, T k, r) and the received measurements z.
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3.3. The Expected Rényi Divergence for a Sensing Action

To determine the best action, we must predict the value before actually receiving the measurement z. Therefore,
we calculate the expected value of the divergence for each possible action and use this to select the next action.
The expectation may be written as an integral over all possible outcomes z when taking action r as

E

(
Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

))
=
∫

dzp(z|Zk−1 , r)Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

)
. (19)

And then the method of scheduling is to choose

r̂ = argmax
r

E

(
Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

))
. (20)

In practice, certain r are infeasible. There are kinematic constraints of the sensor which make certain locations
unreachable in a single time step, including maximum sensor velocity and maximum sensor acceleration. Also
there are physical constraints which prevent certain motions, including the topology of the surveillance region
(i.e., a sensor should not collide with anything). Therefore, we actually need the constrained optimization

r̂ = argmax
r∈C

E

(
Dα

(
p(·|Zk−1, z, r)||p(·|Zk−1)

))
, (21)

where C is the set of actions that meet both the kinematic and physical constraints. These constraints are
handled in practice by simply removing those actions that violate the constraints from consideration.

3.4. Computational Method

When there are only a small number of actions to choose from, application of this method is straightforward.
For each possible action, we compute the expected gain in information as given by (19). This computation is
O(MNparts) where M is the number of actions and Nparts is the fidelity of the particle filter approximation to
the JMPD (note that when z is continuous advanced numerical techniques are required to evaluate the integral).

However, when the number of actions is continuous, as in the case we study here, simple enumeration is
not feasible. In this situation, we use ideas from earlier works that employ “virtual force” or “potential field”
methods.4, 14, 15 In the field approach, one computes a force that compels a sensor to move. In our method, we
derive a force that compels a sensor to move in a manner that maximizes information gain.

This is done as follows. First, we compute the information gain field at a small number of discrete locations
using (19). We then use this scalar field to derive a force by taking its gradient, i.e.,

FI(r) = −β∇r〈Dα〉r , (22)

where β is a scaling constant. This force then drives the sensor motion (subject to the constraints listed above).

4. INFORMATION THEORETIC SCHEDULING FOR MULTIPLE SENSORS

In this section, we describe how the method of Section 3 is extended to the case of multiple collaborating sensors
in a distributed environment.

Proc. of SPIE Vol. 6249  62490H-7



4.1. Optimal Multisensor Information Theoretic Scheduling

By straightforward extension of the method given in Section 3, information theoretic scheduling for a collection
of N sensors requires choosing the set of future locations of the N sensors (r1, · · · , rN ) which satisfies

(r̂1 · · ·r̂N ) = argmax
(r1···rN )∈C′

E

(
Dα

(
p(·|Zk−1, z1 · · · zN , r1 · · · rN )||p(·|Zk−1)

))
(23)

= arg max
(r1···rN )∈C′

∫
· · ·
∫

dz1 · · · dzNp(z1 · · · zN |Zk−1, r1 · · · rN )Dα

(
p(·|Zk−1)||p(·|Zk−1, z1 · · · zN , r1 · · · rN )

)
.

As in the single sensor case, this requires a constrained optimization. In the multisensor case C′ includes
both the original constraints of C and a new constraint that sensors do not collide with each other. That is

C′ = C ∩ {‖ri − rj‖ > d ∀i, j where i �= j } . (24)

The joint optimization can be rewritten as a sum of single sensor optimizations plus a correction factor as

argmax
(r1···rN )∈C′

( N∑

i=1

∫
dziDα

(
p(Xk, T k|Zk−1)||p(Xk, T k|Zk−1, zi, ri)

)
+ E

[
h(z1, · · · , zN , r1 · · · rN ,Zk−1)

])
. (25)

The function h in this expression is an “information coupling” term which accounts for the fact (among other
things) that the gain in information for two sensors taking the same action is not double the information gain
for a single sensor taking the action. In the limiting case as α → 1, the correction term can be written explicitly
and the simplification becomes

arg max
(r1···rN )∈C′

( N∑

i=1

∫
dziDα

(
p(Xk, T k|Zk−1)||p(Xk, T k|Zk−1, zi, ri)

)
+ (26)

E
(

ln
[p(zN |zN−1 · · · z1, rN · · · r1,Zk−1) · · · p(z2|z1, r2, r1,Zk−1)p(z1|r1,Zk−1)

p(zN |rN ,Zk−1)p(zN−1|rN−1,Zk−1) · · · p(z2|r2,Zk−1)p(z1|r1,Zk−1)

]))
.

The correction term is still O(MN ) to compute, and therefore must be approximated.

4.2. Computational Method

The new constraint that sensors cannot collide deals with action sets and not simply with individual actions
and so it cannot be handled by simply censoring actions that violate the constraint. Therefore, we address this
constraint in the standard way by defining the Lagrangian

L(r1 · · · rN ) = E
(
Dα

(
p(·|Zk−1, z1 · · · zN , r1 · · · rN )||p(·|Zk−1)

))
+ λf(r1 · · · rN ) (27)

=
N∑

i=1

∫
dziDα

(
p(Xk, T k|Zk−1)||p(Xk, T k|Zk−1, zi, ri)

)
+ E

[
h(z1, · · · , zN , r1 · · · rN ,Zk−1)

]
+ λf(r1 · · · rN ) ,

where the function f is a term that penalizes action sets that move the sensors too close together. The joint
optimization then becomes an unconstrained optimization

(r̂1 · · · r̂N ) = arg max
(r1···rN )

L(r1 · · · rN ) . (28)

In our method, we simultaneously approximate both the information coupling term involving the expectation
of h and the collision prevention term f by introducing a a function which reduces the value of action sets
that involve sensors moving close together. We have chosen to use a physicomimetic force to provide this
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approximation, although other similar approximations are also valid. Evaluating this force has a very small
computational burden, and requires only that a node know the positions of its neighbors.

Since we remain in a continuous action space environment, we must cast this term via a vector force as well.
We use a generalization of the Lennard-Jones potential that serves as a zeroth order model of the intermolecular
forces of liquids. The Lennard-Jones force for a pair of nodes i, j separated by a distance ri,j is radial with
magnitude

FLJ (ri,j) = −ε

[
m

γm

rm+1
i,j

− n
γn

rn+1
i,j

]
. (29)

For the standard Lennard-Jones potential m = 12 and n = 6, and is referred to as the 6-12 potential. Observe
that this is strongly repulsive as the radius between sensors ri,j gets small. The terms γ and ε are chosen based
on sensor kinematic properties. The total force node i feels is simply the vector sum of the forces from all other
nodes. To compute the total force, a node need only know the positions of the other nodes; in fact, since the force
falls off so rapidly those sensors that are much more distant that γ have negligible effect on the computation.
Therefore, for practical purposes, a node only needs to know the positions of nearby neighbors.

Denote by Fi,j
LJ(ri) the vector force node i feels from node j when positioned at ri. Then the total force

node i feels from all other nodes when positioned at ri is simply Fi
LJ(ri) =

∑
j �=i F

i,j
LJ(ri). This specification of

relaxation term results in the final optimization

(r̂1 · · · r̂N ) = argmax
(r1···rN )

N∑

i=1

(∫
dziDα

(
p(Xk, T k|Zk−1)||p(Xk, T k|Zk−1, zi, ri)

)
+ λFi

LJ(ri)

)
. (30)

4.3. Distributed Implementation

Notice that the method (30) allows each sensor to compute its next action in a completely distributed manner.
By maximizing the term for each i, the sum is maximized. The first portion of the term in simply requires
the exected information gain computed at each node without regard to the actions of other nodes. The second
portion of the term requires only that each node know of the position of the nearby nodes.

There are many reasonable ways a node may decide what measurements should be transmitted to its neigh-
bors. In this work, we employ a method where a node sends measurements based on the likelihood that they orig-
inate from a target. This information is directly calculable from the JMPD by integration over the measurement
cell. Furthermore, when a node transmits measurements, it also shares its position so that the physicomimetic
force may be computed by its neighbor. Our simulation studies assume a “radius of communication” which
defines how far the distance that any transmission may be heard from a node.

5. SIMULATION RESULT

In this section, we present simulation results to demonstrate the utility of the method. In the simulation, there
are 15 nodes that hover above a surveillance region and make measurements as to the presence or absence of
targets in the region as depicted in Fig. 1a. At initialization, none of the nodes has any information about
the surveillance region, i.e., there is complete uncertainty as to the number of targets and the states of each.
Furthermore, at initialization the nodes are randomly distributed above the surveillance region. An example of
a set of initial positions is given in Fig. 2a.

Over time, the nodes execute the algorithm outlined in Section 4, by following the 7-step procedure in Fig.
1b. The resulting behavior of the nodes is one where they first collectively survey the entire surveillance region.
Some nodes detect targets (or hear about them from neighbors) resulting in certain areas drawing the attention of
nodes disproportionately due to the information theoretic force. However, the nodes as a collection still spread
out through the entire area due to the physicomimetic force. After the transient time, all of the targets are
detected and they are all monitored by some nodes in the region. Other nodes that are not actively involved
in monitoring targets continue to sweep the region looking for new arrivals. The snapshot at time 30, which is
shown in Fig. 2b, illustrates steady-state behavior.
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(a) Top: Node locations at t = 0. The fifteen nodes hov-
ering above the region are randomly placed. Each node
measures only the ground directly below as indicated by
the circle. The true location of the ten numbered ground
targets is shown with a solid circle. Bottom: Each node
in the network will know about a subset of the targets as
it acquires or receives measurements over time. At ini-
tialization none of the targets are known to any node, as
illustrated by the empty matrix.
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(b) Top: Node locations at t = 30. The fifteen nodes
hovering above the region have organized to survey the
entire region and follow the detected targets. The true
location of the ten numbered ground targets is shown with
a solid circle, and the filter estimate given by the ellipse.
Bottom: Each node in the network knows about a subset
of targets as it has acquired or received measurements
from only a portion of the region. This matrix indicates
which sensors know about which targets.

Figure 2. Two snapshots of the system. Left: At initialization. Right: After 30 time steps

Extensive Monte Carlo tests (Fig. 3) where the radius of communication is varied from r = 0m (i.e., no
communication) to r = 10000m (i.e., infinite communication radius) show the utility of the method. The quality
of a nodes understanding is judged by two measures: (a) the number of true targets (of 10) the node knows about,
and (b) the number of false targets that the node believes exist (ideally 0). Since we simulate a low communication
distributed system, in general each node knows only about a subset of the targets in the area. This phenomenon
is illustrated in Fig. 3 (left), which shows that for low communication radii (e.g., r = 0 · · · 1000m) each node
only knows about on the order of 2 targets. However, as illustrated in Fig. 3 (right), the network as a whole
(as judged by a hypothetical omniscient fuser that gets to see all measurements made by all nodes) is able to
correctly track all of the targets with a very low false target rate. Therefore, the network itself is performing
the desired task – monitoring the entire surveillance region – by distributing work between the 15 nodes. The
communication burden is very low. For r = 1000m, on average there is 1 measurement transmission for every
100 made. For r = 2500m, on average there is 1 measurement transmission for every 5 made.
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Figure 3. Performance of the algorithm as a function of communications radius (in meters). Left: The number of true
targets correctly detected (of 10) and false targets incorrectly declared (ideally 0) versus time at each node. Right: The
same statistics at a hypothetical omniscient fuser, which represents the performance of the network as a whole.

6. NETWORK CENTRIC WARFARE (NCW)

One possible strategy for taking this approach to the NCW battlefield would be to use a service-oriented archi-
tecture (SOA). A SOA is a loosely coupled, distributed, composable, O/S & platform independent collection of
components. Components can be composed at runtime to meet real-time objectives. The name service-oriented
comes from the shift of platform based computing where platforms independently solve tasks to a service-based
approach where platforms advertise services that they can perform. In a SOA, service providers and service
consumers have no a priori knowledge of each other; instead, providers and consumers use a broker service to
facilitate finding other services.

Figure 4. Simplified SOA Broker Interaction. 1) Provider registers its capabilities, transport information, and other
metadata with the broker. 2) A consumer queries the broker for services of interest. 3) Using the query results, the
consumer contacts the provider directly.

Figure 4 depicts a SOA. This simplified example shows a service provider registering its capabilities, metadata,
and connection information with a broker. Any component may query the broker and learn of providers that
match the query. Embedded in the service description is the transport or contact information that allows the
consumer to communicate directly with the provider of interest after it has been discovered via the broker query.

A first step would be to advertise the homogenous sensor collection as a single service. This would allow
consumers to subscribe to track information produced by the sensor network via a gateway node. The gateway
could collect and report on the targets as well as sensor status (e.g. fuel level, payload configuration, position)
and relay the information to consumers on the network that have subscribed to the sensor gateway service. One
additional enhancement to this gateway approach would be to allow a remote operator to make adjustments to
the algorithm changing the sensing area or other algorithm parameters, such as, the collision protection zone.
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We have successfully demonstrated this approach in our lab showing the sensor field cross-cueing a simulated
effects platform in a machine-to machine time critical target scenario.

A second step would be to use the SOA to aid in the introduction of heterogeneous sensors into the decen-
tralized multi-platform sensor management system. This approach would require each sensor to register with
a broker (which could be distributed across the network) and describe its capabilities. Nodes could query the
broker for neighbors and obtain their position, target lists, and perhaps a history of places that their neighbors
have visited. Heterogeneous nodes could collaborate using a standard interface for sharing target data and node
status. This would allow nodes that can only do target detection to upgrade a targets information by collaborat-
ing with a platform that might provide target classification or identification. A tactical, peer-to-peer SOA would
need to be used to accomplish this second step with a focus on the limited bandwidth of wireless networks.

7. CONCLUSION
This paper has presented a decentralized, low communication sensor management algorithm which effectively
distributes the work load of a network among a large number of sensor nodes. The method is based a physi-
comimetic relaxation of the joint information theoretic optimization, which provides tractability and inherits the
benefits of information theory. Via simulation we have shown that the network is capable of performing a global
task (detect and track all targets in the surveillance region) via only neighbor to neighbor message passing.
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