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ABSTRACT

This paper shows how information-directed diffusion can be used to manage the trajectories of hundreds of smart
mobile sensors. This is an artificial physics method in which the sensors move stochastically in response to an
information gradient and artificial inter-sensor forces that serve to coordinate their actions.

Measurements received by the sensors are centrally fused using a particle filter to estimate the Joint Multi-
target Probability Density (JMPD) for the surveillance volume. The JMPD is used to construct an information
surface which gives the expected gain for sensor dwells as a function of position. The updated sensor position
is obtained by moving it in response to artificial forces derived from the information surface, which acts as a
potential, and inter-sensor forces derived from a Lennard-Jones-like potential. The combination of information
gradient and inter-sensor forces work to move the sensors to areas of high information gain while simultaneously
ensuring sufficient spacing between the sensors. We evaluate the performance of this approach using a simulation
study for an idealized Micro Air Vehicle with a simple EO detector and collected target trajectories. We find that
this method provides a factor of 5 to 10 improvement in performance when compared to random uncoordinated
search.
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1. INTRODUCTION

The problem of sensor management is to determine how best to direct a collection of sensors to support some
objective. If the sensors are mobile then sensor path planning is also part of the problem. Many types of sensors
have multiple modes that must also be optimized. For example, a zoomable imaging system can trade resolution
for area coverage. In addition to possessing many degrees of freedom to control, sensor management also has the
feature that it is often difficult to determine just what is to be optimized. In a typical intelligence, surveillance,
and reconnaissance (ISR) application one simultaneously seeks to optimize detection, tracking and identification
performance against all targets within a certain region of interest. It can be difficult to determine in a non-ad
hoc way how to properly balance the requirements of different sub-objectives of a mission.

With the continuing advance of processor, memory, communications, power and sensing technology it increas-
ingly becomes feasible to deploy hundreds, thousands or hundreds of thousands of small mobile sensors such as
micro-air vehicles (MAVs) or small uninhabited underwater vehicles (UUVs). To be deployed in large numbers
these systems must be nearly completely autonomous to avoid overwhelming the system operators. Therefore
an automated sensor management is required that can handle situations of this sort.

Recently, significant progress on the scheduling problem has been made using information theoretic meth-
ods.1–4 This approach begins with a probability density describing the degrees of freedom of the problem at
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hand. To capture the degrees of freedom in our problem, we use a Joint Multitarget Probability Density (JMPD)
for the number of targets, their kinematic state (position and velocity) and their type. The JMPD is efficiently
approximated using a novel particle filtering strategy. Given the JMPD, the expected information gain for a set
of alternative sensing actions is measured using the Rényi information divergence and computed using conven-
tional Bayesian techniques. The optimum action is then selected and applied, the JMPD is updated with the
measurement outcome, and the process repeats itself.

The information based sensor management approach works well for managing a small numbers of sensors
but the picture changes when the number of sensors becomes large. While the JMPD computation is unaffected
when a large number of sensor inputs are available (some modification is necessary if inter-sensor communication
bandwidth is limited), the number of possible distinct sensing actions is exponential in the number of sensors.
That is, if each sensor of the N sensors can take one of M actions, then the total number of joint actions is MN .
It is computationally intractable to obtain the globally optimal set of actions except in very special situations
where some sort of convexity or factorization condition holds.

A number of methods have been developed within the robotics community to control large numbers of agents
such as the hypothetical mobile sensors described above. A widely used and successful approach is based on a
set of techniques referred to variously as “artificial physics”, “physicomimetics”, “virtual force methods”, and
“potential field methods”. Along these lines numerous researchers have proposed and demonstrated the use
of artificial physics concepts to guide both single robots and multi-robot groups. For example, Borenstein5

describes a goal-seeking system in which a virtual force field is used to drive a single robot toward a desired
location while mapping and avoiding obstacles detected by an on-board ultrasonic sensor. More recently these
ideas have been extended to large numbers of mobile platforms to produce swarming behavior by Spears.6 In
these applications the emphasis is on constructing interactions amongst the robots so that they behave in a
coordinated fashion. The underlying theme in these different demonstrations is that the agents have some form
of information regarding the distance and direction to goal states as well as distances and directions to other
nearby agents and obstructions. Artificial forces on each agent are then computed to drive the system towards
a desired overall state. The agents are then commanded to respond to the computed artificial forces.

While the artificial force approach does not guarantee that the resulting policy will satisfy any global op-
timality criterion, it does have provide a number of useful features. Most importantly, the resulting sensor
management strategy can be implemented so that each agent only needs access to local information. As a result,
the method scales well with the number of agents (linearly if only local short-range forces are used).

This paper addresses the problem of Multi-platform sensor scheduling using an approach that combines
physicomimetics and information theory. There are three elements to the information driven artificial physics
implementation discussed here. First, there is the coupling to the external field designed to support the overall
system goal. Here that role is played by the information gain field. The second element of the design is coupling
between agents. This force works to prevent the agents from moving en masse towards the same goal state of
the external field. The third element of the artificial physics method adopted here is the inclusion of a random
diffusive component to the agent motion. This promotes exploration of the local neighborhood by the agents
and appears to be useful for sensing applications.

This paper proceeds as follows. Section 2 describes Bayesian multitarget tracking using recursive estimation
of the joint multitarget probability density (JMPD). The JMPD is constructed using kinematic and sensor
models along with the collected measurements to capture the uncertainty about the surveillance area (here the
uncertainty includes both the number of targets and states of the individual targets). Second, in Section 3, we
show how we use the JMPD and associated models to determine which portions of the surveillance region are
expected to yield the most gain in information if interrogated at the next time epoch. This method relies on
computing expectations of information gained for each possible sensor positioning, where information gain is
measured by the Rényi (alpha) Divergence. Readers familiar with information-based sensor management may
wish to begin with the Section 4 which describes how we use expected information gain in a physicomimetic
approach. The combined approach is used to drive the sensor positions over time, resulting in an easy-to-compute
and robust method of sensor state evolution. In Section 5, we give simulation results showing the performance
obtained with and without including the information surface in the physicomimetic approach. Finally, we give
some remarks about performance and conclusions in Section 6.
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2. THE JOINT MULTITARGET PROBABILITY DENSITY
In this section, we give the details of a Bayesian method of multitarget tracking predicated on recursive estimation
of a probabilistic entity called the Joint Multitarget Probability Density (JMPD). The JMPD and its particle
filter implementation are discussed more thoroughly in other works.7, 8 We review only the necessary details
here.

Recursive estimation of the JMPD provides a means for tracking an unknown number of targets in a Bayesian
setting. The statistical model employed uses the joint multitarget conditional probability density

p(xk
1 ,xk
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k
T , T k|Zk) = p(xk
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as the probability density for exactly T targets with the states x1,x2, ...xT−1,xT at time k based on a set of past
observations Zk. We abuse terminology by calling p(xk
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valued random variable. In fact, as (1) shows, the JMPD is a continuous discrete hybrid as it is a product of the
probability mass function p(T k|Zk) and the probability density function p(xk
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k
T |T k,Zk).

The number of targets at time k, T k, is a variable to be estimated simultaneously with the states of the
T k targets. The JMPD is defined for all T k, T k = 0 · · ·∞. The observation set Zk refers to the collection
of measurements up to and including time k, i.e. Zk = {z1, z2, ...zk}, where each of the zi may be a single
measurement or a vector of measurements made at time i.

Each of the xt in the density p(xk
1 ,xk

2 , ...xk
T−1,x

k
T |T k,Zk) is a vector quantity and may (for example) be

of the form [x, ẋ, y, ẏ]. We refer to each of the T target state vectors x1,x2, ...xT−1,xT as a partition of the
multitarget state X. For convenience, the density will be written more compactly in the traditional manner as
p(Xk|T k,Zk), which implies that the state-vector Xk represents a variable number of targets each possessing
their own state vector. We will drop the time superscript k for notational simplicity when no confusion will arise.

The likelihoods p(z|X, T ) and the joint multitarget probability density p(X, T |Z) are conventional Bayesian
objects manipulated by the usual rules of probability and statistics. Thus, a multitarget system has state
X = (x1, · · · ,xT ) with probability distribution p(x1, · · · ,xT , T |Z). This can be viewed as a hybrid stochastic
system where the discrete random variable T governs the dimensionality of X. Therefore the normalization
condition that the JMPD must satisfy is

∞∑

T=0

∫
dx1 · · · dxT p(x1, · · · ,xT , T |Z) = 1 . (2)

where the single integral sign is used to denote the T integrations required.

Quantities of interest can be deduced from the JMPD. For example, the probability that there are exactly T
targets present in the surveillance area is given by the marginal distribution

p(T |Z) =
∫

dx1 · · ·dxT p(x1, · · · ,xT , T |Z) . (3)

The temporal update of the posterior likelihood proceeds according to the usual rules of Bayesian filtering.
The model of how the JMPD evolves over time is given by p(Xk, T k|Xk−1, T k−1) and will be referred to as
the kinematic prior (KP). The kinematic prior includes models of target motion, target birth and death, and
any additional prior information that may exist such as terrain and roadway maps. In the case where target
identification is part of the state being estimated, different kinematic models may be used for different target
types. The time-updated (prediction) density is computed via the model update equation as

p(Xk, T k|Zk−1) =
∞∑

T k−1=0

∫

Xk−1

dXk−1p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Zk−1) . (4)

The measurement update equation uses Bayes’ rule to update the posterior density with a new measurement
zk as

p(Xk, T k|Zk) =
p(zk|Xk, T k)p(Xk, T k|Zk−1)

p(zk|Zk−1)
. (5)
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2.1. Kinematic Modeling : The Model p(Xk, T k|Xk−1, T k−1)

The Bayesian framework outlined above requires a model of how the system state evolves, p(Xk, T k|Xk−1, T k−1).
This includes both how the number of targets changes with time (i.e. T k versus T k−1), what states targets tend
to arrive in and depart from, and how individual targets that persist over time evolve (i.e. xk versus xk−1).
In general, this model is chosen using the physics of the particular system under consideration. The target
motions in the simulation studies presented in this paper come from a set of real ground targets recorded during
a military battle exercise. Therefore, here we specialize the state models to this application. More general models
(or simply different models) are possible and can be implemented similarly if warranted by the physics of the
situation.

To specify the state model, we need to generate an expression for how the state of the system evolves,
p(Xk, T k|Xk−1, T k−1), which can be evaluated for any set of multitarget states and target counts.

We first define a set of spatially varying priors on target arrival and departure from the surveillance region.
We refer to these two events as target birth and death. Let αk(x) denote the a priori probability that a target
will arrive (birth) at location x at time k. Similarly, let the a priori probability that a target in location x will
leave the surveillance region (death) be denoted by βk(x). Target arrival may indicate a target actually passing
into the surveillance region (e.g., along the border of the region) or may indicate the target has taken an action
that first makes it detectible to the sensor (e.g., motion by a target when the only sensor is a moving target
indicator). Target death may indicate a target actually leaving the surveillance region or becoming permanently
extinguished. These model parameters specify how target number changes with time.

For targets that persist over a time step (those targets that are present at both time step k − 1 and k), we
model the target motion as linear and independent for each target. Using x = (x, ẋ, y, ẏ) to denote the state
vector of an individual target, the model is

xk
i = Fxk−1

i + wk
i , (6)

where

F =





1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1



 . (7)

Here wk
i is 0-mean Gaussian noise with covariance Q = diag(20, .2, 20, .2), which was selected based on

an empirical fit to the data. We emphasize here that Linear/Gaussian models are not a requirement of the
formulation, but are used as they have been found to perform well in simulation studies with the real data. More
complicated models of target motion can be inserted where appropriate without directly effecting computations
in the algorithm.

2.2. Sensor Modeling : The Model p(zk|Xk, T k)
The model problem considered in Section 5 consists of M sensors that make detections on a pixelated grid for
the purposes of detecting and tracking a group of moving targets.

The measurement process is idealized as follows. The surveillance region is broken into Nx × Ny contiguous
pixels. The x- and y- ground-plane projection of each pixel is ∆x and ∆y. The sensor response within pixel i is
uniform for targets in pixel i and vanishes for targets outside pixel i. It is convenient to define the occupation
number ni(X) for pixel i as the number of targets in X that lie in i. The single target signal-noise-ratio (SNR),
assumed constant across all targets, is denoted λ. We assume that when multiple targets lie within the same
pixel their amplitudes add non-coherently (this will be an accurate model for unresolved optical targets and radar
targets not moving as a rigid body). Then the effective SNR when there are n targets in a pixel is λn = nλ and
we use pn(zi) to denote the pixel measurement distribution (note that the background distribution is obtained
by setting n = 0).

A sensor hovers above the surveillance region and measures the pixel that is directly below it. Therefore,
a scan consists of M returns, and a measurement z consists of the pixel output vector z = [z1, . . . , zM ], where
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zi is the output of pixel i. In general, zi can be an integer, real, or complex valued scalar, a vector or even a
matrix, depending on the sensor. If the data are thresholded, then each zi will be either a 0 or 1. Note that for
thresholded data, z consists of both threshold exceedances and non-exceedances. The failure to detect a target
at a given location can have as great an impact on the posterior distribution as a detection.

We model both measurements of spatially separated pixels and multiple measurements of the same pixel at
as conditionally independent given the state, i.e.,

p(z|X, T ) =
∏

i

p(zi|X, T ) . (8)

Let χi(xt) denote the indicator function for pixel i, defined as χi(xt) = 1 when a (single) target in state xt

projects into sensor pixel i (i.e., couples to pixel i) and χi(xt) = 0 when the target does not project into sensor
pixel i. Observe a pixel can couple to multiple targets and single target can contribute to the output of multiple
pixels, say, by coupling through side-lobe responses. The indicator function for the joint multitarget state is
constructed as the logical disjunction

χi(X, T ) =
T∨

t=1

χi(xt) . (9)

The set of pixels that couple to X is iX = {i|χi(X, T ) = 1}. For the pixels that do not couple to X, the
measurements are characterized by the background distribution, denoted p0(zi). With this, (8) can be written
as

p(z|X, T ) =
∏

i∈iX

p(zi|X, T )
∏

i/∈iX

p0(zi) ∝
∏

i∈iX

p(zi|X, T )
p0(zi)

. (10)

With these modeling assumptions, the measurement distribution in pixel i depends only on its occupation
number and (10) becomes

p(z|X, T ) ∝
∏

i∈iX

pni(X),T (zi)
p0(zi)

. (11)

To complete the specification of the sensor model, we must give its dependence on SNR. Many models are
plausible, depending on the detailed nature of the sensor physics. In this work, we have elected to use Rayleigh-
distributed measurements. This distribution corresponds to envelope detected signals under a complex Gaussian
radar return model, and has been used, for example, to model interfering targets in a monopulse radar system9, 10

and to model clutter and target returns in turbulent environments.11 Rayleigh models are also often used for
diffuse fading channels. In the pre-thresholded case, this implies

pn(z) =
z

1 + nλ
exp

(
− z2

2(1 + nλ)

)
. (12)

When the tracker only has access only to thresholded measurements, we use a constant false-alarm rate
(CFAR) model for the sensor. If the background false alarm rate is set at Pf , then the detection probability
when there are n targets in a pixel is

Pd,n = P
1

1+nλ

f . (13)

This extends the usual relation Pd = P
1

1+λ

f for thresholded Rayleigh random variables at SNR λ.12

Even for modest problems, the sample space of the JMPD is enormous as it contains all possible configurations
of state vectors xt for all possible values of T . Specifically, if the state of an individual target is given by the
4-tuple

(
x, ẋ, y, ẏ

)
, the sample space of the JMPD then contains vectors of length 4N for all positive finite N .

Thus, to estimate the JMPD in a computationally tractable manner, a more sophisticated approximation method
is required.
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We use a particle filter to represent the JMPD and approximately implement the time and measurement
update equations (4) and (5),

p(X, T |Z) ≈
Npart∑

p=1

wpδ(X − Xp) (14)

where

δ(X − Xp) =
{

0 T �= Tp

δD(X − Xp) otherwise . (15)

In earlier works,7, 8 we describe the novel importance density design that makes this approach tractable. The
importance density is designed to recognize when it is permissible to factor the JMPD into a product of smaller
densities and also biases particle proposals toward areas of high measurement likelihood.

3. INFORMATION BASED SENSOR MANAGEMENT

In this section, we show how we use information theory to compute the locations in the surveillance region that
the sensors should prefer to measure. This is done by computing the expected information gain as a function
of sensor location r. This map of important locations will then be used to bias the physicomimetic method as
described in Section 4.

We measure the value of a sensing action by the information that is gained by its execution. Since we wish to
determine the best sensing action to take before actually executing it, we use the information gain that a sensing
action is expected to produce.

3.1. The Rényi Divergence

The calculation of information gain between two densities p1 and p0 is done using the Rényi information diver-
gence,13, 14 also known as the α-divergence:

Dα(p1||p0) =
1

α − 1
ln

∫
pα
1 (x)p1−α

0 (x)dx (16)

The α parameter may be used to adjust how heavily one emphasizes the tails of the two distributions p1 and
p0. In the limiting case of α → 1 the Rényi divergence becomes the commonly utilized Kullback-Leibler (KL)
discrimination

lim
α→1

Dα(p1||p0) =
∫

p0(x)ln
p0(x)
p1(x)

dx . (17)

If α = 0.5, the Rényi information divergence becomes the Hellinger affinity 2ln
∫ √

p1(x)p0(x)dx, which is
related to the Hellinger-Battacharya distance squared15 via

DHellinger(p1||p0) = 2
(

1 − exp
(
.5D 1

2
(p1||p0)

))
. (18)

3.2. Rényi Divergence Between the Prior and Posterior JMPD

The function Dα in (16) is a measure of the divergence between the densities p0 and p1. In our application,
we are interested in computing the divergence between the predicted density p(Xk, T k|Zk−1) and the updated
density after a measurement is made by a single sensor at location r, denoted p(Xk, T k|Zk, r). Therefore, the
relevant divergence is

Dα

(
p(·|Zk, r)||p(·|Zk−1)

)
=

1
α − 1

ln

∫

X

p(Xk, T k|Zk, r)αp(Xk, T k|Zk−1)1−αdXk , (19)
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where the multitarget state X is a vector of variable dimension. The symbol
∫
X

f(X)dX is used as short hand
notation to denote the integral over the domain. This can be precisely written as

∫

X

dXf(X, T ) .=
∞∑

T=0

∫
dx1...xT f(x1 · · ·xT , T ) . (20)

Using Bayes’ formula applied to the JMPD (5) we obtain

Dα

(
p(·|Zk, r)||p(·|Zk−1)

)
=

1
α − 1

ln
1

p(zk|Zk−1, r)α

∫

X

p(zk|Xk, T k, r)αp(Xk, T k|Zk−1)dXk . (21)

To make the formulation explicitly clear, we use p(zk|Zk−1, r) to denote the distribution on sensor outputs
at time k by a sensor at r given the set of previous measurements Zk−1.

3.3. The Expected Rényi Divergence for a Sensing Action

Our real aim is to predict the value of different sensing actions before actually receiving the measurement z. To
this end, we calculate the expected value of the divergence for each possible action. This expectation predicts
the amount of information gain that would be received if a sensor were positioned above a particular cell for all
possible positionings.

The expected value of the divergence may be written as an integral over all possible outcomes z when
performing a measurement at r as

φ(r) ≡ 〈Dα〉r =
∫

dzkp(z|Zk−1, r)Dα

(
p(·|Zk, r)||p(·|Zk−1)

)
. (22)

As is discussed in,1 this integral can be calculated in O(C ∗ Nparts) where C is the number of sensor cells
and Nparts is the fidelity of the particle filter approximation to the JMPD.

4. INFORMATION BIASED PHYSICOMIMETICS FOR MULTIPLE PLATFORM
SENSOR MANAGEMENT

In this section we present the details of the physicomimetic model used to generate sensor platform motion. The
underlying model is taken from molecular dynamics as discussed by Allen and Tildesley.16 The sensors obey
a Brownian dynamics model similar to the colored noise model sometimes used to model maneuvers in target
tracking applications. The new feature is that artificial forces from the other sensors and the information field
are also coupled to the Brownian dynamics. The forces used here are constructed so that they depend only on
the sensor positions and are independent of their velocities. Let fi be the force on sensor i due to the information
field gradient and all of the other sensors (to be defined below). Then the acceleration of a unit mass object
obeys the Langevin equation

r̈i(t) = −1
τ
ṙi(t) + fi(t) + dβi(t) , (23)

where βi(t) is an 2-vector white noise process with E[dβ(t)dβ(t′)�] = 2σ2
m

τ δ(t− t′)12×2, 12×2 is the 2×2 identity
matrix, and ri is a real 2-vector giving the position of sensor i. In this model the noise processes driving each
sensor are independent, in analogy to the usual assumption of molecular Brownian dynamics. In the absence
of external forces, this leads to a zero-mean random noise process with exponentially auto-correlated velocity,
E[ṙ(t)ṙ(t + t′)] = σ2

m exp(−|t′|/τ).

In principal, the sensor platform motion is obtained by integrating (23) in time. Since closed form solutions
are not generally available, numerical methods must be used. There are a host of solution approaches within
the molecular dynamics literature, most of which are based on finite differencing schemes. It is important to
understand qualitatively the trade between speed, accuracy and stability. If insufficient care is exercised in
selecting the differencing scheme then very small time integration steps are required to obtain an accurate,
stable approximation to the underlying continuum equations. In artificial physics one is not attempting to
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model a particular physical system, so accuracy is lower priority than in molecular dynamics applications, but
stability is still a requirement. For this reason we have elected to use the Brownian dynamics Verlet algorithm
(a predictor-corrector algorithm detailed in16). The algorithm proceeds in time steps of size κ. This requires
storage of both position rk

i and velocity ṙk
i for each sensor i at time step k. The force on sensor i at time k due

to the information field and the locations of all other sensors is denoted fk
i . The first step in Brownian Verlet is

to update the sensor positions according to

rk+1
i = rk

i + c1κṙk
i + c2κ

2fk
i + δrk

i , (24)

where δrk
i is a random noise sequence specified below. The updated positions are used to compute fk+1

i and the
velocities are updated as

ṙk+1
i = c0ṙk

i + (c1 − c2)κfk
i + c2κfk+1

i + δṙk+1
i , (25)

where
c0 ≡ exp(−κ/τ) (26)

c1 ≡ τ

κ
(1 − c0) (27)

c2 ≡ τ

κ
(1 − c1) (28)

and (rk+1�
i , ṙk+1�

i )� is a zero-mean discrete time Gaussian noise process. It is fully specified by requiring that
the x- and y-components are un-correlated and that (rk+1

ix , ṙk+1
ix )� has covariance Qs with elements are

Qsrr = σ2
mτ2(4 exp(−κ/τ) − 3 − exp(−2κ/τ) + 2κ/τ) (29)

Qsṙṙ = σ2
m(1 − exp(−2κ/τ)) (30)

Qsrṙ = σ2
mτ(1 − 2 exp(−κ/τ) + exp(−2κ/τ)) (31)

The information gain surface is a scalar field. To derive a force from it, we simply take its gradient,

FI(r) = −β∇rφ(r) (32)

where β is a coupling constant that must be designed to obtain good performance. This component specifies the
relative strength of the information gradient force. The minus sign arises from the fact that sensors are to be
attracted to regions of high information gain.

To provide a coordinating interaction amongst the sensors we use a generalization of the so-called Lennard-
Jones potential that serves as a zeroeth order model for the intermolecular forces of liquids (it approximates the
dipole-dipole caused by charge fluctuations in polarizable neutral molecules). The Lennard-Jones potential for
a pair of objects separated by a distance r is

VLJ(r) = ε
[(γ

r

)m

−
(γ

r

)n]
(33)

where m > n > 0. For the standard Lennard-Jones potential m = 12 and n = 6 so it is sometimes referred to as
the 6-12 potential. The shape of the potential for several values of m and n is shown in Figure (4).

Observe that VLJ is repulsive at short range and attractive at long range. For the standard 6-12 case, the
attractive region has quite a short range. Also, as m is reduced, the attractive range increases. The Lennard-
Jones force is radial and has signed magnitude

FLJ(r) = −ε

[
m

γm

rm+1
− n

γn

rn+1

]
(34)

The total external force on sensor i is then the sum of the Lennard-Jones forces felt from all of the other
sensors (34) and the information gradient force (32).
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Figure 1. The Lennard-Jones force between two sensors as a function of radial distance, r

5. SIMULATION RESULT

In this section, we present results of the proposed multi-platform sensor management algorithm. We use ten
targets moving in a 5000m x 5000m surveillance area. Each target is modeled using the four-dimensional state
vector [x, ẋ, y, ẏ]′ . Target trajectories for the simulation come directly from a set of recorded data based on
GPS measurements of vehicle positions over time collected as part of a battle training exercise at NTC. Targets
routinely come with in sensor cell resolution (i.e. cross). Target positions are recorded at 1 second intervals, and
the simulation duration is 500 time steps.

At initialization both the number of targets and the states of the individual targets is unknown to the filter.
The goal of the algorithm is to position the sensors over time so as to learn how many targets are in the
surveillance region and the states (position and velocity) of each.

The filter assumes constant velocity motion with a large diffusive component as the model of target kinematics.
As the simulations use real target motion, this model is severely at odds with the actual target behavior. The
approximation to the JMPD uses 250 particles, each of which has an estimate of both target number and the
states of the individual targets.1

At each time step, the M sensors are updated based on the algorithm described in Section 4 and a mea-
surement is made from each. Measurements are made with a 100m x 100m detection cell resolution. For this
simulation, we assume thresholded measurements as described in Section 2. Therefore, when making a mea-
surement the imager returns either a 0 (no detection) or a 1 (detection) governed by Pd, Pf , and SNR. This
model is known by the filter and used to evaluate the update equation. In this illustration, we take Pd = 0.5,
SNR = 10dB, and Pf = P

(1+SNR)
d , which is a standard model for thresholded detection of Rayleigh returns.

The performance of the algorithm is measured in two ways. First, we compare the estimated number of
targets to the true number of targets, where the estimated number of targets at time k is defined as

T̂ k =
∞∑

T=0

T

∫

X

dXp(X, T |Z) (35)

Second, we use the ground truth to calculate the number of actual targets that are successfully tracked by
the filter. For each of the hypothesized target t, we have an estimate of the target state as

x̂k
t =

∫
xtdx1 · · ·xtp(x1 · · ·xT |Z) . (36)
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There are issues of permutation symmetry, partition sorting, and the particle filter implementation that are
not covered here that allow this estimation to be made. They are discussed at length in7, 8 .

The target estimates are then matched up with the ground truth to give a measure of how many true targets
are being successfully tracked, which we denote rtracked. Note this measure captures both targets that should
have been detected but weren’t as well as targets that were successfully detected but then poorly tracked. These
two measures taken in combination allow for determination of the number of false targets initiated as well as the
number of true targets not under track.

Figure 2 presents the results of a Monte Carlo simulation where the number of sensors in the surveillance
region were varied. We contrast the performance of the plain physicomimetic model with the information-biased
physicomimetic model.
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Figure 2. The performance of the information based method of multi-platform tasking described in this paper. The
algorithm performance is shown as a function of number of sensors available to the resource manager. The performance is
measured in two ways. First (left), performance is measured by the number of targets that are actually correctly detected
and tracked. Second (right), performance is measured by the filter estimate of target number. The true number of targets
is 10 so in both curves, ideal performance is 10 (shown by the dashed lines). The figures illustrate that the approach
that includes coupling to the information gradient with 50 sensors has similar performance to the plain physicomimetic
approach with 250 sensors.

6. CONCLUSIONS

The principal objective of this work has been to demonstrate the utility of combining artificial physics and
information-based sensor management to direct the motion of large numbers of mobile sensors. This preliminary
work clearly demonstrates that coupling the sensors to the information field provides improved detection and
tracking performance relative to the case without using the information field. The relative importance of the
information field, the Lennard-Jones coordinating field and the Brownian dynamics is less clear and requires
further study.

Another interesting question is how to extend this to more complex action spaces where, say, the sensor must
maneuver as it does here and in addition, optimize the sensor mode and other degrees of freedom. In this case
we have multiple information gain surfaces corresponding to the different degrees of freedom for the sensor.

Perhaps the most challenging questions relate to the stability and optimality of the system. Both the data
fusion system and the artificial physics systems in this approach have a large number of parameters. On the
data fusion side, we have detection and false alarm probabilities, sensor resolution and target motion parameters.
These parameters are directly related to the physics of the system and therefore can be modeled exactly if such
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information is available. In the artificial physics implementation we have the parameters characterizing the
coupling to the information surface, the parameters characterizing the Lennard-Jones interaction amongst the
sensors and the Brownian dynamics parameters. These parameters are not directly coupled to the physics and
so in that sense they are more difficult to set optimally. Furthermore, there is no theory indicating how these
parameters interact. Ideally, given the sensor and target parameters, we would like to be able to determine all
of the AP parameters or at least have some idea how they scale.

For example, if the coupling to the information field is too large, then the sensors will tend to all be attracted
to a single region. Are there criteria for adjusting the couplings to guarantee that this cannot occur? Suppose
the AP parameters have been selected to provide good performance for targets of a particular SNR. Can we at
least derive scaling rules for how a good set of AP parameters should be modified as the SNR, target plant noise
and sensor resolution are varied? Currently the answer is no.

REFERENCES
1. C. M. Kreucher, K. Kastella, and A. O. Hero III, “Information based sensor management for multitarget

tracking,” Proceedings of SPIE Conference on Signal and Data Processing of Small Targets , 2003.
2. K. J. Hintz, “A measure of the information gain attributable to cueing,” IEEE Transactions on Systems,

Man and Cybernetics 21(2), pp. 237–244, 1991.
3. K. Kastella, “Discrimination gain for sensor management in multitarget detection and tracking,” IEEE-SMC

and IMACS Multiconference CESA 1, pp. 167–172, 1996.
4. R. Mahler, “Global optimal sensor allocation,” Proceedings of the Ninth National Symposium on Sensor

Fusion 1, pp. 167–172, 1996.
5. J. Borenstein, “Real-time obstacle avoidance for fast mobile robots,” IEEE Transactions on Systems, Man,

and Cybernetics (5), pp. 1179–1187, 1989.
6. W. Spears, R. Heil, D. Spears, and D. Zarzhitsky, “Physicomimetics for mobile robot formations,” Pro-

ceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS-04) 3, pp. 1528–1529, 2004.

7. C. M. Kreucher, K. Kastella, and A. O. Hero III, “Tracking multiple targets using a particle filter repre-
sentation of the joint mulitarget proabbility density,” Proceedings of SPIE Conference on Signal and Data
Processing of Small Targets , 2003.

8. C. M. Kreucher, K. Kastella, and A. O. Hero III, “Multitarget tracking using a particle filter representation
of the joint multitarget probability density,” to appear in IEEE Transactions on Aerospace and Electronic
Systems , 2005.

9. Y. Bar-Shalom and W. D. Blair, Multitarget-Multisensor Tracking: Applications and Advances, Volume III,
Artech House, 2000.

10. B. E. Tullsson, “Monopulse tracking of rayleigh targets: A simple approach,” IEEE Transactions on
Aerospace and Electronic Systems 27(3), pp. 520–531, 1991.

11. C. H. Gowda and R. Viswanatha, “Performance of distributed CFAR test under various clutter amplitudes,”
IEEE Transactions on Aerospace and Electronic Systems 35(4), pp. 1410–1419, 1999.

12. Y. Bar-Shalom, Multitarget Multisensor Tracking: Advanced Applications, Artech House, 1990.
13. A. Rényi, “On measures of entropy and information,” Proceedings of the 4th Berkeley Symposium on Math-

ematics, Statistics, and Probility 1, pp. 547–561, 1961.
14. A. O. Hero III, B. Ma, O. Michel, and J. Gorman, “Applications of entropic spanning graphs,” IEEE Signal

Processing Magazine (Special Issue on Mathematics in Imaging) 19(5), pp. 85–95, 2002.
15. A. O. Hero III, B. Ma, O. Michel, and J. D. Gorman, “Alpha divergence for classification, indexing and

retrieval,” Technical Report 328, Comm. and Sig. Proc. Lab. (CSPL), Dept. EECS, The University of
Michigan , 2001.

16. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989.

Proc. of SPIE Vol. 5820     151


