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ABSTRACT

This paper describes a computationally efficient method for track-
ing multiple moving targets. The method is predicated on esti-
mation of the joint multitarget probability density (JMPD), which
is a single probabilistic entity capturing uncertainty in both the
number of targets and the states of the individual targets. The non-
Gaussian/nonlinear measurement model adopted here does not per-
mit exact computation of the JMPD so some method of approxima-
tion is required. A novel particle filtering algorithm for recursive
estimation of the JMPD is proposed which provides computational
tractability by automatically factoring the high dimensional mul-
titarget state when applicable and using the optimal importance
density with Rao-Blackwellisization on each of the factors. The
efficiency of the proposed algorithm is shown via simulation re-
sults using real, recorded target trajectories.

1. INTRODUCTION

In this paper we investigate the problem of tracking multiple mov-
ing targets from a collection of noisy, ambiguous sensor measure-
ments. The approach is based on estimation of the joint multitarget
conditional probability density (JMPD) [8]. The JMPD is a single
probabilistic entity that simultaneously captures uncertainty in the
number of targets and the states of the individual targets although
here we restrict our attention to the case where the number of tar-
gets is known and fixed. The algorithm developed here forms the
basis of an algorithm for the more general case of an unknown and
time varying target number [13]. Our work is preceded by many
theoretical works including [7][10][16][12] and many implemen-
tational approaches including [9][6][14][11].

The measurement model adopted here divides the observa-
tion region into cells or pixels with returns in each cell deter-
mined probabilistically by the number of targets in the cell and
the signal-to-noise ratio. Under such conditions the JMPD cannot
be computed exactly so that numerical techniques are required for
its representation and propagation through time. The high dimen-
sionality of the JMPD dictates the use of sophisticated numerical
procedures. We advocate a particle filtering approach [3], which
is a numerical method of solving nonlinear filtering equations. In
this approach, the JMPD is represented by a set of samples (par-
ticles) and associated weights. Particles are propagated through
time via an importance density and particle weights are updated
via a weighting equation.

The main contribution of this paper is a multitarget tracking
algorithm that recursively estimates the JMPD using a particle fil-
ter with a carefully designed importance density. The method takes
advantage of the fact that when groups of targets are well separated
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in sensor space there is no measurement ambiguity and therefore
the groups may be treated independently. Additionally, proposals
for each target group are done using the exact optimal importance
density (OID) with Rao-Blackwellisization of the unobserved state
space parameters. These two features combine to result in a com-
putationally efficient multitarget tracking algorithm.

We demonstrate via simulation that this carefully designed im-
portance density allows for reliable tracking of ten targets using
sample sizes as small as 50 particles for high SNRs. In the sim-
ulations target trajectories are taken from a set of actual targets
recorded during an army battle drill.

The paper is organized as follows. The target dynamic and
measurement models are given in Section 2. A brief review of the
particle filter approximation to the JMPD is given in Section 3.
Section 4 contains the proposed algorithm and Section 5 provides
a brief performance analysis. Conclusions are given in Section 6.

2. NOTATION AND MODELING

Consider the presence of r targets with the state of the ith target at
time k denoted as xk

i ∈ R
nx , i = 1, . . . , r. The multitarget state

at time k is defined as the concatenation of the individual target
states, Xk = (xk′

1 , . . . ,xk′
r )′. It is assumed that each target moves

independently in a plane with the individual target states composed
of position and velocity in each direction. The position elements
of the ith target are collected into ρ

k
i and the velocity elements are

collected into vk
i so that xk

i = (ρk′
i ,vk′

i )′. The individual target
states evolve according to

x
k
i |x

k−1
i ∼ N(Fx

k−1
i ,Qk

i ) (1)

where N(µ, Σ) denotes the Gaussian distribution with mean µ

and covariance matrix Σ, Qk
i is the covariance matrix for the pro-

cess noise of the ith target and

F =

(
1 T
0 1

)
⊗ I2

with Im denoting the m×m identity matrix, ⊗ denoting the Kro-
necker product and T denoting the sampling period.

The observation region is divided into C cells with the mea-
surement vector zk = (zk

1 , . . . , zk
C)′ containing the measurements

obtained in each cell. The position elements of the targets are col-
lected into Pk = (ρk′

1 , . . . , ρk′
r )′. Measurements are made in-

dependently in each cell with the distribution of the measurement
in the jth cell depending on the number of targets residing in the
cell. Let oj(P

k) denote the number of targets occupying the jth
cell. Then,

p(zk|Pk) =
C∏

j=1

loj(Pk)(z
k
j ) (2)

In the case of non-thresholded measurements, zk
j ∈ R and zk

j |P
k

is Rayleigh distributed with parameter 1+oj(P
k)λ where λ is the
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signal-to-noise ratio (SNR). For thresholded measurements, zk
j ∈

{0, 1} with zk
j = 1 corresponding to a target detection in the jth

cell. The threshold is set so that P(zk
j = 1|oj(P

k) = 0) = PF A.
We then have, for j = 1, . . . , C ,

loj(Pk)(z
k
j ) =

{
P

1/(1+oj(Pk)λ)

F A , zk
j = 1,

1 − P
1/(1+oj(Pk)λ)

F A , zk
j = 0.

3. APPROXIMATION OF THE JOINT MULTITARGET
PROBABILITY DENSITY FUNCTION

Solution of the multitarget tracking problem involves recursive
computation of the JMPD p(Xk|Zk) where Zk = {z1, . . . , zk}
is the measurement history [8]. Assuming that p(Xk−1|Zk−1) is
available, the JMPD at time k can be computed via the Chapman-
Kolmogorov-Bayes recursion:

p(Xk|Zk) =
p(zk|Xk)

p(zk|Zk−1)

∫
p(Xk|Xk−1)p(Xk−1|Zk−1) dXk−1

(3)
Closed-form solution of (3) is generally not possible so it is nec-
essary to use an approximation. Early work in this area used a
deterministic grid approximation which is computationally feasi-
ble only for simple problems involving a small number of targets
moving in one dimension [8]. More recently, particle filters (PFs)
have been used to approximate the JMPD in realistic scenarios in-
volving large numbers of targets moving in two-dimensions [9]. A
similiar approach will be used in this paper although the technique
will be refined to better handle situations in which several targets
are in close proximity.

PFs provide a recursive stochastic grid approximation to the
exact solution of Bayesian state estimation problems. The idea is
that, by simulating the assumed dynamic and measurement models
many times, a set of particles will be obtained which move of their
own volition to the desired parts of the state-space. PFs are often
implemented using the technique of sequential importance sam-
pling. Under this scheme, given a set of particles Xk−1

1 , . . . ,Xk−1
n

with weights wk−1
1 , . . . , wk−1

n which approximates the JMPD at
time k − 1, the PF approximation to the JMPD at time k is found
by performing the following steps for t = 1, . . . , n

X
k
t ∼ q(·|X0

t , . . . ,X
k−1
t ,Zk) (4)

wk
t ∝ wk−1

t

p(zk|Xk
t , Zk−1)p(Xk

t |X
k−1
t )

q(Xk
t |X

0
t , . . . ,X

k−1
t ,Zk)

(5)

where q is the importance density. In order to ensure that particles
remain approximately evenly weighted, a necessity for accurate
approximation, the particle set should be resampled at regular in-
tervals [5]. This material is covered in greater depth in [1].

4. AN EFFICIENT PARTICLE FILTERING ALGORITHM

It is relatively straightforward to develop a particle filtering scheme
which, given a sufficient sample size, will provide an accurate ap-
proximation of the JMPD. However a solution of minimal com-
putational expense requires careful design of the particle filter by
using the inherent structure of the tracking model to reduce the
amount of numerical simulation the particle filter is required to
perform. In the multitarget tracking problem this is achieved through
exploiting the approximate marginalization of the measurement

likelihood for well-separated target clusters, the use of joint measurement-
directed proposals for each target cluster and Rao-Blackwellization.
The dynamic equation (1) for the ith target can then be written as

ρ
k
i = ρ

k−1
i + Tv

k−1
i + ε

k
i (6)

v
k
i = v

k−1
i + η

k
i (7)

where(
ε

k
i

η
k
i

)
∼ N

(
0,

(
Qk

i,ρ Λk′
i

Λk
i Qk

i,v

))
= N(0, Qk

i ) (8)

Since (6) and (7) form a linear/Gaussian system of equations with
(7) the “process” equation and (6) the “measurement” equation,
the distribution of vk

i conditional upon the position trajectory of
the ith target is Gaussian and can be found exactly using the Kalman
filter. This suggests the following decomposition of the JMPD of
X0, . . . ,Xk:

p(X0, . . . ,Xk|Zk) = p(P0, . . . ,Pk|Zk)

×
r∏

i=1

p(v0
i , . . . ,v

k
i |ρ

0
i , . . . , ρ

k
i ,Zk)

The densities p(v0
i , . . . ,v

k
i |ρ

0
i , . . . , ρ

k
i ,Zk), i = 1, . . . , r can be

computed using the Kalman filter (KF) and p(P0, . . . ,Pk|Zk) can
be approximated using a PF.

Computation of the posterior density of the velocity elements
can be performed using well-known recursions after allowing for
the dependence between ε

k
i and η

k
i in (8) [2]. The details are

omitted for the sake of brevity. The posterior mean and covariance
matrix for the ith target at time k are denoted as v

k|k
i and Σ

k|k
i ,

respectively.
The JMPD of the target positions at time k − 1 is represented

by the particle set {Pk−1
t , wk−1

t }n
t=1. Note that we must have

wk−1
t = 1/n for reasons which will be explained below. This

particle set can be considered to approximate the JMPD as

p̂(Pk−1|Zk−1) = 1/n
n∑

t=1

δ(Pk−1 − P
k−1
t )

where δ is Dirac’s delta function. The particle filter approximation
to the JMPD at time k can then be found as

p̂(Pk|Zk) ∝ p(zk|Pk)/n
n∑

t=1

p(Pk|Pk−1
t ) (9)

The PF seeks a set of samples from (9). In the case of multitar-
get tracking it is desired to increase the efficiency of the sampling
process by taking advantage of the approximate marginalization of
the JMPD for well-separated targets. The targets are separated into
s ≤ r clusters C1, . . . , Cs such that

⋃s
l=1 Cl = {1, . . . , r} and

∀l ∈ {1, . . . , s}, ∀i ∈ Cl,

|ρ̂k
i − ρ̂

k
j | ≤ Γ ⇒ j ∈ Cl

where ρ̂
k
i is the predicted position of the ith target and Γ is a

threshold. The positions of the targets in the lth cluster are col-
lected into ck

l . For a sufficiently large value of Γ the likelihood
can be written as

p(zk|Xk) ≈

s∏
l=1

π(zk|ck
l ) (10)
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where π(z|c) is the density of the measurement vector z condi-
tional on the target cluster c under the assumption that only this tar-
get cluster exists. The π notation will be used to indicate densities
evaluated in this manner. The approximate marginalisation of the
likelihood allows particles at time k to be constructed from target
clusters which belonged to different particles at time k − 1. When
using a measurement-directed proposal density for each cluster,
this greatly reduces computational expense, since the expense of
jointly drawing samples for a group of targets increases exponen-
tially with the number of targets, and improves performance, since
it is easier to separately select several good clusters than it is to
jointly select several good clusters.

The process of constructing particles by collecting clusters
from several particles is equivalent to sampling from the distri-
bution

p(ck
1 , d1, . . . , c

k
s , ds|Z

k) ∝ p(zk|Pk)
s∏

l=1

p(ck
l |c

k
l,dl

) (11)

where dl ∈ {1, . . . , n}, l = 1, . . . , s is the index of the particle
from which the lth cluster will be selected. This is similiar in spirit
to the formulation of the auxiliary particle filter [15].

Sampling from (11) is performed through an importance den-
sity which factorises as

q(ck
1 , d1, . . . , c

k
s , ds|Z

k) =
s∏

l=1

q(ck
l , dl|Z

k) (12)

The importance density for the lth cluster can be written as

q(ck
l , dl|Z

k) = ψl,dl
π(ck

l |c
0
l,dl

, . . . , ck−1
l,dl

,Zk) (13)

where ψl,t is the probability of selecting the lth cluster from the
tth particle. The trajectory c0

l , . . . , c
k−1
l should be interpreted to

mean the collection of position trajectories of targets in the cluster
Cl at time k. Eq. (13) therefore involves a slight abuse of nota-
tion, made to reduce notational complexity, since the targets in the
lth cluster will almost certainly not be the same at all time steps.
The weights ψl,1, . . . , ψl,n can be chosen arbitrarily although, as
discussed above, proper setting of these weights is necessary to
take full advantage of the approximate marginalization. The most
sensible choice seems to be the usual OID weight update [4]

ψl,t ∝ π(zk|ck−1
l,t ), t = 1, . . . , n. (14)

The suitability of this choice of weighting will become apparent
when the weighting update for the reconstructed particles is de-
rived at the end of the section.

Expressions for the JOID and the weights (14) will now be
given for the case of threshold measurements. Similar expressions
can be obtained for the non-thresholded case. The working has
been omitted for the sake of brevity. Assume a cluster of q targets
and let ck = (ρk′

1 , . . . , ρk′
q )′ denote the collection of target posi-

tions and c0, . . . , ck−1 denote a trajectory of positions for these
targets from time 0 to time k − 1. Let Mi, i = 1, . . . , q denote
measurement cells in the neighbourhood of the ith target and Vj ,
j = 1, . . . , C denote the region of measurement space occupied
by the jth measurement cell. According to this notation the JOID
can be written as

π(ck
l |c

0
l , . . . , c

k−1
l ,Zk)

=
∑

j1∈M1

· · ·
∑

jq∈Mq

βj1,...,jqφj1,...,jq (ck
l ) (15)

where

βj1 ,...,jq = αj1,...,jq

/ ∑
e1∈M1

· · ·
∑

eq∈Mq

αe1,...,eq

αj1 ,...,jq =

q∏
i=1

γi,ji

q̄∏
u=1

(
P

−mu/(1+muλ)
F A

)zk
j̄u

×

(
1 − P

1/(1+muλ)
F A

1 − PF A

)1−zk
j̄u

φj1,...,jq (ck
l ) =

q∏
i=1

{
χVji

(ρk
i )N(ρk

i ; ρ̂k
i , Ψk

i )/γi,ji

}

with q̄ the number of distinct cell indices in {j1, . . . , jq}, j̄1, . . . , j̄q̄

the distinct cell indices and m1, . . . , mq̄ the multiplicities of the
distinct cells, χA(z) = 1 if z ∈ A and zero otherwise and

γi,j =

∫
Vj

N(ρk
i ; ρ̂k

i , Ψk
i ) dρ

k
i

where ρ̂
k
i = ρ

k−1
i +T v̂

k−1|k−1
i and Ψk

i = T 2Σ
k−1|k−1
i +Qk

i,ρ.
It can be seen from (15) that the JOID is a mixture of truncated
Gaussian distributions. Each component can be interpreted as a
hypothesis on the cell locations of the q targets in the cluster. A
draw from (15) can be made by selecting a mixture component
using the probabilities βj1 ,...,jq and then drawing each target po-
sition from the appropriate truncated Gaussian distribution.

The collection of cells forming the neighbourhood of the ith
target can be defined as

Mi = {j ∈ {1, . . . , C} : γi,j > Υ}

where Υ is a small, pre-defined lower bound.
The weights (14) are given by the normalization factor for the

JOID which can be found as

π(z|ck−1
l ) =

∑
j1∈M1

· · ·
∑

jq∈Mq

αj1,...,jq

It remains to compute the weight update for the reconstructed
particles. Since reconstructed particles contain target clusters orig-
inating from different particles the weight assigned to a partic-
ular particle at time k − 1 will have no connection to the re-
constructed particle at time k. It must therefore be assumed that
the reconstructed particles are resampled at each time step so that
wk

t = 1/n for t = 1, . . . , n, k = 0, 1, . . .. Let ck
l,1, . . . , c

k
l,n de-

note the collection of particles drawn for the lth target cluster. The
weight of the tth particle can be found, by substituting (12), (13),
(14) and (11) into (5), as

w̃k
t ∝ p(zk|ck

1,t, . . . , c
k
s,t)

/
s∏

l=1

π(zk|ck
l,t) (16)

Resampling based on w̃k
1 , . . . , w̃k

n is performed in order to obtain
an evenly weighted particle set, i.e., wk

t = 1/n for t = 1, . . . , n.
If the threshold Γ used in the clustering is sufficiently large the re-
sampling step will select a large number of distinct particles so that
particle duplication is minimised. In fact, in most cases the cluster-
ing threshold can be selected so that exactly uniform weights are
obtained and resampling of the reconstructed particles is unneces-
sary. Increasing the clustering threshold above the level at which
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uniform weights are obtained will decrease performance while fur-
ther increasing computational expense.

Eq. (16) also motivates the choice of weighting given in (14)
since any other choice will not have the property that uniform
weights are obtained for a sufficiently large clustering threshold.
This implies that other weighting choices do not select the best
clusters for reconstruction.

5. PERFORMANCE ANALYSIS

The scenario used here involves ten targets moving in a 5500m x
5500m observation region for 1000 time steps of 1s each. The tar-
get trajectories belong to real targets and were obtained from an
exercise at the US Army’s National Training Centre. For much of
the observation period groups of as many as four targets move in
close proximity. The observation region is divided into 100m x
100m cells with measurements in each cell generated from the tar-
get trajectories according to the thresholded measurement model
described in Section 2. Monte Carlo realisations are obtained by
generating independent measurement sequences from the same set
of target trajectories.

The performance metric will be the expected number of targets
in track at the end of the observation interval. This is computed
from 100 Monte Carlo realisations for two values of the SNR. For
each SNR the false alarm probability PF A is such that the prob-
ability of registering a return in a cell occupied by one target is
0.5, i.e., PF A = eln(0.5)(1+λ) for an SNR λ. The results given
in Table 1 clearly show the efficiency of the proposed algorithm.
The larger SNR considered here, λ = 10, results in a false alarm
probability of PF A = 4.9 × 10−4. Under these conditions al-
most perfect tracking is obtained with only 25 particles. The situa-
tion becomes considerably more challenging at an SNR of 5dB for
which PF A = 0.056. Performance deteriorates considerably for
the smaller sample sizes although a sample size of 200 particles is
still sufficient to provide excellent performance.

Table 1. Mean number of targets in track for the proposed algo-
rithm across 100 realisations of 1000 time steps each

Number of particles
SNR (dB) 25 50 100 200 500

5 7.45 8.84 9.49 9.74 9.85
10 9.93 9.99 9.98 9.98 9.97

6. CONCLUSIONS

An efficient particle filtering algorithm for tracking a known num-
ber of moving targets was developed. The efficiency of the algo-
rithm derives from the use of a carefully designed importance den-
sity which exploits the structure of the multitarget tracking prob-
lem. Successful tracking of ten targets across a range of signal-to-
noise ratios was demonstrated using as few as 200 particles.

An important part of the general multitarget tracking prob-
lem is the need to allow for uncertainity in the number of targets
present. This requires procedures for track initiation and deletion
in addition to track maintenance. A forthcoming paper shows how
procedures for track initiation and deletion can be incorporated
into the proposed algorithm to provide an efficient solution to the
general multitarget tracking problem.

7. REFERENCES

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking,” IEEE Transactions on Signal Process-
ing, vol. 50, no. 2, pp. 174–188, 2002.

[2] Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Prin-
ciples, Techniques and Software. Artech House, 1993.

[3] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte
Carlo Methods in Practice. Springer Publishing, 2001.

[4] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte
Carlo sampling methods for Bayesian filtering,” Statistics
and Computing, vol. 10, pp. 197–208, 2000.

[5] N. Gordon, D. Salmond, and A. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” IEE
Proceedings-F, vol. 140, no. 2, pp. 107–113, 1993.

[6] M. Isard and J. MacCormick, “BraMBLe: A Bayesian
multiple-blob tracker,” Proceedings of the 8th International
Conference on Computer Vision, 2001.

[7] K. Kastella, “Event-averaged maximum liklihood estimation
and mean-field theory in multitarget tracking,” IEEE Trans-
actions on Automatic Control, vol. 40, pp. 1070–1074, 1995.

[8] ——, “Discrimination gain for sensor management in multi-
target detection and tracking,” in Proceedings of the IMACS
Conference on Computational Engineering in Systems Appli-
cations, Lille, France, 1996, pp. 167–172.

[9] C. M. Kreucher, K. Kastella, and A. O. H. III, “Tracking mul-
tiple targets using a particle filter representation of the joint
mulitarget probability density,” Proceedings of SPIE Confer-
ence on Signal and Data Processing of Small Targets, 2003.

[10] R. Mahler, “A unified foundation for data fusion,” Proceed-
ings of SPIE, vol. 124, pp. 325–345, 1996.

[11] S. Maskell, M. Rollason, N. Gordon, and D. Salmond, “Effi-
cient particle filtering for multiple target tracking with appli-
cation to tracking in structured images,” Procedings of SPIE
Conference on Signal and Data Processing of Small Targets,
2002.

[12] M. I. Miller, A. Srivastava, and U. Grenander, “Conditional
mean estimation via jump-diffusion processes in multiple tar-
get tracking/recognition,” IEEE Transactions on Signal Pro-
cessing, vol. 43, no. 11, pp. 2678–2690, 1995.

[13] M. R. Morelande, C. M. Kreucher, and K. Kastella, “A uni-
fied Bayesian approach to multiple target detection and track-
ing,” IEEE Transactions on Signal Processing, vol. submit-
ted, 2004.

[14] M. Orton and W. Fitzgerald, “A Bayesian approach to track-
ing multiple targets using sensor arrays and particle filters,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.
216–223, 2002.

[15] M. Pitt and N. Shephard, “Filtering via simulation: auxiliary
particle filters,” Journal of the American Statistical Associa-
tion, vol. 94, pp. 590–599, 1999.

[16] L. D. Stone, T. L. Corwin, and C. A. Barlow, Bayesian Mul-
tiple Target Tracking. Artech House, 1999.

V - 588


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


