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Professor Hero’s work using the Rényi Divergence in other problem domains pro-

vided the impetus for its adoption here. His guidance and advice on information

based sensor scheduling and the multistage extensions was crucial to the work re-

ported in the final two chapters of this thesis. I also want to acknowledge his gra-

ciousness and flexibility as my academic and dissertation advisor in allowing me to

meet the demands of my workplace while simultaneously remaining a student at the

University.

I also appreciate the interaction with my other committee members, Professors

iii



Fessler, Murphy, and Pradhan. The comments, questions, and advice given by the

members at my Quals II talk, my preliminary meeting, my final defense, and during

personal interactions have significantly improved the dissertation.

Finally, I would like to acknowledge the contributions of my colleagues at General

Dynamics, specifically Dan Chang and Karen Heinze. Both provided snippets of

code or simulation results that contributed to work reported here.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY OF NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview and Literature Review for Multitarget Tracking Using a Particle
Filter Representation of the Joint Multitarget Probability Density . . . . . . 4

1.2 Overview and Literature Review for Information Based Sensor Mangement . 7
1.3 Overview and Literature Review for Non-myopic Information Based Sensor

Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Advancements Made and Conclusions Drawn by this Dissertation . . . . . . 13
1.5 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 List of Relevant Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II. Multitarget Tracking Using a Particle Filter Representation of the Joint
Multitarget Probability Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 The Joint Multitarget Probability Density . . . . . . . . . . . . . . . . . . . 22
2.1.1 Kinematic Modeling : The Model p(Xk, T k|Xk−1, T k−1) . . . . . . 27
2.1.2 Sensor Modeling : The Model p(zk|Xk, T k) . . . . . . . . . . . . . 30

2.2 The Particle Filter Implementation of JMPD . . . . . . . . . . . . . . . . . . 35
2.2.1 The Single Target Particle Filter . . . . . . . . . . . . . . . . . . . 36
2.2.2 SIR Multitarget Particle Filtering . . . . . . . . . . . . . . . . . . . 37
2.2.3 The Inefficiency of the SIR Method . . . . . . . . . . . . . . . . . . 39
2.2.4 Importance Density Design for Target Birth and Death . . . . . . . 41
2.2.5 Importance Density Design for Persistent Targets . . . . . . . . . . 44
2.2.6 Permutation Symmetry and Partition Sorting . . . . . . . . . . . . 50
2.2.7 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.8 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.9 Multiple Model Particle Filtering . . . . . . . . . . . . . . . . . . . 56

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 Adaptive Proposal Results . . . . . . . . . . . . . . . . . . . . . . . 59

v



2.3.3 The Value of Not Thresholding . . . . . . . . . . . . . . . . . . . . 62
2.3.4 Unknown Number of Targets . . . . . . . . . . . . . . . . . . . . . 63
2.3.5 Computational Considerations . . . . . . . . . . . . . . . . . . . . . 65
2.3.6 Partition Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

III. Information Based Sensor Mangement . . . . . . . . . . . . . . . . . . . . . . 72

3.1 The Rényi Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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3.3.1 Weighted Rényi Divergence . . . . . . . . . . . . . . . . . . . . . . 81
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Rényi Divergence parameter α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Sensor management for detecting and tracking ten real targets versus the number
of particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



3.5 Sensor management for detecting and tracking ten real targets versus signal to noise
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 A comparison of the information-based method to periodic scan and two other
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7 A comparison of sensor management performance under different values of the
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ABSTRACT

AN INFORMATION-BASED APPROACH TO SENSOR RESOURCE ALLOCATION

by

Christopher M. Kreucher

Chair: Alfred O. Hero III

This work addresses the problem of scheduling the resources of agile sensors. We

advocate an information-based approach, where sensor tasking decisions are made

based on the principle that actions should be chosen to maximize the information

expected to be extracted from the scene. This approach provides a single metric

able to automatically capture the complex tradeoffs involved when choosing between

possible sensor allocations.

We apply this principle to the problem of tracking multiple moving ground targets

from an airborne sensor. The aim is to task the sensor to most efficiently estimate

both the number of targets and the state of each target simultaneously. The state

of a target includes kinematic quantities like position and velocity and also discrete

variables such as target class and target mode (e.g., “turning” or “stopped”). In

many experiments presented herein, target motion is taken from real recorded vehicle

histories.

The information-based approach to sensor management involves the development

xii



of three interrelated elements.

First, we form the joint multitarget probability density (JMPD), which is the fun-

damental entity capturing knowledge about the number of targets and the states of

the individual targets. Unlike traditional methods, the JMPD does not assume any

independence, but instead explicitly models coupling in uncertainty between target

states, between targets, and between target state and the number of targets. Fur-

thermore, the JMPD is not assumed to be of some parametric form (e.g., Gaussian).

Because of this generality, the JMPD must be estimated using sophisticated numer-

ical techniques. Our representation of the JMPD is via a novel multitarget particle

filter with an adaptive sampling scheme.

Second, we use the estimate of the JMPD to perform (myopic) sensor resource al-

location. The philosophy is to choose actions that are expected to maximize informa-

tion extracted from the scene. This metric trades automatically between allocations

that provide different types of information (e.g., actions that provide information

about position versus actions that provide information about target class) without

adhoc assumptions as to the relative utility of each.

Finally, we extend the information-based paradigm to non-myopic sensor schedul-

ing. This extension is computationally challenging due to an exponential growth in

action sequences with horizon time. We investigate two approximate methods to

address this complexity. First, we directly approximate Bellman’s equation by re-

placing the value-to-go function with an easily computed function of the ability to

gain information in the future. Second, we apply reinforcement learning as a means

of learning a non-myopic policy from a set of example episodes.

xiii



CHAPTER I

Introduction

In this work, we develop an information based approach to the problem of auto-

matically allocating the resources of agile sensors. The techniques developed here

are based on the principle that sensors should be tasked to take actions that maxi-

mize the expected amount of information extracted from the scene. We demonstrate

herein that the information based technique has advantages over other strategies in

that it automatically captures the complex tradeoffs involved when choosing between

different sensing actions, requiring no additional ad hoc assumptions.

The method is applied to the problem of tracking multiple moving ground targets

from airborne sensors. The aim in this situation is to task the sensor so as to

most efficiently estimate both the number of targets and the state of each target

simultaneously. In many experiments presented herein, target motion is taken from

real, recorded vehicle histories and sensor measurements were simulated using a

model of realistic sensors.

Our approach requires the development of three interrelated elements.

• Multitarget Tracking Using a Particle Filter Representation of the Joint Mul-

titarget Probability Density : First, we construct a high fidelity nonparametric

probabilistic model that captures the uncertainty inherent in the multitarget

1
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tracking problem. We do this via the joint multitarget probability density

(JMPD), which is a single entity that probabilistically describes the knowledge

of the states (e.g., position and velocity in 2 dimensions plus identification) of

each target as well as the number of targets. Due to the nature of the tar-

get tracking problem, it is essential to capture the correlations in uncertainty

between the states of different targets as well as the coupling between the un-

certainty about the number of targets and their individual states. The JMPD

captures these couplings precisely as it makes no inherent factorization, inde-

pendence, or parametric form assumptions about the density. Due to the high

dimensionality and non-parametric nature of the density, advanced numerical

methods are necessary to estimate the density in a computationally tractable

manner. To this end, we have developed a novel multitarget particle filter with

an adaptive sampling scheme.

• Information Based Sensor Mangement : Second, we use the estimate of the

JMPD to make (myopic) sensor resource allocation decisions. We take an

information-based approach, where the fundamental paradigm is to make sen-

sor tasking decisions that maximize the expected amount of information gained

about the scenario. This unifying metric allows us to automatically trade be-

tween sensor allocations that provide different types of information (e.g., actions

that provide information about position versus actions that provide information

about identification) without any ad hoc assumptions as to the relative utility

of each.

• Non-myopic Information Based Sensor Management : Third, we extend the

information-based sensor resource allocation paradigm to long-term (non-myopic)

sensor scheduling. This extension allows the consideration of long-term infor-



3

mation gaining capability when making decisions about current actions. It is

particularly important when the sensor has time-varying target response char-

acteristics due to sensor motion, the behavior of the vehicles being tracked,

or dynamic terrain features. We develop numerically efficient methods of ap-

proximating the long-term solution in situations where long-term scheduling is

important.

We apply the method to the problem of ground target tracking from an airborne

sensor. We illustrate performance through a series of experiments which use real

collected target motion data. First, we look at the problem of detecting and tracking

a set of moving ground targets using a pixelated sensor that returns energy (or merely

thresholded detections) in a set of cells. Next, we extend the experiment to include

target identification by simulating a multiple modality sensor capable of switching

between a target indication mode and a target identification mode. We then extend

the realism further by considering a moving platform and the presence of terrain.

This creates regions that are obscured to the sensor and therefore multistage planning

is required for optimal performance. Finally, we consider a situation where targets

are “smart” in that they react to sensing actions by obscuring their whereabouts. We

apply the multistage scheduling algorithm to this scenario using a multiple modality

sensor.

We next review the history of the problem and our contribution to each of the

aforementioned three elements of the algorithm.
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1.1 Overview and Literature Review for Multitarget Tracking Using a
Particle Filter Representation of the Joint Multitarget Probability
Density

The problem of tracking a single maneuvering target in a cluttered environment

is a very well studied area [1]. Normally, the objective is to predict the state of an

object based on a set of noisy and ambiguous measurements. There are a wide range

of applications in which the target tracking problem arises, including vehicle collision

warning and avoidance [2][3], mobile robotics [4], human-computer interaction [5],

speaker localization [6], animal tracking [7], tracking a person [8], and tracking a

military target such as a ship, aircraft, or ground vehicle [9].

The single target tracking problem can be formulated and solved in a Bayesian

setting by representing the target state probabilistically and incorporating statistical

models for the sensing action and the target state transition. The standard tool is

the Kalman Filter [10], applicable and optimal when the measurement and state

dynamics are Gaussian and linear.

In a more general setting where nonlinear target motions, non-Gaussian densi-

ties, or non-linear measurement to target couplings are involved, more sophisticated

nonlinear filtering techniques are necessary [11]. Standard nonlinear filtering tech-

niques involve modifications to the Kalman Filter such as the Extended Kalman

Filter [12], the Unscented Kalman Filter [13], and Gaussian Sum Approximations

[14], all of which relax some of the linearity assumptions present in the Kalman Fil-

ter. However, these techniques do not accurately model all of the salient features of

the density, which limits their applicability to scenarios where the target state pos-

terior density is well approximated by a multivariate Gaussian density. To address

this deficiency, others have studied grid-based approaches [15][16], which utilize a
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discrete representation of the entire single target density. In this setup, no assump-

tions on the form of the density are required, so arbitrarily complicated densities may

be accommodated. However, fixed grid approaches are computationally intractable

except in the case of very low state space dimensionality [17].

Recently, the interest of the tracking community has turned to the set of Monte

Carlo techniques known as Particle Filtering [18]. A particle filter approximates a

probability density on a set of discrete points, where the points are chosen dynami-

cally via importance sampling. Particle filtering techniques have the advantage that

they provide computational tractability [19], have provable convergence properties

[20], and are applicable under the most general of circumstances, as there is no as-

sumption made on the form of the density, the noise process, the measurement to

state coupling, or the state evolution [21]. Indeed, particle filter based approaches

have been used successfully in areas where grid based [22] or Extended or Unscented

Kalman Filter-based [23][24] filters have previously been employed.

The multitarget tracking problem has been traditionally addressed with tech-

niques such as multiple hypothesis tracking (MHT) and joint probabilistic data as-

sociation (JPDA) [1][9][25]. Both techniques work by translating a measurement of

the surveillance area into a set of detections by thresholding a likelihood ratio. The

detections are then either associated with existing tracks, used to create new tracks,

or deemed false alarms. Typically, Kalman-filter type algorithms are used to update

the existing tracks with the new measurements after association. This leads to what

is known as the data association problem, which is the primary computational chal-

lenge of these methods. As the number of targets and measurements grow, there

are exponentially many possible associations between the existing targets and the

measurements. It is also important to note that these techniques do not explicitly
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model the multitarget density, but merely a collection of single target densities – i.e.,

correlations between target states are ignored.

Others have approached the problem from a fully Bayesian perspective. Stone [26]

develops a mathematical theory of multiple target tracking from a Bayesian point

of view. Mori [27], Srivistava, Miller [28], Kastella [29] and Mahler [30] did early

work in this area. For the same reasons as the single target case, use of Extended

and Unscented Kalman Filter approaches are typically inappropriate. Furthermore,

due to the explosion in dimensionality of the state space, fixed grid approaches are

computationally intractable.

Recently, some researchers have applied particle filter based strategies to the prob-

lem of multitarget tracking. In [31], Hue and Le Cadre introduce the probabilistic

multiple hypothesis tracker (PMHT), which is a blend between the traditional MHT

and particle filtering. Considerable attention is given to dealing with the measure-

ment to target association issue. Others have done work which amounts to a blend

between JPDA and particle filtering [32][33][34].

The BraMBLe [35] system, the independent partition particle filter (IPPF) of Or-

ton and Fitzgerald [36], the work of Maskell [37] and Tao [38] all consider multitarget

tracking from a Bayesian perspective via particle filtering. Measurement-to-target

association is not done explicitly; it is implicit within the Bayesian framework. In

short, these works focus on a tractable implementation of ideas in [26]. All of these

efforts represent excellent advances, but each suffers from some deficiencies that limit

widespread use. For example, [35] employs only the simplest of sampling methods

requiring tens of thousands of particles to track four or five targets. The methods

of [36] and [37], while both giving non-trivial sampling schemes, do not account for

unknown target number. Furthermore, the method of [37] does not model the multi-
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target state vector, but proposes merely a combination of single target state vectors.

Finally, none of these works explicitly recognize and lay out the connection between

the particle filter and the underlying probability density being estimated (i.e., the

JMPD).

The main contribution of our work in the area of multitarget tracking is the devel-

opment of a Bayesian multiple target tracker that is designed explicitly to estimate

the joint multitarget probability density. The estimation is done using particle filter-

ing methods with a carefully designed adaptive importance sampling density. Among

the benefits of this approach are that target number is estimated simultaneously with

the individual target states, and no thresholding of measurements is required.

These features distinguish the particle filter based JMPD approach from tra-

ditional approaches of MHT and JPDA as well as the approaches of Hue [31][39]

and others [32][40][41], which require thresholded measurements (detections) and a

measurement-to-track association procedure. Additionally, as our method utilizes an

adaptive sampling scheme, deals with unknown target number, and explicitly models

the multitarget state, it generalizes the efforts of [35], [36], [37], and [38].

In the simulation experiments of Chapter II, we demonstrate that the particle filter

implementation of JMPD provides a natural way to track a collection of targets, is

computationally tractable, and performs well under difficult conditions such as target

crossing, convoy movement, and low SNR.

1.2 Overview and Literature Review for Information Based Sensor Mange-
ment

Sensor resource allocation, or sensor management, refers to the problem of deter-

mining the best way to task a sensor or group of sensors when each sensor may have

many modes and search patterns. Typically, the sensors are used to gain information
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about the kinematic state (e.g., position and velocity) and identification of a group

of targets as well as the number of targets. Applications of sensor management are

often military in nature [42], but also include things such as wireless networking [43]

and robot path planning [44]. One of the main issues with robust sensor management

is that there are many objectives that the sensor manager may be tuned to meet,

e.g., minimization of track loss, probability of new target detection, minimization of

track error/covariance, and identification accuracy. Each of these different objectives

taken alone may lead to a different sensor allocation strategy [42][45].

Sensor scheduling strategies may be myopic (single-stage) or non-myopic (multi-

stage). In the myopic case, sensing actions are taken so as to maximize the immediate

reward, and as such are greedy. Myopic methods have the advantage that they are

more computationally tractable than non-myopic methods. In this section, we discuss

our approach to myopic sensor management and then extend this to non-myopic

sensor management in the following section.

Some researchers have proposed using information measures as a general means

of sensor management. Information theory has the benefit that it provides a single

metric1 that is useful for scheduling sensors across different objectives. In the context

of Bayesian estimation, a good measure of the quality of a sensing action is the

reduction in entropy of the posterior distribution that the measurement is expected

to create. Therefore, information theoretic methodologies strive to take sensing

actions that maximize expected gain in information. The possible sensing actions are

enumerated, the expected gain for each measurement is calculated, and the action

that yields the maximal expected gain is chosen.

Much of the work involving information-theoretic ideas in this context is for track-

1As we will discuss, there are many information theoretic metrics that have been used in the literature, including
the Rényi Divergence, Kullback-Leibler Divergence, and Mutual Information. However, any particular choice of
information measure represents a single metric able to balance different types of information.
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ing moving targets. Hintz et al. [46][47] did early work focusing on using the expected

change in Shannon entropy when tracking a single target moving in one dimension

with Kalman Filters. A related approach uses discrimination gain based on a mea-

sure of relative entropy, the Kullback-Leibler (KL) divergence. Schmaedeke and

Kastella [48] use the KL divergence to determine sensor-to-target taskings. Kastella

[49][50] uses KL divergence to manage a sensor between tracking and identification

mode in the multitarget scenario. Mahler [51][30] uses the KL divergence as a metric

for “optimal” multisensor multitarget sensor allocation. Zhao [52] compares several

approaches, including simple heuristics, and information-based techniques based on

entropy and relative entropy (KL).

Information theoretic measures have also been used by the machine learning com-

munity in techniques with the names “active learning” [53], “learning by query” [54],

“relevance feedback” [55][56], and “stepwise uncertainty reduction” [57]. A specific

example is the interactive search of a database of imagery for a desired image, also

called content based image retrieval (CBIR). Geman [57] studied the situation where

a user has a specific image in mind and the system steps through a sequence of im-

ages presented to the user under a binary forced-choice protocol. A pair of images

is chosen by the system at each time and the user is asked to choose the one that is

most similar to the specific image in mind. The image pairs are chosen in such a way

that the posterior density of the unknown image has the lowest resulting Shannon

entropy after the user responds. Similarly, Cox et al. [56] uses a set of psychophysical

experiments to model human notion of closeness for a robust CBIR system.

Information-based adaptivity measures such as mutual information (related to the

KL divergence) and entropy reduction have also been used by the computer vision

community in techniques with the names “active object recognition” [58], “active
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computer vision” [59], and “active sensing” [60]. These techniques are iterative pro-

cedures wherein the system has the ability to change sensor parameters to make the

learning task easier. The ultimate goal is to learn something about the environment,

e.g., the class of an object, the orientation of a robot’s tool, or the location of the

robot within an area.

In the context of multitarget tracking, we employ information theoretic methods

to allocate sensor resources so as to estimate the number of targets present in the

surveillance region as well as the states of the individual targets. Since the number

and states of the targets is a dynamic process that evolves over time, we use the

particle filter based multitarget tracking algorithm discussed earlier to recursively

estimate the JMPD. At each iteration of the algorithm, we use an information mea-

sure to decide on which sensing action to take. The decision as to how to use a sensor

then becomes one of determining which sensing action will maximize the expected

information gain between the current JMPD and the JMPD after a measurement

has been made. That is, sensing actions are driven by the ability of the sensor to re-

duce uncertainty in the JMPD. Actions that are anticipated to maximize the relative

entropy between the prior and posterior JMPD are favored.

In this work, we consider a quite general information measure called the Rényi

Information Divergence [61] (also known as the α-divergence), which reduces to the

KL divergence for a certain value of the parameter α. The Rényi divergence has

additional flexibility in that it allows for emphasis to be placed on specific portions

of the densities under comparison.

The main contribution of this work in the area of myopic sensor management

is the development of an approach where the Rényi divergence is to estimate the

utility of taking different sensing actions, where the underlying multitarget density
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is approximated by a multitarget particle filter. To the best of our knowledge, this

is the first time the Rényi Divergence has been used in this context, and the first

time a particle filter has been used as the basis for a multitarget sensor management

algorithm.

We show that the information theoretic approach provides a unified method for

sensor management able to task sensors by choosing both mode (e.g., SAR mode or

GMTI mode) and pointing direction for the purposes of detecting, tracking and iden-

tifying multiple moving targets. In particular, we demonstrate order-of-magnitude

type gains in sensor efficiency when compared to no scheduling (i.e., periodic scan).

In addition, we show that the information measures outperform other intuitive man-

agement algorithms predicated on pointing the sensor near where the targets are

expected to be. Under certain conditions, we also show the algorithm provides a

computationally tractable method of performing sensor management and tracking

for tens of targets.

1.3 Overview and Literature Review for Non-myopic Information Based
Sensor Management

To maximally extract information about a surveillance region, scheduling decisions

must consider the impact of the actions on the ability to gather information in the

future. This is referred to as non-myopic or long-term sensor scheduling. Situations

where the sensor has a time varying effectiveness benefit particularly from long-term

scheduling. An example is the situation where target and/or sensor platforms are

moving, which causes the visibility of a target from a sensor changes with time as

terrain features (e.g., mountains, trees) block the direct path from the sensor to the

target. Planning ahead by taking certain actions at the current time step that do

not maximize immediate gain in information may lead to improvements of long term
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gain in information.

Many researchers have approached the non-myopic sensor scheduling problem with

a Markov decision process (MDP) strategy. However, a complete long-term schedul-

ing solution suffers from combinatorial explosion when solving practical problems of

even moderate size. Researchers have thus worked to develop approximate solution

techniques.

For example, Krishnamurthy [62][63] uses a multi-arm bandit formulation involv-

ing hidden Markov models. In [62], an optimal algorithm is formulated to track

multiple targets with an electronically scanned array that has a single steerable

beam. Since the optimal approach has prohibitive computational complexity, sev-

eral suboptimal approximate methods are given and some simple numerical examples

involving a small number of targets moving among a small number of discrete states

are presented. Even with the proposed suboptimal solutions, the problem is still

very challenging numerically. In [63], the problem is reversed, and a single target is

observed by a single sensor from a collection of sensors. Again, approximate methods

are formulated due to the intractability of the globally optimal solution.

Bertsekas and Castañon [64] formulate heuristics for the solution of a stochastic

scheduling problem corresponding to sensor scheduling. They implement a rollout

algorithm based on their heuristics to approximate the solution of the stochastic

dynamic programming algorithm. Additionally, Castañon [65][66] formulates the

problem of classifying a large number of stationary objects with a multi-mode sensor

based on a combination of stochastic dynamic programming and optimization tech-

niques. In [67] Malhotra proposes using reinforcement learning as an approximate

approach to dynamic programming.

Chhetri [68] approaches the long-term scheduling problem for a single target using
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particle filters and the unscented transform. The method involves drawing samples

from the predicted future distribution and minimizing expected future costs. This

requires enumeration of the exponentially growing number of possible sensing actions,

a very computationally demanding procedure. This is combined with branch and

bound techniques which require some restrictive assumptions on additivity of costs.

In a series of works, Zhao [43][69][52] et al. investigate sensor management in the

setting of a wireless ad hoc network, which involves some long term considerations

such as power management.

The main contribution of this work in the area of non-myopic sensor management

is the combination of information theoretic methods with strategies for approximat-

ing the non-myopic scheduling problem. These strategies are distinguished from

earlier efforts in that the cost (reward) function for deciding on what sensing ac-

tion to take is given by the expected gain in information (as measured by the Rényi

Divergence) for that action. This method is in keeping with the philosophy of tak-

ing actions that maximize information (minimize entropy) of the resulting posterior

density on target number and target state.

The methods we investigate here include sparse sampling techniques, direct ap-

proximation of Bellman’s equation, and reinforcement learning techniques. We il-

lustrate the tradeoffs between computation and performance of the strategies in our

setting.

1.4 Advancements Made and Conclusions Drawn by this Dissertation

As has been outlined in the preceding subsections and will be further clarified in

the body of this thesis, the advancements made to the field of target tracking and

sensor management by this work include
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• The development of a tractable particle filter based multitarget tracker to recur-

sively estimate the joint multitarget probability density (JMPD) (see Chapter

II). This approach simultaneously addresses estimation of target number and

the state of each individual target, is nonparametric, and makes no assumptions

of linearity or Gaussianity.

• The development of the Rényi Divergence metric for resource allocation in the

multitarget tracking scenario (see Chapter III). This method chooses sensor

taskings in a manner that automatically trades between detection information,

kinematic information, and identification information. The metric is general

enough so that additional knowledge about the priority of each task can be

incorporated.

• The extension of the information based sensor scheduling approach to multi-

stage decision making through direct approximation and learning techniques

(see Chapter IV).

As a result of this work, we can draw following broad conclusions about the

problem domain and the utility of our work.

• By appropriate design of importance density, it is possible to construct a tractable

particle filter based multitarget tracker capable of estimating both the number

of targets and the individual states of each in situations involving tens of targets

(see Chapter II.)

• The Rényi Divergence framework for resource allocation is theoretically grounded

and provides a natural method for trading the effects of different sensing actions

(see Chapter III).
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– The particle filter estimation and Rényi Divergence resource allocation al-

gorithm are robust in the face of model mismatch (see Section 3.4.5).

– Through marginalization and weighting, the Rényi Divergence can be used

as a surrogate for task specific metrics (see Section 3.3).

– In the case of discrete action spaces, this method provides a tractable

method of resource allocation (see Section 3.4.6).

– This method outperforms heuristic methods designed with domain knowl-

edge (see Section 3.4.2.)

• Multistage planning results in significant performance gain in situations where

the system dynamics are changing rapidly (see Chapter IV).

– Simple approximations to the MDP can provide good approximations to

the multistage solution in many common scenarios (see Section 4.2.4).

– Reinforcement learning methods are broadly applicable and can be used to

address the multistage scheduling problem when training data and compu-

tational resources are available (see Section 4.2.5).

1.5 Outline of Dissertation

This dissertation is organized as follows.

In Chapter II, we introduce and describe the mathematics behind the joint mul-

titarget probability density (JMPD) and show how the rules of Bayesian Filtering

are applied to produce a recursive filtering procedure. We detail our particle filter

based representation of the JMPD, which provides a numerically tractable method

for tracking a few tens of targets. The tractability comes from a novel importance

density design, which combines an automatic factorization of the JMPD when targets
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are behaving independently, and a measurement-directed proposal for both persis-

tent targets and targets that come and go with time. We furthermore detail the

permutation symmetry issue (present in all multitarget tracking algorithms) and its

manifestation in our particle filter estimation of the JMPD. We conclude with simula-

tion results detailing the performance of the particle-filter-based multitarget tracker

in situations stressful to traditional trackers, including unknown target count, many

targets, and low signal to noise ratio (SNR).

In Chapter III, we detail the (myopic) information based sensor management

scheme. The strategy employs the Rényi divergence as a metric, and is predicated

on making measurements that are expected to attain maximum immediate gain in

information about the surveillance region. We provide mathematical and computa-

tional details of how the Rényi divergence is estimated in the context of a particle

filter representation of the JMPD. We show therein how the information based sen-

sor management strategy is able to automatically balance complex tradeoffs when

selecting both sensor mode and pointing angle. We furthermore provide a perfor-

mance analysis of the tracker using sensor management on several model problems

and discuss computational tractability with large numbers of targets. We include

comparisons to a non-managed (periodic) scheme and two other sensor management

techniques.

In Chapter IV, we present non-myopic extensions of the information based sensor

management algorithm introduced in Chapter III. Sensor allocations are made based

on maximizing long-term gain in information at each sensor selection time. We first

provide a motivating example of a scenario in which non-myopic sensor management

provides benefit. We then show by example the full optimal multistage scheduling

approach, and note the intractability for problems with long time-scales or large
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action spaces. We develop several approximate methods for scheduling sensors using

information theoretic measures. First, we detail an information-directed method

of selectively searching through sets of actions sequences. Second, we detail an

approximate technique for solving the Bellman equation which replaces the value-

to-go with a function that approximates the long-term value of an action. This

technique has computational cost on the order of the myopic scheme. Third, we

investigate Q-learning as a method of learning the optimal sensor allocation strategy

and the environment by embedded simulations. Finally, we provide simulation results

comparing the myopic, non-myopic, and approximate techniques in terms of track

error and computational burden.

We conclude in Chapter V with some summary remarks.
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CHAPTER II

Multitarget Tracking Using a Particle Filter Representation
of the Joint Multitarget Probability Density

In this chapter, we give the details of our method of generating a probabilistic

estimate of the state of a multitarget system. In general the “state” of the system

refers to the number of targets and the individual states of each target – which

typically includes kinematic values such as position, velocity and acceleration, but

may also include discrete components like mode (e.g., a target is moving or a target

is turning) and identification (e.g., tank, or jeep). To describe this method, this

chapter first provides a comprehensive framework for multitarget detection, tracking,

and identification that includes unknown and time varying target number and follows

by detailing the particle filter based implementation.

This chapter proceeds as follows. In Section 2.1, we give the details of a nonlinear

filtering methodology based on recursively estimating the joint multitarget probabil-

ity density (JMPD). The discussion is an expanded and generalized version of the

discussion given by Kastella in [70]. In Section 2.2, we give our multitarget particle

filter implementation of the JMPD method. In that section, we proceed by first in-

troducing the notion of particle filtering, followed by multitarget particle filtering and

concluding with our method based on an adaptive measurement directed sampling

scheme for computational tractability. Finally, we conclude in Section 2.3 with a

21
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detailed set of simulations involving unknown target number, varying signal to noise

ratio, and crossing targets. As will be described therein, many of the simulations are

performed using target motion data taken from real, recorded target trajectories.

2.1 The Joint Multitarget Probability Density

In this section, we give the details of a Bayesian method of multitarget track-

ing predicated on recursive estimation of the Joint Multitarget Probability Density

(JMPD). Many others have studied Bayesian methods for tracking multiple targets,

e.g., [26][28][71]. In particular, Mahler [51][72][73] advocates a related approach

based on random sets which he calls “finite-set statistics” (FISST). Since FISST and

the JMPD approach attack some of the same problems, many of the concepts that

appear here such as multitarget motion models and multitarget measurement models

also appear in the work of Mahler et. al. [72]. FISST is a theoretical framework

for unifying most techniques for reasoning under uncertainty (e.g., Dempster Shafer,

fuzzy, Bayes, rules) in a common structure based on random sets. The JMPD method

can be derived in the FISST framework and both strategies can both be traced back

to the EAMLE work of Kastella [73][74][29][49]. The EAMLE work builds on early

multitarget tracking work such as [27][75][76] and others. The JMPD technique does

not require the random set formalism of FISST; in particular, in contrast to the

random set approach, the JMPD technique adopts the view that likelihoods and

the joint multitarget probability density are conventional Bayesian objects to be

manipulated by the usual rules of probability and statistics. Therefore, the JMPD

approach described here makes no appeal to random sets or related concepts such as

Radon-Nikodym derivatives.

The concept of JMPD was discussed in [73][49][70], where a method of tracking
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multiple targets that moved between discrete cells on a line was presented. We gen-

eralize the discussion here to deal with targets that have N -dimensional continuous

valued state vectors and arbitrary kinematics. In many of the model problems, we

are interested in tracking the position (x, y) and velocity (ẋ, ẏ) of multiple targets

and so we describe each target by the four dimensional state vector [x, ẋ, y, ẏ]′. At

other times, we may be interested in estimating the identity or mode of each target

and so will augment the state vector appropriately.

A simple schematic showing three targets (Targets A, B, and C) moving through a

surveillance area is given in Figure 2.1. There are two target crossings, a challenging

scenario for multitarget trackers.
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Figure 2.1: An example of the trajectories of a group of three moving targets. The target trajecto-
ries come from real target motion collected as part of a military training exercise and
recorded by GPS. The target paths are indicated by the lines, and direction of travel
by the arrows. There are two instances where the target paths cross (i.e. are at the
same sensor resolution cell at the same time).

Recursive estimation of the JMPD provides a means for tracking an unknown

number of targets in a Bayesian setting. The statistical model employed uses the
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joint multitarget conditional probability density

p(xk
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as the probability density for exactly T k targets with states x1,x2, ...xT−1,xT at

time k based on a set of past observations Zk. We abuse terminology by calling

p(xk
1,x

k
2, ...x

k
T−1,x

k
T , T k|Zk) a density since T k is a discrete valued random variable.

In fact, as (2.1) shows, the JMPD is a continuous discrete hybrid as it is a prod-

uct of the probability mass function p(T k|Zk) and the probability density function

p(xk
1,x

k
2, ...x

k
T−1,x

k
T |T k,Zk).

The number of targets at time k, T k, is a variable to be estimated simultaneously

with the states of the T k targets. The JMPD is defined for all T k, T k = 0 · · ·∞.

The observation set Zk refers to the collection of measurements up to and including

time k, i.e. Zk = {z1, z2, ...zk}, where each of the zi may be a single measurement

or a vector of measurements made at time i.

Each of the xt in the density p(xk
1,x

k
2, ...x

k
T−1,x

k
T |T k,Zk) is a vector quantity and

may (for example) be of the form [x, ẋ, y, ẏ]. We refer to each of the T target state

vectors x1,x2, ...xT−1,xT as a partition of the multitarget state X. For convenience,

the density will be written more compactly in the traditional manner as p(Xk|T k,Zk),

which implies that the state-vector Xk represents a variable number of targets each

possessing their own state vector. We will drop the time superscript k for notational

simplicity when no confusion will arise.

As an illustration, some examples illustrating the sample space of p are

• p(∅, T = 0|Z), the posterior probability that there are no targets in the surveil-

lance area.
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• p(x1, T = 1|Z), the posterior probability that there is one target in the surveil-

lance area with state x1.

• p(x1,x2, T = 2|Z), the posterior probability that there are two targets in the

surveillance area with states x1 and x2.

The likelihoods p(z|X, T ) and the joint multitarget probability density p(X, T |Z)

are conventional Bayesian objects manipulated by the usual rules of probability and

statistics. Thus, a multitarget system has state X = (x1, · · · ,xT ) with probability

distribution p(x1, · · · ,xT , T |Z). This can be viewed as a hybrid stochastic system

where the discrete random variable T governs the dimensionality of X. Therefore

the normalization condition that the JMPD must satisfy is

∞∑
T=0

∫
dx1 · · · dxT p(x1, · · · ,xT , T |Z) = 1 . (2.2)

where the single integral sign is used to denote the T integrations required.

Quantities of interest can be deduced from the JMPD. For example, the proba-

bility that there are exactly T targets present in the surveillance area is given by the

marginal distribution

p(T |Z) =

∫
dx1 · · · dxT p(x1, · · · ,xT , T |Z) . (2.3)

An important factor that is often overlooked in multitarget tracking algorithms is

that the JMPD is symmetric under permutation of the target indices. This symmetry

is a fundamental property of the JMPD which exists because of the physics of the

problem and not because of mathematical construction. Specifically, the multitarget

states X =
(
x1,x2

)
and X′ =

(
x2,x1

)
refer to the same event, namely that there are

two targets in the surveillance area – one with state x1 and one with state x2. This

is true regardless of the makeup of the single target state vector. For example, the
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single target state vector may include target ID or even a target serial number and

the permutation symmetry remains. Therefore, all algorithms designed to implement

the JMPD are permutation invariant.

If targets are widely separated in the sensor’s measurement space, each target’s

measurements can be uniquely associated with it, and the joint multitarget posterior

density approximately factors. In this case, the problem may be treated as a collec-

tion of single target problems. The characterizing feature of multitarget tracking is

that in general some of the measurements have ambiguous associations, and there-

fore the conditional density does not simply factor into a product of single target

densities.

The temporal update of the posterior likelihood proceeds according to the usual

rules of Bayesian filtering. The model of how the JMPD evolves over time is given

by p(Xk, T k|Xk−1, T k−1) and will be referred to as the kinematic prior (KP). The

kinematic prior includes models of target motion, target birth and death, and any

additional prior information that may exist such as terrain and roadway maps. In the

case where target identification is part of the state being estimated, different kine-

matic models may be used for different target types. The time-updated (prediction)

density is computed via the model update equation as

p(Xk, T k|Zk−1) =
∞∑

T k−1=0

∫

Xk−1

dXk−1p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Zk−1) .

(2.4)

Note that this formulation of the time evolution of the JMPD makes several as-

sumptions. First, as is commonly done, we assume that state evolution is Markov.

Furthermore, we assume the action at time k− 1 does not influence state evolution,

i.e., if the sensing action performed at time k − 1 is denoted mk−1 then by assump-

tion p(Xk, T k|Xk−1, T k−1,mk−1) = p(Xk, T k|Xk−1, T k−1). In some situations this
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assumption is not valid, including the “smart” target problem (see Section 4.3.4). If

either of these assumptions is invalid in a particular setting, (2.4) would be general-

ized appropriately.

The measurement update equation uses Bayes’ rule to update the posterior density

with a new measurement zk as

p(Xk, T k|Zk) =
p(zk|Xk, T k)p(Xk, T k|Zk−1)

p(zk|Zk−1)
. (2.5)

This formulation allows JMPD to avoid altogether the problem of measurement-

to-track association which is the fundamental computational issue in conventional

multitarget tracking algorithms such as MHT and JPDA. There is no need to identify

which target is associated with which measurement because the Bayesian framework

keeps track of the entire joint multitarget density. This property, of course, intro-

duces a different but related computational challenge which will be addressed later.

Furthermore, there is no need for thresholded measurements (detections) to be used

at all. A tractable sensor model merely requires the ability to compute the likelihood

p(z|X, T ) for each measurement z received. This property allows the JMPD tech-

nique to generalize and outperform other multitarget tracking algorithms particularly

in low SNR environments.

In the following subsections, we describe the specific models used in this work for

target kinematics and the sensor, respectively.

2.1.1 Kinematic Modeling : The Model p(Xk, T k|Xk−1, T k−1)

The Bayesian framework outlined above requires a model of how the system state

evolves, p(Xk, T k|Xk−1, T k−1). This includes both how the number of targets changes

with time (i.e. T k versus T k−1) and how individual targets that persist over time

evolve (i.e. xk versus xk−1). In general, this model is chosen using the physics of
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the particular system under consideration. The target motions in the simulation

studies presented in this thesis come from a set of real ground targets recorded

during a military battle exercise. Therefore, here we specialize the state models to

this application. More general models (or simply different models) are possible and

can be implemented similarly if warranted by the physics of the situation.

To specify the state model, we need to generate an expression for how the state

of the system evolves, p(Xk, T k|Xk−1, T k−1), which can be evaluated for any set of

multitarget states and target counts {Xk, T k,Xk−1, T k−1}.

We first define a set of spatially varying priors on target arrival and departure from

the surveillance region. We refer to these two events as target birth and death. Let

αk(x) denote the a priori probability that a target will arrive (birth) at location x

at time k. Similarly, let the a priori probability that a target in location x will leave

the surveillance region (death) be denoted by βk(x). Target arrival may indicate

a target actually passing into the surveillance region (e.g., along the border of the

region) or may indicate the target has taken an action that first makes it detectible

to the sensor (e.g., motion by a target when the only sensor is a moving target

indicator). Target death may indicate a target actually leaving the surveillance

region or becoming permanently extinguished. These model parameters specify how

target number changes with time.

The birth/death model can be precisely written as follows. The model is that

birth and death represent a Markov process with spatially varying rates α(xk) and

β(xk). Assuming a pixelated sensor with constant birth/death rates in each cell (see

Section 2.1.2), these rates can be denoted αk
i and βk

i , where i represents the pixel

that x maps into. Using tki to represent the number of targets in cell i, the model
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can then be written

p(tk+1
i = 0|tki = 1) = βk

i (2.6)

p(tk+1
i = 0|tki = 0) = 1− αk

i

p(tk+1
i = 1|tki = 1) = 1− βk

i

p(tk+1
i = 1|tki = 0) = αk

i .

For targets that persist over a time step (those targets that are present at both

time step k and k + 1), we model the target motion as linear and independent for

each target. Using x = (x, ẋ, y, ẏ) to denote the state vector of an individual target,

the model is

xk
i = Fxk−1

i + wk
i , (2.7)

where

F =




1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1




. (2.8)

Here wk
i is 0-mean Gaussian noise with covariance Q = diag(20, .2, 20, .2), which

was selected based on an empirical fit to the data. In the cases where we are in-

terested in tracking the mode or identity of targets, the state vector and F and Q

matrices are augmented appropriately. If appropriate, a multiple hidden Markov

model formulation of the kinematic model is possible [77].

We emphasize here that Linear/Gaussian models are not a requirement of the

formulation, but are used as they have been found to perform well in simulation

studies with the real data. More complicated models of target motion can be inserted

where appropriate without directly effecting computations in the algorithm.
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2.1.2 Sensor Modeling : The Model p(zk|Xk, T k)

To implement Bayes′ Formula (2.5), we must compute the measurement likelihood

p(z|X, T ). This likelihood is derived from the physical nature of the sensor. There

are two approaches to modeling the likelihood, which we refer to as the “associated

measurement” model and the “association-free” model. In both models, the sensor

produces a sequence of scans at discrete instants in time. Each scan is a set of

measurements produced at the same instant. The difference between the models lies

in the structure of the scans.

In the associated measurement model, an observation vector consists of M mea-

surements, denoted z = (z1, . . . , zM). z is composed of threshold exceedances, i.e.

valid detections and false alarms. Each valid measurement is generated by a single

target and is related (possibly non-linearly) to the target state. False alarms have

a known distribution independent of the targets (usually taken as uniform over the

observation space) and the targets have known detection probability Pd (usually con-

stant for all targets). The origin of each measurement is unknown. If measurement m

is generated by target t, then it is a realization of the random process zm ∼ Ht(xt, wt).

In its usual formulation, the associated measurement model precludes the pos-

sibility of two different targets contributing to a single measurement. This model

predominates most current tracking, data fusion and sensor management work. The

practical advantage of this model is that it breaks the tracking problem into two dis-

joint sub-problems: data association and filtering. The filtering problem is usually

treated using some kind of Kalman filter. The disadvantages are that a restricted

sensor model is required and the combinatorial problem of associating observations

to filters is difficult. The associated measurement model was initially conceived in or-

der to cast the problem into a form in which the Kalman filter can be applied, which
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is understandable in light of the enormous success the Kalman filter has enjoyed.

In contrast, nonlinear filtering methods allow much greater flexibility regarding

the way measurements are modeled. As a result, we are free to employ an association-

free sensor model in the work presented here. Note that we could employ an associ-

ated measurement model if desired, but it leads to poorer performance for the reasons

outlined above. This type of model has been used in track-before-detect algorithms,

in the “Unified Data Fusion” work of Stone et. al [26] and in the grid-based sen-

sor management work of [49]. There are several advantages to the association-free

method. First, it requires less idealization of the sensor physics and can readily ac-

commodate issues such as merged measurements, side-lobe interference amongst tar-

gets and velocity aliasing. Second, it eliminates the combinatorial bottleneck of the

associated-measurement approach. Finally, it allows processing of pre-thresholded

measurements to enable improved tracking at lower target SNR.

In this work, we consider models associated with sensors commonly used in track-

ing and surveillance applications. As motivation, we briefly review some typical

examples of surveillance sensors here.

An imaging sensor may observe a collection of unresolved point objects. The

imager returns a collection of 1- or 2-dimensional pixel intensities. The output of

each pixel is related to the integrated photon count in that pixel which is in turn

determined by the background rate and how many targets are present within the

pixel during the integration interval, and their locations within the pixel. This is

represented numerically as either a positive integer or real number. Depending on

the nature of the optics and their impulse response function, one or more pixels may

respond to a target. Furthermore, multiple targets can contribute to the output of

a single pixel, violating the assumptions of the associated measurement model.
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Another commonly used sensor type is radar. In a ground moving target indica-

tor (GMTI) radar, a collection of pulses is emitted, their returns are collected and

integrated over some coherent processing interval (CPI) [78]. The output of succes-

sive CPIs may also be averaged non-coherently. During the integration interval, the

radar antenna is directed at some fixed or slowly varying bearing. The integrated

pulse data is processed to obtain the reflectivity as a function of range and range-

rate at that average bearing. Depending on the nature of the integration process,

the return amplitude may be envelope detected or it may be available in complex

form. Given the ubiquity of modern digital signal processing, radar data is usually

available somewhere within the radar system as a data array indexed by discrete

range, range-rate and bearing values.

With this as background motivation, we present the association-free model adopted

in this work. We compute the measurement likelihood p(z|X, T ), which describes

how sensor output depends on the state of all of the targets in the surveillance region.

A sensor scan consists of M pixels, and a measurement z consists of the pixel output

vector z = [z1, . . . , zM ], where zi is the output of pixel i. In general, zi can be an

integer, real, or complex valued scalar, a vector or even a matrix, depending on the

sensor. If the data are thresholded, then each zi will be either a 0 or 1. Note that

for thresholded data, z consists of both threshold exceedances and non-exceedances.

The failure to detect a target at a given location can have as great an impact on the

posterior distribution as a detection.

We model both measurements of spatially separated pixels and measurements of

the same pixel at different time instants as conditionally independent given the state,

i.e.

p(z|X, T ) =
∏

i

p(zi|X, T ) . (2.9)
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Independence between the measurements given the state is often approximately

true, and modeling as such often provides a nice simplification. However, conditional

independence amongst the measurements is not a necessary part of this framework.

Occasions where the physics of the situation imply sensor returns are dependent

warrant a more general sensor model. This will not change the framework given

here, only the implementation of the likelihood p(z|X, T ).

Let χi(xt) denote the indicator function for pixel i, defined as χi(xt) = 1 when

a (single) target in state xt projects into sensor pixel i (i.e. couples to pixel i) and

χi(xt) = 0 when it does not. Observe a pixel can couple to multiple targets and single

target can contribute to the output of multiple pixels, say, by coupling through side-

lobe responses. The indicator function for the joint multitarget state is constructed

as the logical disjunction

χi(X, T ) =
T∨

t=1

χi(xt) . (2.10)

The set of pixels that couple to X is

iX = {i|χi(X, T ) = 1} . (2.11)

For the pixels that do not couple to X, the measurements are characterized by

the background distribution, denoted p0(zi). With this, (2.9) can be written as

p(z|X, T ) =
∏
i∈iX

p(zi|X, T )
∏

i/∈iX

p0(zi) ∝
∏
i∈iX

p(zi|X, T )

p0(zi)
. (2.12)

Equation (2.12) allows for fairly general modeling of a pixelated sensor response to

a collection of targets including non-linear effects due to multiple targets contributing

to a single pixel. One limitation is aggregations of targets only couple to the union

of pixels that the individual targets couple to. If a pair of targets have some type of

nonlinear coupling that results in a contribution to a pixel that they do not couple
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to individually, this is not captured in the model. This is likely to be a very small

effect in most situations, so we choose to ignore it here.

We further idealize the sensor as having a box-car resolution cell in position co-

ordinates. The x- and y- ground-plane projection of each pixel is ∆x and ∆y. The

sensor response within pixel i is uniform for targets in i and vanishes for targets

outside pixel i. It is convenient to define the occupation number ni(X) for pixel i as

the number of targets in X that lie in i. The single target signal-noise-ratio (SNR),

assumed constant across all targets, is denoted λ. We assume that when multiple

targets lie within the same pixel their amplitudes add non-coherently (this will be an

accurate model for unresolved optical targets and radar targets not moving as a rigid

body). Then the effective SNR when there are n targets in a pixel is λn = nλ and we

use pn(zi) to denote the pixel measurement distribution (note that the background

distribution is obtained by setting n = 0).

With these modeling assumptions, the measurement distribution in pixel i de-

pends only on its occupation number and (2.12) becomes

p(z|X, T ) ∝
∏
i∈iX

pni(X),T (zi)

p0(zi)
. (2.13)

To complete the specification of the sensor model, we must give its dependence

on SNR. Many models are plausible, depending on the detailed nature of the sensor

physics. In this work, we have elected to use Rayleigh-distributed measurements.

This distribution corresponds to envelope detected signals under a complex Gaussian

radar return model, and has been used, for example, to model interfering targets in a

monopulse radar system [25][79] and to model clutter and target returns in turbulent

environments [80]. Rayleigh models are also often used for diffuse fading channels.
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In the pre-thresholded case, this implies

pn(z) =
z

1 + nλ
exp

(
− z2

2(1 + nλ)

)
. (2.14)

When the tracker only has access only to thresholded measurements, we use a

constant false-alarm rate (CFAR) model for the sensor. If the background false

alarm rate is set at Pf , then the detection probability when there are n targets in a

pixel is

Pd,n = P
1

1+nλ

f . (2.15)

This extends the usual relation Pd = P
1

1+λ

f for thresholded Rayleigh random

variables at SNR λ [1].

2.2 The Particle Filter Implementation of JMPD

We now turn to the development of a particle filter approximation to the Joint

Multitarget Probability Density (JMPD) [81][82]. Even for modest problems, the

sample space of the JMPD is enormous as it contains all possible configurations of

state vectors xt for all possible values of T . Specifically, if the state of an individual

target is given by the 4-tuple
(
x, ẋ, y, ẏ

)
, the sample space of the JMPD then con-

tains vectors of length 4N for all positive finite N . Earlier implementations of JMPD

given by Kastella [49] approximated the density by discretizing on a grid. The com-

putational burden in this scenario makes evaluating realistic problems intractable,

even when using the simple model of targets moving between discrete locations in

one-dimension. In fact, for a fixed approximation error, the number grid cells needed

grows as LT , where L is the number of discrete locations the targets may occupy and

T is the number of targets.

Thus, to estimate the JMPD in a computationally tractable manner, a more

sophisticated approximation method is required. We find that a particle filter (PF)
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based implementation of JMPD breaks the computational logjam and allows us to

investigate more realistic problems.

2.2.1 The Single Target Particle Filter

Before describing the particle filter implementation of the JMPD, we first review

standard single target particle filtering. Particle filtering is a method of approxi-

mately solving the prediction and update equations by simulation [11][18], where

samples from the target density are used to represent the density and are propagated

through time. As the number of particles tends towards infinity, the approximation

converges to the true posterior being approximated [21].

To implement a single-target particle filter, the single-target density of interest,

p(x|Z), is approximated by a set of Npart weighted point masses (particles):

p(x|Z) ≈
Npart∑
p=1

wpδD(x− xp) , (2.16)

where δD represents the usual Dirac impulse. The model update (2.4) and the mea-

surement update (2.5) are simulated by the following three step recursion.

First, the particle locations at time k are generated using the particle locations at

time k − 1 and the current measurements by sampling from an importance density,

denoted q(xk|xk−1, zk). The design of the importance density is a well studied area

[21], as the choice of the importance density can have a dramatic effect on the

efficiency of the particle filter algorithm. It is known that the optimal importance

density (OID) is given by p(xk|xk−1, zk), but this density is typically prohibitively

difficult to sample from. In practice, oftentimes the importance density is chosen

just to be the kinematic prior p(xk|xk−1). However, more sophisticated choices of

importance density lead to better results for a fixed number of particles. As we will

see in the multitarget case, approximating the OID (rather than simply using the
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Table 2.1: The SIR single target particle filter.

1. For each particle p, p = 1, · · · , Npart,

(a) Sample xk
p ∼ q(xk|xk−1, zk) = p(x|xk−1

p )

(b) Compute wk
p = wk−1

p ∗ p(z|xp) for each p

2. Normalize wp to sum to 1, wp ← wp/
∑Npart

i=1 wi.

3. Resample Npart particles with replacement from xp based on the distribution
defined by wp

kinematic prior) becomes crucial as problem dimension increases.

Second, particle weights are updated according to the weight equation (2.17),

which involves the likelihood, the kinematic model, and the importance density [11].

wk
p = wk−1

p

p(zk|xk
p)p(xk

p|xk−1
p )

q(xk
p|xk−1

p , zk)
. (2.17)

When using the kinematic prior as the importance density, the weight equation

reduces to simply wk
p = wk−1

p ∗ p(zk|xk
p).

Finally, a resampling step is used to combat particle degeneracy. Without re-

sampling, the variance of the particle weights increases with time, yielding a single

particle with all the weight after a small number of iterations [21]. Resampling may

be done on a fixed schedule or based on the weight variance.

The particle filter algorithm that uses the kinematic prior as the importance

density and resamples at each time step is called sampling importance resampling

(SIR) in the literature. The algorithm is summarized in Table 2.1.

2.2.2 SIR Multitarget Particle Filtering

To implement the JMPD recursions via a particle filter, we similarly approximate

the joint multitarget probability density p(X, T |Z) by a set of Npart weighted samples.

A particle now becomes more than just the estimate of the state of a target; it
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incorporates both an estimate of the states of all of the targets as well as an estimate

of the number of targets.

As we write the multitarget state vector for T targets as

X = [x1, x2, ..., xT−1, xT ] , (2.18)

the particle state vector will be written as

Xp = [xp,1, xp,2, . . . xp,Tp ] . (2.19)

Implicit in a particle Xp is the number of targets Tp, where Tp can be any non-

negative integer. With δD denoting the Dirac delta, we define

δ(X−Xp) =





0 T 6= Tp

δD(X−Xp) otherwise

. (2.20)

Then the particle filter approximation to the JMPD is given by a set of particles

and corresponding weights as

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X−Xp) , (2.21)

where
∑Npart

p=1 wp = 1.

The joint multitarget probability density p(X, T |Z) is defined for all possible num-

bers of targets, T = 0, 1, 2, · · · . As each of the particles Xp, p = 1...Npart is a sample

drawn from the JMPD p(X, T |Z), a particle Xp may have 0, 1, 2, · · · partitions, each

partition corresponding to the state vector of a different target. Different particles

in the approximation may correspond to different estimates of the number of targets

in the surveillance region.

We will denote the tth partition of particle p by Xp,t, i.e. Xp,t refers to the estimate

of the tth target state made by particle p. Since a partition corresponds to a target,
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Table 2.2: The SIR multitarget particle filter.

1. For each particle p, p = 1, · · · , Npart,

(a) Draw a sample of the multitarget state and target number (Xp, Tp) at
time k from q(Xk, T k|Xk−1, T k−1, zk) = p(Xk, T k|Xk−1, T k−1)

(b) Compute wk
p = wk−1

p ∗ p(z|Xp) for each p

2. Normalize wp to sum to 1, wp ← wp/
∑Npart

i=1 wi.

3. Resample Npart particles with replacement from Xp based on wp

the number of partitions that a particle has is that particle’s estimate of the number

of targets in the surveillance area.

With these definitions, the SIR particle filter extends directly to JMPD filtering,

as shown in Table 2.2. Particles at time k are drawn using the particles at time k−1

and an importance density q(Xk, T k|Xk−1, T k−1). In its simplest form, the target

kinematics are used for proposal, i.e. q(Xk, T k|Xk−1, T k−1) = p(Xk, T k|Xk−1, T k−1).

The weight equation is

wk
p = wk−1

p

p(zk|Xk
p)p(Xk

p|Xk−1
p )

q(Xk
p|Xk−1

p , zk)
. (2.22)

As in the single target case, since the model of target kinematics is used to propose

particles, the weight equation (2.17) simplifies to become the measurement likelihood,

p(z|Xp).

Targets entering or leaving the surveillance region are taken into account as the

proposed particle Xk
p may have either fewer targets or more targets than Xk−1

p (i.e.

T k
p = T k−1

p − 1 or T k
p = T k−1

p + 1).

2.2.3 The Inefficiency of the SIR Method

The SIR multitarget particle filter has the benefit of being simple to describe and

easy to implement. These benefits, however, are erased by computational complexity
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concerns since using the kinematics requires an enormous amount of particles for

successful tracking (as illustrated later in Figure 2.3). In fact, SIR is so numerically

inefficient that problems of any realistic size are intractable with this method of

sampling.

Assume for discussion that the sensor is pixelated, returning energy in one of C

sensor cells as discussed in Section 2.1.2. Target birth may occur in one or many of

the cells at any time step. Target death may occur in any occupied cell at any time

step (or in multiple cells). One method of handling this would be to have a very large

number of particles, capable of encoding all possibilities of the next state, i.e. no new

target, one new target (in each of the possible unoccupied cells), or one less target

(in each of the occupied cells) and all the combinations of multiple additions and

removals. Since the state space contains many possible locations for the new target

(e.g., a 100x100 sensor grid), the straightforward method would require an enormous

number of particles to include the possible permutations of targets removed and

added.

Furthermore, even in the (artificial) case where there is no birth and death, target

proposals using the kinematics are too inefficient to be useful on realistic problems.

Consider the case where there a M targets in the surveillance region. In order for

a particle to be a good estimate of the multitarget state, all M partitions must be

proposed to good locations. Without knowledge of the measurements, the proba-

bility of an individual target being proposed to a good location is much less than

1. Therefore, as the number of targets grows, the number of particles required to

have some particles have a good estimate of all the targets simultaneously (with high

probability) grows exponentially.

Both of these problems can be remedied by using an importance density that



41

more closely approximates the optimal importance density. Specifically, using the

current measurements to direct particle proposals to higher likelihood multitarget

states will provide significant efficiency gains. Therefore, rather than using the

model of kinematics p(Xk, T k|Xk−1, T k−1) for proposal, we advocate a carefully

designed importance density that more closely approximates the optimal density

p(Xk, T k|Xk−1, T k−1, zk). The following subsections describe this design. The dis-

cussion is broken into two parts, one dealing with target birth and death and one

dealing with targets that remain from time step k to time step k + 1, i.e., persistent

targets. The analysis is unified after discussion of the components individually.

2.2.4 Importance Density Design for Target Birth and Death

To reach the efficiency required for tractable detection of multiple targets, we ad-

vocate a measurement directed sampling scheme for target birth and death. Specif-

ically, we keep an existence grid (separate from the particles and tied to the sensor

grid) which contains the probability for t targets in cell i at time k given the mea-

surements Zk, pi(t
k|Zk). We consider only two possible values for t: 0 (no target

in cell i) and 1 (a target exists in cell i). Therefore, the existence grid is merely

a single vector of floating point numbers, one for each sensor cell. Note that this

implicitly assumes non-interacting targets at initialization. If target existence in one

cell depends on targets in other cells, the joint probability p(tk+1
1 , tk+1

2 , · · · tk+1
N |Zk)

would be required.

The existence grid cells are initialized with a prior probability, pi(t
0|Ø), which may

be spatially varying. The probability of target existence in each cell is propagated

forward in time via

pi(t
k+1|Zk) =

∫
pi(t

k+1|tk)pi(t
k|Zk)dtk . (2.23)
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where pi(t
k+1|tk) is the model of time evolution of target number. Specifically, it

encapsulates the probability of 1 target at time k + 1 given there were 0 targets at

time k, the probability of 1 target at time k + 1 given there was 1 target at time

k, and so on. According to the model discussed earlier, new targets arrive in cell x

at time k at the rate α(xk) and leave cell x at time k at the rate of β(xk). This

model completely specifies the transition density. Since t can only take on one of

two values, this integral becomes a simple summation that is easily computable.

The existence grid is updated according to Bayes’ rule when new measurements,

zk+1, come in as

pi(t
k+1|Zk+1) =

pi(t
k+1|Zk)pi(z

k+1|tk+1)

pi(zk+1)
. (2.24)

These update procedures result in an existence grid that is separate from the

particles and which contains a probability of target existence.

To handle target birth, new targets are preferentially added in locations according

to the rate dictated by pi(target
k|Zk) rather than at the prior rate given by α(xk).

This is a bias which will be removed during the weight update process so that the

Bayesian recursions are still exactly implemented. This implementational technique

allows particles to be used more efficiently as new targets are only added in highly

probable areas. Similarly, to handle target death, targets are preferentially removed

at the rate dictated by pi(no targetk|Zk) rather than the prior rate given by β(xk).

This bias is removed during the weight update so that the Bayesian recursions are

still exactly implemented. Specifically, the particle weights are modified by a function

which relates the true physical arrival rate α(xk) to the arrival rate actually used to

add new targets. Similarly, the particle weight must be modified by a function which

relates the true removal rate β(xk) to the removal rate actually used by the filter.

For the purposes of this work, we assume the model is that the arrival and re-
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moval rates are spatially and temporally constant and thus α(xk) and β(xk) are

constants equal to α and β. The generalization to temporally and spatially varying

rates is straightforward to implement but significantly complicates notation. This

generalization is pursued in [83].

We know specify the exact manner in which bias is removed. Let the num-

ber of possible locations where a target could be added in the surveillance re-

gion at time k be denoted ek. Furthermore, for notational convenience denote the

existence-grid weight in cell i at time k by gk
i . Finally, for a set of integers Z let

µZ
m(1, j), . . . , µZ

m(m, j), j ∈ {1, . . . , (|Z|
m

)} denote the jth combination of m integers

from Z. Then, if particle p adds a targets preferentially to cells given in the set j1

and removes b targets preferentially from cells given in the set j2, the bias correction

factor (to be used in particle weight update) is given by

mp =
λaρb

νa,j1κb,j2

(2.25)

where λ and ρ are defined using the prior birth and death probabilities as

λa = (1− α)ek

( α

1− α

)a

(2.26)

and

ρb = (1− β)T k−1
( β

1− β

)b

. (2.27)

The quantities ν and κ are defined from the addition and removal rates used by

the filter as

νa,j =
∏

i∈Ak

(1− gk
i )

a∏

l=1

gk

µAk
a (l,j)

/(
1− gk

µAk
a (l,j)

)
(2.28)

and

κb,j =
T k−1∏
i=1

(
1− τ k

i

) b∏

l=1

τ k

µTk−1
b (l,j)

/(
1− τ k

µTk−1
b (l,j)

)
(2.29)
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where

τ k
i = β

1− gk
vk

i

1/T k−1
∑T k−1

l=1 (1− gk
vk

i
)

. (2.30)

2.2.5 Importance Density Design for Persistent Targets

The drawback to using the kinematic prior for persistent targets is that the method

does not explicitly take advantage of the fact that the state vector represents many

targets. Targets that are far apart in measurement space behave independently and

should be treated as such. Furthermore, similarly to the uninformed birth/death

proposal, the current measurements are not used when proposing new particles.

These two considerations taken together result in an inefficient use of particles and

therefore to be successful at target tracking, methods using the kinematics as the

importance density require large numbers of particles.

To overcome these deficiencies, we propose a particle proposal technique which

biases proposed particles toward the measurements and allows for factorization of

the multi-target state when permissible. These strategies propose each partition in

a particle separately, and form new particles as the combination of the proposed

partitions. We describe two methods here, the independent partitions (IP) method

of [36] and the coupled partitions (CP) method. The basic idea behind both CP

and IP is to construct particle proposals at the partition level, incorporating the

measurements so as to propose in a manner that is close to the optimal importance

density. We show that each method has benefits and drawbacks and propose an

adaptive partition (AP) method which automatically switches between the two as

appropriate.

Specifically, the CP method proposes particles in a permutation invariant manner.

However, it has the drawback of being computationally demanding. also, when used
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on all partitions individually, the IP method is not permutation invariant. However,

it is significantly more computationally efficient than CP. The solution we advocate

is to perform an analysis of the particle set at each time step to determine which

partitions require the CP algorithm, and which partitions may be proposed via the

IP method. This analysis leads to the AP method of proposal which is permutation

invariant.

The Independent-Partition (IP) Method

The independent partition (IP) method given by Orton [36] is a convenient way

to propose particles when the JMPD factors. In its simplest form, a partition cor-

responds directly to a target, and that is how we describe it here. This assumption

is relaxed later. The Independent-Partition (IP) method proposes a new partition

as follows. For a partition t, each particle at time k − 1 has it’s tth partition pro-

posed via the kinematic prior and weighted by the measurements. From this set of

Npart weighted estimates of the state of the tth target, we select Npart samples with

replacement to form the tth partition of the particles at time k.

When using IP, we are implying an importance density q(Xk, T k|Xk−1, T k−1) that

is no longer simply the model of target kinematics p(Xk, T k|Xk−1, T k−1) as in the

SIR multitarget particle filter. Therefore, the weight given by (2.17) does not simply

become the likelihood p(zk|Xk, T k). There is a bias which leads to preferring to

select partitions in accordance with the likelihood of the partition. To account for

this sampling scheme, the biases corresponding to each particle for each partition, bp,t,

are retained to use in conjunction with the likelihood p(zk|Xk, T k) when computing

particle weights. Furthermore, note that some particles will estimate a particular

target does not exist. This estimate is treated exactly as other estimates. This

algorithm is summarized in Table 2.3.
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Table 2.3: The independent partition particle filter.

1. For each partition, t = 1 · · ·Tmax, propose partition t via Independent Parti-
tion Subroutine

2. Remove or add targets to each particle as in Section 2.2.4 resulting in bias
term mp

3. Compute wk
p = wk−1

p ∗ p(z|Xp)

mp

QTmax
t=1 bp,t

Independent Partition Subroutine for Target t:

1. For each particle p = 1, ..., Npart,

(a) Sample X∗
p,t ∼ p(Xk

p,t|Xk−1
p,t )

(b) Compute wp = p(z|X∗
p,t)

2. Normalize wp to sum to 1, wp ← wp/
∑Npart

i=1 wi.

3. For each particle p = 1, ..., Npart,

(a) Sample an index j from the distribution defined by w

(b) Set Xp,t = X∗
j,t

(c) Retain bias of sample, bp,t = wj

It is important to carefully account for the permutation symmetry issue discussed

in Section 2.2 here. The IP method makes the critical assumption that partition t

in each particle corresponds to the same target. Therefore, the partitions in each

particle must be aligned before this method can be applied. If IP is applied to

particles that have different orderings of partitions, multiple targets will be grouped

together within the same partition and erroneously used to propose the location of

a single target. In Section 2.2.6, a method of sorting that lines partitions up across

all of the particles and allows IP to be used more often. When the assumption of

target/partition correspondence is valid, IP is an effective sampling strategy because

it combines results for each partition across particles, resulting in improved numerical

efficiency.

In the case of well separated targets, this method allows many targets to be

tracked with the same number of particles needed to track a single target. Indeed,
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as mentioned earlier, in the case of well separated targets, the multitarget tracking

problem breaks down into many single-target problems. The IP method is useful for

just this case, as it allows the targets to be treated independently when their relative

spacing is sufficiently large to decouple the JMPD. Note, however, that this method

is not applicable when there is any measurement-to-target association ambiguity.

Therefore, when targets are close together in sensor space, an alternative method

must be used.

The Coupled Partition (CP) Proposal Method

When the posterior distributions on target position begin to overlap, we say that

the corresponding partitions are coupled. In these instances, the IP method is no

longer applicable, and another method of particle proposal such as Coupled Partitions

(CP) must be used. An alternative method would be to use the IP strategy on

groups of partitions as suggested in [36]. We suggest instead the CP method which

recognizes the increased difficulty of the problem when overlap happens and combats

it via increased sampling.

We apply the coupled partitions method as follows. To propose partition t of

particle p, the CP method proposes R possible realizations of the future state using

the kinematic prior. The R proposed futures are then given weights according to the

current measurements and a single representative is selected. This process is repeated

for each particle until the tth partition for all particles has been formed. This can

interpreted as an auxiliary particle filter [84] where the multiplicity R plays the role

of the auxiliary variable. It can also be interpreted as a Monte Carlo approximation

to the OID for a partition. As in the IP method, the final particle weights must be

adjusted for this biased sampling. The algorithm is summarized in Table 2.4.
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Table 2.4: The coupled partition particle filter.

1. For each partition, t = 1 · · ·Tmax, propose partition t via Coupled Partition
Subroutine

2. Remove or add partitions as in Section 2.2.4 resulting in bias term mp

3. Compute wk
p = wk−1

p ∗ p(z|Xp)

mp
QTp

t=1 bp,t

Coupled Partition Subroutine for Target t

1. For each particle p = 1, ..., Npart,

(a) For each proposal r = 1, ..., R

i. Sample X∗
p,t(r) ∼ p(Xk

p,t|Xk−1
p,t )

ii. Compute wr = p(z|X∗
p,t(r))

(b) Normalize wr to sum to 1, wr ← wr/
∑R

i=1 wi.

(c) Sample an index j from the distribution defined by w

(d) Set Xp,t = X∗
p,t(j)

(e) Retain bias of sample, bp,t = wj

This algorithm is a modified version of the traditional SIR technique that operates

on partitions individually, i.e., uses IP. It improves tracking performance over SIR

at the expense of additional computations.

Adaptive Particle Proposal Method

To mitigate the problem of additional computational cost of the CP method, and

the problems with the IP method when targets are close together, we propose a hybrid

solution, called the Adaptive-Partition (AP) method. The adaptive-partition method

again considers each partition separately. Those partitions that are sufficiently well

separated according to a given metric (see below) from all other partitions are treated

as independent and proposed using the IP method. When targets are not sufficiently

distant, the CP method is used.

To determine when targets are sufficiently separated, we threshold based on dis-

tance in sensor space between the estimated state of the ith partition and the jth
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Table 2.5: The adaptive proposal method.

1. For each partition t = 1 : Tmax

(a) d(t) = minj 6=t ||x̂t − x̂j ||
(b) if d(t) > τ

Propose partition t using IP method

(c) else

Propose partition t using CP method

2. Remove or add partitions as in Section 2.2.4 resulting in bias term mp

3. For each particle p = 1, ..., Npart

wk
p = wk−1

p ∗ p(z|Xp)

mp

QTp
t=1 bp,t

partition. Denote by x̂i the estimated x and y positions of the ith partition (2.41).

Notice that only the spatial states are used (i.e. velocities are neglected), as our

model assumes that no velocity information is available from the sensor. A more

general model (which would be driven by a more capable sensor) would lead to a

more general distance metric. We have computed the distance between two parti-

tions using a Euclidian metric between the estimated centers, and the Mahalanobis

metric (2.31), where Σ̂j is the covariance associated with the estimate of the jth

partition (see 2.42).

r2 = (x̂i − x̂j)
′Σ̂−1

j (x̂i − x̂j) . (2.31)

We have additionally used a nearest neighbor type criteria, where partitions are

considered coupled if any sample from partition i is closer to the center of partition

j then any sample from partition j. In practice, it is found that simply using the

Euclidian distance between estimated states is sufficient and less computationally

burdensome. The adaptive proposal method is summarized in Table 2.5.

It turns out that a refinement to the CP method (given by Morelande [83]) im-

proves performance even further. In this method, those partitions that are deemed
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Table 2.6: The modified adaptive proposal method.

1. Cluster targets into C groups

2. For each group c = 1 : C

(a) if group C has one entry,

Propose group c using IP method

(b) else

Propose group c using CP method

3. Remove or add partitions from selected particles as in Section 2.2.4

4. For each particle p = 1, ..., Npart

wk
p = wk−1

p ∗ p(z|Xp)

mp
QC

c=1 bp,c

to be coupled are clustered according to the method of Section 2.2.6. This results

in “partitions” that contain multiple targets – some with 2 targets, some with 3

targets, etc. Then instead of proposing each target individually, the clustered pairs

(pairs, triplets, etc.) of targets are proposed all at once. This method is summarized

in Table 2.6. Note that the idea of a partition containing multiple targets is also

present in the work of Orton [36], although adaptively deciding partition boundaries

and partition clustering is new to this work.

2.2.6 Permutation Symmetry and Partition Sorting

As discussed throughout the preceding sections, the permutation symmetry asso-

ciated with the JMPD discussed in Section 2.1 is directly inherited by the particle

filter representation of the JMPD. Each particle contains many partitions (as many

as the number of targets it estimates exist in the surveillance region) and the per-

mutation symmetry of JMPD is visible through the fact that the relative ordering of

targets may change from particle to particle. We refer to the permutation symmetry

in this context as partition swapping.

The fact that partitions are in different orders from particle to particle is of no



51

consequence when the object of interest is an estimate of the joint multitarget density.

Each particle contributes the correct amount of mass in the correct location to the

multitarget density irrespective of the ordering of its partitions.

However, the IP scheme requires particles be identically ordered. Furthermore,

estimating the multitarget states from the particle filter representation of JMPD

must also be done in a way that is invariant to permutations of the particles. There-

fore, before estimating target states, we permute the particles so that each particle

has the targets in the same order. We use the K-means algorithm [85] to cluster the

partitions of each particle, where the optimization is done across permutations of the

particles. This is a very light computational burden in practice for two reasons. First,

those partitions that are not coupled are already consistently ordered and need not

be involved in the clustering procedure. Second, since this re-ordering occurs at each

time step, those partitions that are coupled are nearly ordered already, and so one

iteration of the K-means algorithm is typically enough to find the best permutation.

We now give the details of the K-means algorithm applied to our setting. First,

we state the notion of permutation symmetry precisely. Suppose a particle has

Tp partitions labeled t = 1 · · ·Tp. A permutation πp is a reshuffling of the labels,

πp : i → πp(i). So a particle is defined

Xp = [xp,1,xp,2, · · · ,xp,Tp ] . (2.32)

Under the permutation πp is reordered to

Xp = [xp,πp(1),xp,πp(2), · · · ,xp,πp(Tp)] . (2.33)

Denote by π a set of permutations for each particle, πp, p = 1 · · ·Npart. We define

the mean of the tth partition under the permutation π as

X̄t(π) =

Npart∑
p=1

wpXp,πp(t) , (2.34)
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Table 2.7: The K-means algorithm for partition sorting.

1. Initialize with π = current ordering of partitions

2. Compute X̄t(π) for t = 1 · · ·Tmax using (2.34)

3. For each particle p, permute the particle (update πp) to yield

πp ← argmin
πp

Tp∑
t=1

(Xp,πp(t) − X̄t(πp))2

4. If no particles have changed permutation from π, quit.
Otherwise set π = (π1, · · · , πp, · · · , πNpart

) and go to 2

where it is understood that the summation is taken over only those particles that have

partition t, and the weights are appropriately normalized to this subset. Further,

define the χ2 statistic as

χ2(π) =

Npart∑
p=1

Tp∑
t=1

wp(Xp,πp(t) − X̄t(πp))
2 . (2.35)

To reorder the particles, the goal is to find the set of permutations π that minimize

χ2, i.e.

π̂ = min
π

χ2(π) . (2.36)

The K-means algorithm is a well known method of approximately solving problems

of this type. An initial permutation π is assumed and perturbations about that value

are made to descend and find the locally optimal π. As mentioned earlier, re-ordering

is done at each iteration of the algorithm, so the initial ordering is typically very

close to the globally optimal ordering. Therefore, the K-means algorithm typically

converges to the global optimum after a very small number of iterations (often 1).

The algorithm is given in Table 2.7.

Notice that if the K-means algorithm fails to return the globally best reshuffling,

this is not a serious problem. The main effect is that the CP algorithm will be used
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more than is minimally necessary. This results in increased computation but no

performance degradation. A secondary effect is that target estimates will be slightly

incorrect. There will be only a minor error relative to the sensor resolution because

a local minimum will at worst mix partitions that are very close together in sensor

space.

2.2.7 State Estimation

The particles that approximate the JMPD can be used to generate estimates of

the number of targets in the surveillance area and the states of the individual targets.

Equation (2.3) gives the expression for computing the probability that there are

exactly T targets in the surveillance volume from the JMPD. To extract this estimate

from the particle filter approximation, first define the indicator variable Ip(T ) for

p = 1...Npart,

Ip(T ) =





1 if Tp = T

0 otherwise

. (2.37)

Then the probability that there are T targets in the surveillance volume, p(T |Z), is

given by

p(T |Z) ≈
Npart∑
p=1

Ip(T )wp . (2.38)

Hence, the estimate of the probability that there are T targets in the surveillance

volume is merely the sum of the weights of the particles that have T partitions.

To compute the estimated state and covariance of target i, we first define a second

indicator variable Ĩp(i) that indicates if particle p has a partition corresponding to

target i. This is necessary as each particle is a sample drawn from the JMPD and

hence may have a different number of partitions (targets):

Ĩp(i) =





1 if partition i exists in particle p

0 otherwise

. (2.39)
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Note that the sorting procedure of Section 2.2.6 has identified an ordering of

particles to allow Ĩp(i) to be determined. This is largely a bookkeeping issue; particles

are sorted so the partition tracking target i is in the same position in each particle. If

a particular particle does not predict that target i exists, it’s corresponding partition

is “empty” and Ĩp(i) = 0. Defining the normalized weights to be

ŵp =
wpĨp(i)∑Npart

l=1 Ĩl(i)wl

, (2.40)

so ŵp is the relative weight of particle p, with respect to all particles containing a

partition corresponding to target i. Also, ŵp is zero for particles not tracking target

i. Then the estimate of the state of target i is given by

X̂(i) = E[X(i)] =

Npart∑
p=1

ŵpXp,i . (2.41)

which is simply the weighted summation of the position estimates from those particles

that are tracking target i. The covariance is given similarly as

Λ̂(i) =

Npart∑
p=1

ŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ . (2.42)

The indicator function Ĩp(i) ensures that the summations in (2.41) and (2.42) are

taken over only those particles that are tracking target i.

The permutation symmetry issue mentioned earlier comes to the forefront here.

Notice that without a clustering on the partitions, it is not necessarily true that

partition i of particle j is tracking the same target that partition i of particle j +

1 is tracking. Therefore, taking a mean across a partition is meaningless. This

is remedied by applying the clustering algorithm discussed in Section 2.2.6 before

evaluation of (2.39) through (2.42).



55

2.2.8 Resampling

In the traditional method of resampling, after each measurement update, Npart

particles are selected with replacement from Xp based upon the particle weights wp.

The result is a set of Npart particles that have uniform weight which approximate the

multitarget density p(X|Z). Particles that do not correspond to measurements are

eliminated – in particular, particles whose Tp value is not supported by measurements

(too many or too few targets) are selected with low probability.

The main problem with resampling is that it reduces particle diversity. This leads

to reduced performance for a fixed number of particles. Therefore, resampling is only

be done when absolutely necessary.

The particular resampling that was used in this work is systematic resampling

[11]. This resampling strategy is easily implemented, runs in order Npart, is unbi-

ased, and minimizes the Monte Carlo variance. Many other resampling schemes and

modifications are presented in the literature [21]. Of these methods, we have found

that adaptively choosing at which time steps to resample [86] based on the number

of effective particles leads to improved performance while reducing compute time.

All results presented herein use the method of [86] to determine which times to

resample and use systematic resampling [11] to perform resampling. We have also

found that Markov Chain Monte Carlo (MCMC) moves using a Metropolis-Hastings

scheme [21] leads to slightly improved performance in our application. However, the

performance improvement does not warrant the increased computation and so it is

not used here.
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2.2.9 Multiple Model Particle Filtering

Real targets are often poorly described by a single kinematic model. Target

behavior may change dramatically – e.g., a target may stop moving or begin rapid

acceleration. We refer to these methods of target behavior as target ”modes”. In

the literature, the Interacting Multiple Model (IMM) algorithm [9] is used to address

this. In short, the IMM algorithm uses a set of models to describe target behavior.

Each model is called a mode and characterizes to some degree the way a target is

behaving. For example, there may be a model for targets that are moving with

constant velocity, one for targets that are accelerating and one for targets that are

stopped. In addition, the IMM uses models of how the mode of a target evolves over

time, e.g., how likely a moving target is to stop and vice versa.

The IMM algorithm estimates on-line the target mode and uses it for filtering. The

designer selects a set of M models or modes m = 1 · · ·M that represent all possible

priors on motion of the target (e.g., stopped, accelerating, performing a coordinated

turn). Associated with each model m is the mode probability (probability the target

is following this mode at the current time). At initialization, mode probabilities are

given based on prior knowledge. While the filter tracks the target, mode probabilities

are continuously re-estimated online.

The target mode is typically assumed to evolve in a Markov fashion, specified a

priori by transition probabilities πij between target mode i and j. Sensor measure-

ments allow the filter to update the estimate of the mode probabilities at each time

step. A sub-filter is associated with each of the M modes. The sub-filters estimate

the state x conditioned on both the measurements Z and the mode i, i.e. the ith

sub-filter estimates pi(x|Z).

When a particle filter is used as the target tracker, the IMM algorithm is especially
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Table 2.8: Generic interacting multiple model particle filter propagation.

Time Update

• Select the mode : mk+1 ∼ πmk,mk+1

• Propose target state : xk+1 ∼ qmk+1(xk+1|xk, z)

Measurement Update

• Update weight : wk+1 = wk p(z|xk+1)p(xk+1|xk)
q(xk+1|xk,z)

simple. Each particle is expanded to contain a mode estimate for each target. The

particle is propagated forward in time according to the dynamics implied by the

modes of the targets. Transitions between modes happen for each target according

to π. The weighting and resampling process work to reinforce modes that are in

agreement with measurements at the expense of those that are not. Specifically, for

each particle at time k (which contains an estimate of the mode mk and state xk) a

particle is proposed at time k + 1 according to Table 2.8.

2.3 Simulation Results

2.3.1 Introduction

We illustrate the performance of our multitarget tracking scheme by considering

the following model scenario.

A set of ground targets move in a 5000m× 5000m surveillance area. Targets are

modeled using the four-dimensional state vector x = [x, ẋ, y, ẏ]. The target motion

in the simulation is taken from a set of recorded data based on GPS measurements of

vehicle positions collected as part of a battle training exercise at the Army’s National

Training Center (see Figure 2.1). This battle simulation provides a large number of

real vehicles, including army HMMWVs, armored personnel carriers, tanks, and the

like. The vehicles follow a prescribed trajectory over natural terrain. Based on an
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empirical fit to the data, we found that a nearly constant velocity model (see (2.4))

was adequate to model the behavior of the vehicles for these simulation studies and is

therefore used in all experimental results presented herein. In another study [77], we

have found that a multiple model particle filter with modes corresponding to nearly

constant velocity, rapid acceleration, and stationarity provides slightly more efficient

filtering.

We use the idealized sensor described in Section 2.1.2. The sensor scans a fixed

rectangular region of 50×50 pixels, where each pixel represents a 100m×100m area

on the ground plane. The sensor returns Rayleigh-distributed measurements in each

pixel, depending on the number of targets that occupy the pixel. In some simula-

tions, we consider pre-thresholded measurements and therefore energy is returned

corresponding to each measured pixel according to (2.14). In other simulations, we

consider thresholded measurements in which case binary returns are received accord-

ing to (2.15).

We present the results of 5 simulation studies here. First, in Section 2.3.2, we

illustrate the benefit of the adaptive proposal scheme detailed in Section 2.2.5. We

contrast the performance of the CP, IP, and AP methods in two scenarios, one where

targets are always well separated and one more realistic scenario where targets fre-

quently interact. Second, in Section 2.3.3, we qualitatively evaluate the performance

difference when using pre-thresholded measurements versus thresholded measure-

ments. Third, in Section 2.3.4, we evaluate the ability of the tracker to determine

the number of targets when the number is initially unknown. Fourth, in Section

2.3.5, we investigate the computational burden of the algorithm and how it scales

with number of targets. Fifth, in Section 2.3.6, we illustrate partition swapping when

two targets cross. The scenario is contrasted with and without partition sorting as
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described in Section 2.2.6.

2.3.2 Adaptive Proposal Results

In Figure 2.2, we compare the performance of the Independent Partitions (Table

2.3), Coupled Partitions (Table 2.4), and Adaptive Partitions (Table 2.5) proposal

schemes presented here with that of the traditional scheme of sampling from the

kinematic prior (Table 2.2) in terms of RMS tracking error. In this example we use 3

targets with motion taken from real recorded trajectories. The targets remain close

in sensor space for about 50% of the time. Thresholded measurements with Pd = 0.5

are used and the SNR parameter λ is varied from 1 to 21.
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Figure 2.2: The performance of the coupled partition, independent partition, and adaptive partition
schemes in comparison to simply using the kinematic prior. Performance is measured in
terms of RMS position error in meters. In this simulation, we have extracted 3 targets
from our large database of real recorded target trajectories. The targets were chosen
so as to spend approximately one-half of the simulation in close proximity. The IP
algorithm used alone is inappropriate during target crossings and so performs poorly
here. The CP algorithm is always appropriate, but computationally demanding. The
AP algorithm adaptively switches between IP and CP resulting in good performance
at reduced computation.

Due to partition swapping, the IP method is inappropriate during target crossings
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and hence the tracker using IP has poor performance. The CP method makes no

assumption about the independence of the targets and therefore performs very well,

although at significantly higher computational cost. Most importantly, the adaptive

method, which uses IP on partitions that are deemed independent and CP otherwise,

performs nearly as well as the CP method itself. AP achieves approximately a

50% reduction in computational burden (measured by floating point operations) as

compared to the CP method alone (see Table 2.9).

In this simulation, we have extracted 3 targets from our large database of real

recorded target trajectories. The targets were chosen so that they spent approxi-

mately one-half of the simulation in close proximity. The AP algorithm correctly

chooses to use IP during the half of the simulation where targets well separated and

CP during the other half, which results in the stated reduction in computation.

Table 2.9: Floating point operations (as measured by MatLab) for KP, CP, IP, and AP Methods.

Particle Proposal Floating Point
Method Operations
Coupled Partition 1.25e+8
Independent Partition 6.74e+6
Adaptive Partition 5.48e+7
Kinematic Prior 6.32e+6

As a means of directly comparing the IP and CP methods with the kinematic

prior (KP), we construct a second model problem. We consider five well separated

targets, and look at the performance in Figure 2.3. For the purposes of this model

problem, we restrict target motion to be linear, measurement to state coupling to

be linear, and the noise processes to be Gaussian. We use the motion model given

by (2.4) both for the simulation of target motion and in the filter. In this case we

can use the Kalman filter as a bound. It is of course not necessary to make these

assumptions for the particle filter. In fact, the strength of the particle filter (and
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nonlinear filtering in general) approach is that no linearity/Gaussianity assumptions

are needed. However, we have restricted the problem in this manner here so that

we can compute an asymptotic performance bound and show that the particle filter

implementation indeed reaches the bound.

More general performance bounds, which apply to the discrete time nonlinear fil-

tering problems such as that of Figure 2.2 are available in the literature [87][88]. How-

ever, bounds require knowledge of the true target kinematics, p(Xk, T k|Xk−1, T k−1),

which we do not have. As stated earlier, the simulations involve real recorded target

motion and hence we do not know the kinematic model precisely.
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Figure 2.3: The performance of the proposal schemes considered here compared to the perfor-
mance bound. For the purposes of this example, we consider five well separated targets
with linear motion, linear state-to-measurement coupling, and Gaussian initial density.
Therefore, the Kalman filter is optimal and provides a performance bound. We see that
the coupled partition method achieves similar performance as the kinematic proposal
with a factor of 100 fewer particles. Furthermore, the independent partition method
achieves similar performance as the kinematic proposal with a factor of 1000 fewer
particles.

The CP method is shown with a particular choice of R, R = 10. We see that the

CP method reduces the number of particles required (as compared to the Kinematic
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Prior) by a factor of approximately 100. It was seen earlier in Table 2.9 that the

computational increase of CP is approximately a factor of 20. This tradeoff makes

CP a more efficient strategy than simply increasing the number of particles. It can

be seen that the IP technique reduces the number of particles needed by between two

and three orders of magnitude as compared to the traditional technique (KP). Since

the work per particle to perform IP is nearly identical to that of sampling from the

kinematic prior, IP actually reduces computational burden by two to three orders of

magnitude when targets are well separated.

These simulations are the result of particular choices of the plant noise and mea-

surement noise parameters. The number of particles required to reach the Kalman

filter bound is sensitive to these choices. Specifically, as the ratio of plant noise to

measurement noise increases, the number of particles to reach the bound increases.

However, the relative performance of the IP, CP and KP algorithms remains consis-

tent.

2.3.3 The Value of Not Thresholding

We investigate here the gain from using pre-thresholded measurements in the

multitarget tracking scenario. One of the strengths of our association-free method is

the ability to directly include pre-thresholded measurements into the filter through

the likelihood p(z|X, T ).

In this simulation, we study three real targets chosen from our database and

benchmark the performance of the tracker versus SNR (λ) for thresholded measure-

ments with Pd = 0.1 · · · 0.9. At a constant SNR, as Pd is reduced, so is Pf according

to the relation given in (2.15). The performance of the algorithm versus SNR and

Pd is given in Figure 2.4.

We contrast the performance of the algorithm using thresholded measurements
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Figure 2.4: A contour plot showing the number of targets tracked versus Pd and SNR when using
thresholded measurements. The simulation consists of three targets taken from the
collection of real targets. In a real system, the operator has a choice of how to set
the threshold, essentially choosing the Pd and Pf . Optimal performance occurs near
Pd = 0.4.

with the performance when using pre-thresholded measurements at the same set of

SNR values. Figure 2.5 is a plot showing the performance of the algorithm using

thresholded measurements at Pd = 0.4 (the best performance from Figure 2.4) and

the algorithm using pre-thresholded measurements in terms of the number of tar-

gets successfully tracked. We see that pre-thresholded measurements provide similar

tracking performance at an SNR of 1 as the thresholded measurements provide at

an SNR of 5, for a gain of about 7dB from not thresholding the measurements.

2.3.4 Unknown Number of Targets

We demonstrate the ability of the filter to determine the number of targets and

their states when started with no knowledge of either. For this simulation, the

existence probability at initialization (see Section 2.2.2) for each of the sensor cells

is set to 0. The birth rate is assumed to be constant spatially at .02 and the death
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Figure 2.5: A plot comparing the performance of the tracker using thresholded measurements with
the performance using pre-thresholded measurements in a three target experiment. The
simulation consists of three targets taken from the collection of real targets. Using pre-
thresholded measurements provides similar tracking performance at SNR = 1 as the
thresholded measurements provide at SNR = 5.

rate is assumed to be .005.

We measure the performance of the algorithm in two ways. First, we compare

the estimated number of targets to the true number of targets, where the estimated

number of targets at time k is defined as

T̂ k =
∞∑

T=0

T

∫

X

dXp(X, T |Z) ≈
n∑

p=1

wpTp (2.43)

Second, we use the ground truth to calculate the number of actual targets that

are successfully tracked by the filter. For each of the hypothesized target t, we have

an estimate of the target state as

x̂k
t =

∫
xtdx1 · · ·xtp(x1 · · ·xT |Z) ≈

n∑
p=1

ŵpXp,t (2.44)

where ŵp is normalized to sum to one over all particles that contain partition t and

the partitions are ordered according to the algorithm of Section 2.2.6. The target

estimates are then matched up with the ground truth to give a measure of how many



65

true targets are being successfully tracked, which we denote Ttracked. Note this metric

is penalized for both targets that should have been detected but weren’t as well as

targets that were successfully detected but then poorly tracked. The two metrics

T̂ k and Ttracked taken in combination allow for determination of the number of false

targets initiated as well as the number of true targets not under track.
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Figure 2.6: The performance of the particle filter implementation of JMPD for detecting and track-
ing ten real targets versus number of particles. For this experiment, the SNR is 10dB,
the removal rate is .005 and the arrival rate is .02. Ideal performance is T̂ = 10 and
Ttracked = 10 at all times. The dip in performance between time 150 and 200 repre-
sents a period of time where two targets occupied the same detection cell and hence the
estimates of target position were not as good.

We show in Figures 2.6 and 2.7 the performance of particle filter based implemen-

tation of JMPD at detecting and tracking 10 real targets. In this simulation, ten

targets were drawn from the database of real target trajectories. All ten targets are

present at filter startup, and the filter has no prior information about the number or

states of the targets. Ideal performance is for the filter to estimate T̂ = 10 targets

and have Ttracked = 10 targets in track at all times.

2.3.5 Computational Considerations

Using a MatLab/C hybrid coding implementation on an off-the-shelf 3GHz Linux

box, we find that the AP method is able to track 10 real targets with scans of the
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Figure 2.7: The performance of the particle filter implementation of JMPD for detecting and track-
ing ten real targets versus signal to noise ratio. For this experiment, the number of
particles is 200, the removal rate is .005 and the arrival rate is .02. Ideal performance
T̂ = 10 and Ttracked = 10 at all times. The dip in performance between time 150 and
200 represents a period of time where two targets occupied the same detection cell and
hence the estimates of target position were not as good.

surveillance area coming in once per second faster than real time. Figure 2.8 shows

the tracking performance when using particle filter implementation of JMPD on ten

real targets. The plot is averaged over 50 trials, where in each trial a random set of

10 targets is chosen from our large database of real targets.

One factor that effects computation is the number of coupled targets. This ef-

fect can have a greater impact on computational complexity then the number of

targets. When targets move close together, their coupling must be explicitly mod-

eled and the CP algorithm becomes necessary. This algorithm is significantly more

computationally demanding then the IP method.

In Figure 2.9, we show the computational runtime results of simulations where

1 · · · 10 targets are tracked. We include for reference the average number of coupled

targets during the simulations. For each trial, we select t targets at random from our

collection of real recorded data. Depending on which targets are selected, there may

or may not be groups of targets that are close in sensor space during the simulation.
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Figure 2.8: The performance of the particle filter implementation of JMPD when tracking ten real
targets. This set of targets contains two convoys (targets following each other closely
throughout the simulation), one of four targets and one of three targets. For each
simulation, at each time step tracking error is measured as the mean track error for
the ten targets. The plot shows the median tracking error across all 50 simulations.
The filter is initialized with the true target locations and so initial tracking error is
0. Steady state tracking error is on the order of 40 meters. As mentioned earlier,
the sensor measures 100m x 100m resolution cells on the ground. The particle filter
implementation of JMPD uses 250 particles which allows near real time tracking.

This fact results in a different level computational complexity depending on the set

of targets chosen. For this reason, the plot in Figure 2.9 is averaged over 50 trials,

each consisting of a random draw of the targets from the real target motion database

described earlier.

2.3.6 Partition Swapping

Partition swapping, as discussed in Section 2.2.6, is the phenomenon where differ-

ent particles have different orderings of the various targets. This ordering difference

occurs because of the permutation symmetry of the JMPD (and all multitarget track-

ing problems). Specifically, the multitarget states X =
(
x1,x2

)
and X′ =

(
x2,x1

)

refer to the same multitarget state and are hence identical.
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Figure 2.9: Floating point operations (as measured by MatLab) versus number of targets for a pure
MatLab implementation of the multitarget particle filter. One factor that effects the
computations required is the number of closely spaced targets, as the coupling most be
modeled explicitly and the CP algorithm becomes necessary. We include for reference
here the average number of coupled targets over all simulations.

Partition sorting is implementationally useful for two reasons. First, when par-

titions are identically ordered, computationally efficient algorithms such as the IP

method may be used. Second, estimates of target state may be directly computed

using particle locations and weights by simply averaging over partitions. If the par-

titions are not identically ordered, the filter still performs estimation of the JMPD

precisely but requires the more computationally demanding CP algorithm. Fur-

thermore, the sensor management algorithms (to be described in Chapter III) are

invariant to partition ordering. Therefore, in this sense partition sorting is a cosmetic

manipulation rather than a fundamental requirement of the algorithm.

We illustrate below the effect of partition swapping on a sample vignette. When

targets are close together, measurement-to-target ambiguity may result in the par-

titions of individual particles being reordered. In Figure 2.10, we give a 9 time-step

vignette which includes a target crossing. Initially, the targets are well separated and
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identically ordered (e.g., Time = 44) and the IP method is used for particle proposal.

When the targets cross (Time = 60), partition swapping occurs and the CP method

must be used. Without partition sorting using the K-means algorithm of Section

2.2.6, this swapping persists even after the targets separated and the CP method

must be used even at Time = 84. This results in an inefficient algorithm, as the CP

method is more computationally demanding. Note however, that the tracking is still

performed acceptably, it is only the estimates from the filter and the computational

efficiency that are degraded when the partitions are unordered.

In Figure 2.11 we show the same vignette as in Figure 2.10, but this time we use

the partition sorting algorithm outlined in Section 2.2.6 at each time step. While the

CP method must still be used when the targets are occupying the same detection

cell, when they move out (Time = 72) the IP method may be used again. The

partition sorting allows for the more computationally efficient IP method to be used

by reordering the particles appropriately.
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Figure 2.10: The partition swapping present in the particle filter implementation of JMPD when
partition sorting is not done. True target locations are indicated by a solid circle. At
Time = 30 only one target is visible in the plot window. At Time = 44, both targets
can be seen and the two partitions for each particle, plotted with × and ◦, are well
separated. From Time = 60 to Time = 66, the two targets occupy the same detection
cell. At Time = 84, some partition swapping has occurred, indicated by the fact that
there are mixtures of × and ◦ corresponding to each target location.
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Figure 2.11: The ordering of the partitions when K-means partition sorting is sone at each time
step. This figure illustrates the same multitarget tracking scenario as in Figure 2.10,
except here we perform partition sorting at each time step. True target locations are
indicated by a solid circle. At time 30 only one target is visible in the plot window. At
Time = 44, both targets can be seen and the two partitions for each particle, plotted
with × and ◦, are well separated. From Time = 60 to Time = 66, they occupy the
same detection cell. The targets move apart starting at Time = 72. Notice that the
partition swapping visible in Figure 2.10 at Time = 72 through Time = 84 is avoided
here because of partition sorting.



CHAPTER III

Information Based Sensor Mangement

In this chapter, we present our information-based strategy for myopic sensor re-

source allocation. As mentioned earlier, a good measure of the quality of a sensing

action is the reduction in entropy of the posterior distribution that is induced by

the measurement. Since we wish to determine the best sensing action to take before

actually executing it, we require a measure of the expected reduction in entropy that

a sensing action will produce. This is done by first enumerating all possible sensing

actions. A sensing action may consist of choosing a particular sensor mode (e.g. SAR

mode or GMTI mode), a particular dwell point/pointing angle, or a combination of

the two. Next, the expected information gain is calculated for each of the possible

actions, and the action that yields the maximum expected information gain is taken.

The measurement received is used to update the JMPD, which is in turn used to

determine the next measurement to make.

The chapter proceeds as follows. In Section 3.1, we present the Rényi divergence

as a means of measuring the change in information between two densities along

with a theoretical motivation behind using this metric for sensor resource allocation.

Second, in Section 3.2, we provide the details of using the Rényi divergence for sensor

scheduling in the JMPD setting. We give first the Rényi divergence in the general

72
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JMPD setting, followed by the simplification due to our particle filter representation

of the JMPD, and then explicitly give the form of the expected Rényi divergence.

We conclude Section 3.2 with a note on the selection of the parameter α in the Rényi

divergence. Next, in Section 3.3, we discuss alternate but related formulations of the

scheduling metric including the weighted Rényi divergence and the Rényi divergence

between marginalized JMPDs. Finally, in Section 3.4, we provide several detailed

simulations showing the performance of this method in comparison to simple periodic

scanning and several other sensor management strategies.

3.1 The Rényi Divergence

In this work, the calculation of information gain between two densities p1 and

p0 is done using the Rényi information divergence [61][89], (also known as the α-

divergence):

Dα(p1||p0) =
1

α− 1
ln

∫
pα

1 (x)p1−α
0 (x)dx . (3.1)

The adoption of the Rényi information divergence as a sensor scheduling criterion

can be motivated by universal hypothesis testing results of large deviation theory

[90][91]. Specifically, consider the problem of testing between the hypotheses

H0 : p(Xk, T k|Zk) = p(Xk, T k|Zk−1)

H1 : p(Xk, T k|Zk) 6= p(Xk, T k|Zk−1) (3.2)

based on an i.i.d. sample {Xk
(j)}n

j=1 from the posterior p(Xk, T k|Zk), e.g., as gener-

ated by the particle filtering algorithm described earlier. H1 is the hypothesis that

the new measurement has changed the target state density, while H0 is the hypothesis

that the new measurement has not changed the target state density. The performance

of any test of H0 versus H1 is specified by its receiver operating characteristic (ROC)
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(αn, βn) where we have defined the false alarm probability αn = p(decide H1 |H0) and

the miss probability βn = p(decide H0 |H1). If the true posterior distribution under

H1 were known, the Neyman-Pearson likelihood ratio test (LRT), parameterized by

a decision threshold γ, is optimal in the sense of achieving minimum βn for any

specified level αn (determined by γ).

Under broad assumptions, for large n the error rates of the optimal test satisfy

Theorem 3.4.3 in [90],

1

n
log αn ≈ − sup

α∈[0,1]

{αγ − (1− α)Dα(p1‖p0)} (3.3)

1

n
log βn ≈ − sup

α∈[0,1]

{−αγ − (1− α)Dα(p0‖p1)} (3.4)

where p0 and p1 denote the posterior distribution p(Xk, T k|Zk) under H0 and H1,

respectively.

In particular, if one selects γ = 0 then the two error rate exponents (right sides

(3.3) and (3.4)) are identically −(1 − α∗)Dα∗(p1‖p0) for some α∗ ∈ [0, 1]. Thus the

Rényi α-divergence specifies the error exponents of the Neyman-Pearson optimal

test.

For the composite hypotheses (3.2) the generalized likelihood ratio test (GLRT)

of H0 versus H1 is asymptotically (large n) optimal and can be implemented by

thresholding an empirical estimate of the error rate exponent (3.3) to achieve a

specified level of false alarm αn (Theorem 7.1.3 in [90]). This lends strong theoretical

justification for using the Rényi divergence sensor selection criterion proposed here.

Returning to (3.1), we note that the α parameter may be used to adjust how

heavily one emphasizes the tails of the two distributions p1 and p0. In the limiting

case of α → 1 the Rényi divergence becomes the commonly utilized Kullback-Leibler



75

(KL) discrimination (3.5).

lim
α→1

Dα(p1||p0) =

∫
p0(x)ln

p0(x)

p1(x)
dx . (3.5)

If α = 0.5, the Rényi information divergence becomes the Hellinger affinity

2ln
∫ √

p1(x)p0(x)dx, which is related to the Hellinger-Battacharya distance squared

[92] via

DHellinger(p1||p0) = 2

(
1− exp

(
.5D 1

2
(p1||p0)

))
. (3.6)

Ultimately, a specific value of α must be chosen. In section 3.2.4, we show using

empirical evidence as well as theoretical results for close densities that α = 0.5

provides the maximum discriminatory ability and as such is the right choice for our

application.

3.2 Application of the Rényi Divergence in the JMPD Setting

In this section, we present the details of the mathematics behind using the Rényi

divergence as a method of scheduling sensors [93][94]. We proceed by first specializing

the Rényi divergence to the case where the densities under consideration are the prior

and posterior JMPD. We then show the simplifications afforded by the particle filter

representation of JMPD. Finally, we explicitly write out the form of the expected

Rényi divergence in the JMPD-PF setting.

3.2.1 Rényi Divergence Between the Prior and Posterior JMPD

The function Dα in (3.1) is a measure of the divergence between the densities p0

and p1. In our application, we are interested in computing the divergence between

the predicted density p(Xk, T k|Zk−1) and the updated density after a measurement

is made, p(Xk, T k|Zk). Therefore, we write

Dα

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

∫

X

p(Xk, T k|Zk)αp(Xk, T k|Zk−1)1−αdXk (3.7)
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Where, as earlier, the multitarget state X is a vector of variable dimension. The

symbol
∫
X

f(X)dX is used as short hand notation to denote the integral over the

domain. This can be precisely written as

∫

X

dXf(X, T )
.
=

∞∑
T=0

∫
dx1...xT f(x1 · · ·xT , T ) . (3.8)

Using Bayes’ rule applied to the JMPD (2.5) and simple algebra, we can succes-

sively simply Dα as

Dα

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

∫

X

(
p(zk|Xk, T k,m)p(Xk, T k|Zk−1)

p(zk|Zk−1,m)

)α

p(Xk, T k|Zk−1)1−αdXk (3.9)

and

Dα

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

1

p(zk|Zk−1,m)α

∫

X

p(zk|Xk, T k,m)αp(Xk, T k|Zk−1)dXk . (3.10)

To make the formulation explicitly clear, we use p(zk|Zk−1,m) to denote the

distribution on sensor outputs at time k given the set of previous measurements

Zk−1 and the fact that the action m was taken.

3.2.2 Rényi Divergence when the JMPD is Represented by the Multitarget Particle
Filter

The time-updated (prediction) JMPD p(Xk, T k|Zk−1) is approximated by a par-

ticle filter consisting of a set of samples Xp and associated weights wp. This approx-

imation reduces the divergence calculation from an integral to a sum over particles.

Specifically, our particle filter approximation of the density (2.21) represents the

JMPD p(X, T |Z) by a set of Npart samples with weight wp, p = 1...Npart, reducing

(3.10) to

Dα

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

1

p(zk|Zk−1, m)α

Npart∑
p=1

wpp(z|Xp,m)α , (3.11)
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where p(zk|Zk−1,m) is calculated as

p(zk|Zk−1,m) =

Npart∑
p=1

wpp(z|Xp,m) . (3.12)

The reduction from an integral over X to a sum over particles in (3.11) comes

about because the particle filter has non-zero probability mass in only a small number

of possible multitarget states, precisely the states {Xp, p = 1...Npart}.

This gives us a compact expression for computing the Rényi Divergence between a

prior and posterior JMPD in the case where our multitarget particle filtering method

is used to represent the densities. If the measurement z had already been made, this

could be used to evaluate the information gain that the measurement has provided.

3.2.3 The Expected Rényi Divergence for a Sensing Action

Our real aim is to choose the sensing action to take before actually receiving

the measurement z. Specifically, we would like to choose to perform the measure-

ment that makes the divergence between the current density and the density after

a new measurement as large as possible. This indicates that the sensing action

has maximally increased the information content of the measurement updated den-

sity, p(Xk, T k|Zk), with respect to the density before a measurement was made,

p(Xk, T k|Zk−1). However, we cannot choose the action that maximizes the diver-

gence as we do not know the outcome of the action before taking it.

We propose, then, as a method of sensor management to calculate the expected

value of (3.11) for each of the M possible sensing actions and to choose to take

the action that maximizes the expectation. In this notation m (m = 1...M) will

refer to any possible sensing action under consideration, including but not limited

to sensor mode selection and sensor beam positioning. In this manner, we say that

we are making the measurement that maximizes the expected gain in information as
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measured by the Rényi Divergence.

The expected value of (3.11) may be written as an integral over all possible out-

comes z when performing sensing action m as

〈Dα〉m =

∫
dzkp(z|Zk−1,m)Dα

(
p(·|Zk)||p(·|Zk−1)

)
. (3.13)

In the special case where measurements are thresholded (binary) and are therefore

either detections or no-detections (i.e. z = 0 or z = 1), this integral reduces to

〈Dα〉m =
1

α− 1

1∑
z=0

p(z|Zk−1,m)ln
1

p(z|Zk−1,m)α

Npart∑
p=1

wpp(z|Xp,m)α . (3.14)

Computationally, the value of (3.14) can be calculated for M possible sensing

actions in O(MNpart). Notice further that the sensor management algorithm is

permutation invariant as it only depends on the likelihood of the measurements

given the particles.

We have specialized here to the case where the measurements are thresholded

(binary), but make the following comments about the extension to more complicated

scenarios. This is relevant for sensors that can make continuous valued measurements

such as that described in Section 2.3.3. It is straightforward to extend the binary

case to a situation where the measurement z may take on one of a finite number

of values. This is relevant in a situation where, for example, raw sensor returns

are passed through an automatic target recognition algorithm and translated into

target identifications that come from a discrete set of possibilities. In the case where

z is continuous valued, the integral of (3.13) must be solved approximately. In the

simulation section we address one such approach applicable to scalar (but continuous

valued) z, where the range of z is quantized into a small number of regions and the

integral is evaluated as a discrete sum. As we will see there, very little performance

loss is incurred with this approximation.
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Table 3.1: The information based sensor management algorithm.

1. Generate particles representing p(Xk, T k|Zk−1) by proposing particles repre-
senting p(Xk−1, T k−1|Zk−1) forward via the kinematic prior.

2. Compute the expected gain in information for each possible sensing action m
(e.g. evaluate 3.13 using the particles generated in step (1) for all m).

3. Use particles representing p(Xk−1, T k−1|Zk−1) and the most recently received
measurement zk to propose a new set of particles representing p(Xk, T k|Zk)
(see Chapter II).

4. set k ← k+1, and go to step (1)

In summary, the information based sensor management algorithm proceeds as

follows. At each occasion where a sensing action is to be made, we predict the

posterior JMPD from time k − 1 forward to time k to form the prior JMPD at

time k. We then evaluate the expected gain in information between the prior JMPD

at time k and the posterior JMPD at time k for all possible sensing actions m by

evaluating (3.14) for each m. We then task the sensor to perform the sensing action

that gives the maximum expected gain in information (reduction in entropy). The

sensing action is then performed, resulting in a particular measurement z. This

measurement is then used to form the posterior JMPD via Bayes’ rule (2.5). The

complete particle filtering and sensor management algorithm is summarized in Table

3.1.

3.2.4 On the Value of α in the Rényi Divergence

The Rényi divergence has been used in the past in many diverse applications,

including content-based image retrieval, image georegistration, and target detection

[89][92]. These studies provide guidance as to the optimal choice of α.

In the georegistration problem [89] it was empirically determined that the value of

α leading to highest resolution clusters around either α = 1 or α = 0.5 correspond-
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ing to the KL divergence and the Hellinger affinity respectively. The determining

factor appears to be the degree of differentiation between the two densities under

consideration. If the densities are very similar, i.e. difficult to discriminate, then the

indexing performance of the Hellinger affinity distance (α = 0.5) was observed to be

better that the KL divergence (α = 1). These empirical results give reason to believe

that either α = 0.5 or α = 1 are good choices. We investigate the performance of

our scheme under both choices in Sections 3.4.1 and 3.4.2.

An asymptotic analysis [89] shows that α = .5 results in the maximum discrimi-

natory ability between two densities that are very similar. The value α = .5 provides

a weighting which stresses the tails, or the minor differences, between two distrib-

utions. In the case where the two densities of interest are very similar (as in our

application where one is a prediction density and one is a measurement updated

density), the salient differences are in the regions of low probability, and therefore

we anticipate that this choice of α will yield the best results.

3.3 Generalizations to Rényi Divergence

Use of the Rényi Divergence as a sensor scheduling metric has the effect that

actions are taken so as to maximize the expected gain in information. This method

has the advantage that no adhoc assumptions as to the relative utility of various

types of information (e.g. information about target position versus information about

target identification) need to be made. Actions that are expected to gain the most

information (whether it be about position or identification) are chosen.

In some circumstances, there may be prior information about the relative utility

of different types of information, e.g., tracking, identification, or detection. In this

section, we show how this prior information can be naturally incorporated into the
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expected divergence calculations discussed so far. We give two generalizations:

1. A weighted divergence, applicable when certain multitarget states X are more

important to learn information about (e.g. when it is more important to gather

information about certain target types than others).

2. A divergence between marginalized JMPDs, applicable when certain types of

information are more important than others (e.g. position information is more

important than identification information).

3.3.1 Weighted Rényi Divergence

If certain multitarget states X are more important to learn information about, we

can generalize the Rényi Divergence (3.7) to

D∗
α

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

∫

X

p(Xk, T k|Zk)αp(Xk, T k|Zk−1)1−αf(Xk, T k)dXk . (3.15)

where f(Xk, T k) is a (possibly time varying) weight function that emphasizes in-

formation about certain states X more than others (note that (3.7) corresponds to

the choice f(Xk, T k) = 1,∀X, T, k). A sufficient condition that ensures the integral

evaluates to a positive number and therefore D∗
α remains a divergence is that f(X, T )

correspond to a probability density function.

Following the same calculations as in Section 3.2, the generalized divergence re-

sults in a simple modification of the expected divergence calculation (3.14)

〈D∗
α〉m =

1

α− 1
×

1∑

zk=0

p(zk|Zk−1,m)ln
1

p(zk|Zk−1,m)α

Npart∑
p=1

wpp(z|Xp, m)αf(Xp,m) (3.16)

where f(Xp,m) is the function on the multitarget particle emphasizing information
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about some multitarget states more than others. The divergence in (3.11) corre-

sponds to f(Xp,m) = 1,∀X, T, k,m.

An example application of this strategy is the case where learning information

about certain types of targets is more important than for other types. In this case,

the function f(Xp,m) would be large when X includes the high-value target type

and m corresponds to the appropriate measurement, which means that information

about this target is more valuable. This would tend to give more resources to targets

of this type at the expense of other less valuable types.

3.3.2 Rényi Divergence Between Marginalized JMPDs

If is known a priori that certain types of information are more important than

others, one can use a Rényi divergence between marginalized JMPDs to allocate the

sensor.

Consider the case where one only wants to consider kinematic information when

scheduling the sensor. The state of the system X contains both kinematic (x, ẋ, y, ẏ)

and target type (t) information

X = [x1, ẋ1, y1, ẏ1, t1 · · · xT , ẋT , yT , ẏT , tT ] . (3.17)

In this case, one can marginalize across target type and generate a new state

variable Y that only contains kinematic information

Y = [x1, ẋ1, y1, ẏ1, · · · xT , ẋT , yT , ẏT ] . (3.18)

The marginalization is performed as

p(x1, ẋ1,y1, ẏ1, · · · xT , ẋT , yT , ẏT |Z) = (3.19)
∫

t1

· · ·
∫

tT

dt1 · · · dtT p(x1, ẋ1, y1, ẏ1, t1, · · ·xT , ẋT , yT , ẏT , tT |Z) . (3.20)
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Then the density p(Y|Z) can be used to calculate expected information gain on

the reduced state space as

Dα

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

∫

Y

p(Yk, T k|Zk)αp(Yk, T k|Zk−1)1−αdYk . (3.21)

In this particular case, marginalization results in an especially simple implementa-

tion, where a new set of pseudo particles Yp are generated from the existing particles

Xp by simply ignoring the target type components.

One may envision treating kinematic and target type information separately (al-

though this marginalization ignores the coupling in uncertainty between the two) by

marginalizing out target type to get Y and marginalizing out kinematics to get V

and using

Dα

(
p(·|Zk)||p(·|Zk−1)

)
=

1

α− 1
ln

∫

Y

p(Yk, T k|Zk)αp(Yk, T k|Zk−1)1−α+

1

α− 1
ln

∫

V

p(Vk, T k|Zk)αp(Vk, T k|Zk−1)1−α . (3.22)

Of course, the individual terms in this equation can be given a relative weight and

this method can be combined with the method of Section 3.3.1 to generalize even

further.

3.4 Simulation Results

In this section, we provide a set of simulation results to show the feasibility and

benefit of sensor management in the multitarget tracking scenario.

In Sections 3.4.1 and 3.4.2 we present two detailed simulations where we are in-

terested in tracking the kinematic state of a collection of moving targets. The perfor-

mance of the information based method is compared to a simple periodic scheme and
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to two other sensor management algorithms via Monte Carlo experiments. The mea-

sures of performance here are the (average) number of targets successfully tracked,

and the (median) RMS tracking error. In both simulations, we assume the sensor

is limited by time, bandwidth and other physical constraints which only allow it to

measure a subset of the surveillance area at any epoch, and the goal of the algorithm

is to effectively choose which portions of the surveillance region to measure at each

time step.

In Section 3.4.3 we give results involving the performance of the sensor manager

with a multimode sensor. In this simulation, the sensor may again choose where

to point the sensor, but additionally much choose the mode. We simulate three

modes available on real platforms, a fixed target indication (FTI) mode, moving

target indication (MTI) mode, and a identification (ID)1 mode. The goal here is to

track and identify a collection of targets that may be moving or stopped using the

appropriate sensor mode and pointing direction. We again compare the performance

of the information-based method with a simple periodic scheme and two other sensor

management algorithms via Monte Carlo testing. The measures of performance in

this simulation are again the (average) number of targets successfully tracked, and

the (median) RMS tracking error as well as the (average) number of targets correctly

identified.

Third, in Section 3.4.4 we look at simulations involving the weighted Rényi di-

vergence and the Rényi divergence between marginalized JMPDs. In the first case,

we focus on a situation where a particular target type is of high value and hence

learning information about it is of high importance. In the second case, we focus

on the tracking performance when only information about position is used to drive

1The FTI sensor simulation serves as an approximation to a synthetic aperture radar (SAR), the MTI serves
as an approximation to a ground moving target indicator radar (GMTI), and the ID sensor simulation serves an
approximation to an automatic target recognition processing chain, containing perhaps a high resolution radar (HRR)
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the sensor. This is contrasted to an alternative sensor management algorithm that

is derived to explicitly minimize the tracking error.

Fourth, in Section 3.4.5, we investigate the performance of the tracking and sensor

management algorithm under model mismatch. There are two models of importance:

the kinematic model, which specifies probabilistically how targets move; and the

sensor model, which specifies probabilistically how the sensor measurements couple

to target states.

We finish this chapter with a note on computational complexity of the algorithm

and provide timing numbers versus number of targets in Section 3.4.6.

3.4.1 Tracking Three Simulated Targets Using the Information Based Approach

We gauge the performance of the sensor management scheme by considering the

following model problem. There are three targets moving on a 12 × 12 sensor grid.

The movement of each target is modeled using the four-dimensional state vector

[x, ẋ, y, ẏ]′. Target motion is simulated using a constant-velocity (CV) model with

large plant noise (i.e. according to the model of Section 2.1.1). Motions for each

target are independent. The trajectories have been shifted and time delayed so there

are two times during the simulation where targets cross paths (i.e. come within

sensor resolution).

The target kinematics assumed by the filter (2.4) are nearly CV as in the simu-

lation. At each time step, a set of L (not necessarily distinct) cells are measured.

The sensor is at a fixed location above the targets and all cells are always visible

to the sensor. When measuring a cell, the imager returns either a 0 (no detec-

tion) or a 1 (detection) which is governed by a probability of detection (Pd) and a

per-cell false alarm rate (Pf ). The signal to noise ratio (SNR) links these values

together. In this illustration, we take Pd = 0.5, and Pf = P
(1+SNR)
d , which is a stan-
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dard model for thresholded detection of Rayleigh returns (see Section 2.1.2). When

there are T targets in the same cell, the detection probability increases according

to Pd(T )=P
1+SNR

1+T∗SNR

d . This model is known by the filter and used to evaluate (2.5).

The filter is initialized with 10% of the particles in the correct state (both number

of targets and kinematic state). The rest of the particles are uniformly distributed

in both the number of targets and kinematic state.

We contrast the performance of the tracker when the sensor uses a non-managed

(periodic) scheme with the performance when the sensor uses the information based

sensing management scheme presented in Section 3.2. The periodic scheme mea-

sures each cell in sequence. At time 1, cells 1...L are measured. At time 2, cells

L+1...2L are measured. This sequence continues until all cells have been measured,

at which time the scheme resets. The managed scheme uses the expected informa-

tion divergence to calculate the best L cells to measure at each time. This often

results in the same cell being measured several times at one time step. Multiple

measurements made in the same cell are independent (i.e. each measurement in a

target containing cell returns a detection with probability Pd irrespective of whether

earlier measurements resulted in a detection).

Figure 3.1 presents a single-time snapshot, which graphically illustrates the dif-

ference in behavior between the two schemes.

Qualitatively, in the managed scenario measurements are focused in or near cells

that the targets are in. Quantitatively, the covariance ellipses calculated by the filter

show that performance is significantly better in the managed scenario. The ellipses

are centered at the filter estimate of target location and describe the uncertainty

about the target location. Equations (2.41) and (2.42) are used to compute the

target estimate and covariance, respectively. The plot shows all points (x, y) where



87

1

2

3

4

5

6

7

8

X Position

Y
 P

os
iti

on

Managed Scan

2 4 6 8 10 12

2

4

6

8

10

12
1

X Position

Y
 P

os
iti

on

Periodic Scan

2 4 6 8 10 12

2

4

6

8

10

12

Figure 3.1: An illustration contrasting managed and non-managed tracking performance. (L) Using
sensor management, and (R) A periodic scheme. Targets are marked with an asterisk,
the (x,y) covariance spread of the filter estimate is given by the ellipse, and grey scale is
used to indicate the number of times each cell has been measured at this time step (the
total number of looks is identical in each scenario). In the periodic scenario, one twelfth
of the region is scanned at each time step starting at the bottom and proceeding to the
top before repeating (cells scanned at this epoch are indicated by the white stripe).
With sensor management, measurements are used only in areas that contain targets.

[x y]Λ−1[x y]′ < 1.

A more detailed examination is provided in the Monte Carlo simulation results

of Figure 3.2. We refer to each cell that is measured as a “look”, and are interested

in empirically determining how many looks the non-managed algorithm requires to

achieve the same performance as the managed algorithm at a fixed number of looks.

The sensor management algorithm was run with 24 looks (i.e. was able to scan 24

cells at each time step) and is compared to the non-managed scheme with 24 to 312

looks. Here we take α = 0.99999 (approximately the KL divergence) in (3.5). It is

found that the non-managed scenario needs approximately 312 looks to equal the

performance of the managed algorithm in terms of RMS error. Multitarget RMS

position error is computed by computing the average RMS error across all targets.

The sensor manager is approximately 13 times as efficient as compared to allocating

the sensors without management. This efficiency implies that in an operational

scenario target tracking could be done with an order of magnitude fewer sensor
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dwells. Alternatively put, more targets could be tracked with the same number of

total resources when this sensor management strategy is employed.
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Figure 3.2: A Monte Carlo comparison of divergence based sensor management to the periodic
scheme for a model problem. Managed performance with 24 looks is similar to non-
managed with 312 looks.

To determine the sensitivity of the sensor management algorithm to the choice of

α, we test the performance with α = .1, α = .5, and α ≈ 1. Figure 3.3 shows that in

this case, where the actual target motion is very well modeled by the filter dynamics,

the performance of the sensor management algorithm is insensitive to the choice of

α. We generally find this to be the case when the filter model is closely matched to

the actual target kinematics.

3.4.2 Simultaneous Detection and Tracking of Ten Real Targets Using the Informa-
tion Based Approach

We test the sensor management algorithm here using a modified version of the

above simulation, which demonstrates the technique in a scenario of increased real-

ism. Here we have ten real targets moving in a 5000m × 5000m surveillance area.

Each target is modeled using the four-dimensional state vector [x, ẋ, y, ẏ]′ . Target
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Figure 3.3: The performance of the sensor management algorithm with different values of the Rényi
Divergence parameter α. We find that in the case where the filter dynamics match the
actual target dynamics, the algorithm is insensitive to the choice of α.

trajectories for the simulation come directly from the set of recorded data based

on GPS measurements of vehicle positions over time collected as part of a battle

training exercise at the Army’s National Training Center (see Figure 2.1). Target

positions are recorded at 1 second intervals, and routinely come within sensor cell

resolution (i.e. cross). Therefore, there is often measurement to track ambiguity,

which is handled automatically by JMPD since there is no measurement-to-track

assignment necessary.

The filter again assumes nearly constant velocity motion with large plant noise as

the model of target kinematics. However, in this case the model is severely at odds

with the actual target behavior which contains sudden accelerations and move-stop-

move behavior. This model mismatch adds another level of difficulty to this scenario

that was not present previously.

At each time step, an imager is able to measure cells in the surveillance area by

making measurements on a grid with 100m×100m detection cell resolution. The

sensor simulates a moving target indicator (MTI) system in that it may lay a beam
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down on the ground that is one resolution cell wide and many resolution cells deep.

Each time a beam is formed, a vector of measurements (a vector zeros and ones

corresponding to non-detections and detections) is returned, one measurement for

each of the ten resolution cells. In this simulation, we refer to each beam that is laid

down as a single “look”.

As in the previous simulation, the sensor is at a fixed location above the targets

and all cells are always visible to the sensor. When making a measurement, the

imager returns either a 0 (no detection) or a 1 (detection) governed by Pd, Pf , and

SNR. When there are T targets in the same cell, the detection probability increases

according to Pd(T )=P
1+SNR

1+T∗SNR

d .

Simulations Regarding Target Detection

Figures 3.4 and 3.5 provide simulations of performance for detecting and tracking

the ten real targets. Figure 3.4 is analogous to Figure 2.6 from Chapter II, in that it

investigates the performance of the algorithm versus number of particles. Similarly,

Figure 3.5 is analogous to Figure 2.7 from Chapter II, in that it investigates the

performance of the algorithm versus signal to noise ratio.

The measures of performance are T̂ and Ttracked as given in Section 2.3.4, and the

model parameters are again the initial existence probability for each of the sensor

cells, the birth rate, and the death rate (see Section 2.2.2). This simulation uses the

same amount of sensor resources as in the examples from Section 2.3.4 (enough to

cover the entire region exactly once at each time step).

A Comparison to Other Management Strategies

We provide in this section a comparison of the divergence based sensor manage-

ment scheme, a periodic scheme, and two other methods of sensor management. This
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Figure 3.4: Sensor management for detecting and tracking ten real targets versus the number of
particles. As in the earlier non-managed experiment, the SNR is 10dB, the removal
rate is .005 and the arrival rate is .02. Ideal performance is T̂ = 10 and Ttracked = 10
at all times.
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Figure 3.5: Sensor management for detecting and tracking ten real targets versus signal to noise
ratio. As in the earlier non-managed experiment, the number of particles is 200, the
removal rate is .005 and the arrival rate is .02. Ideal performance T̂ = 10 and Ttracked =
10 at all times.

comparison is carried out in a tracking-only scenario. The two other methods are

local search schemes that use the heuristic that the target is likely to remain near

its estimated position at the next time increment.

Sensor management algorithm “A” manages the sensor by pointing it at or near

the estimated location of the targets. Specifically, algorithm “A” performs a gating



92

procedure to restrict the portion of the surveillance area that the sensor will consider

measuring. The particle filter approximation of the time updated JMPD (2.4) is used

to predict the location of each of the targets at the current time. The set of cells that

the sensor manager considers is then restricted to those cells containing targets plus

the surrounding cells, for a total of 9 cells in consideration per target. The dwells

are then allocated randomly among the gated cells.

Sensor management algorithm “B” tasks the sensor based on the estimated num-

ber of targets in each sensor cell. Specifically, the particle approximation of the time

updated JMPD is projected into sensor space to determine the filter’s estimate of

the number of targets in each sensor cell. The cell to measure is then selected prob-

abilistically, favoring cells that are estimated to contain more targets. In the single

target case, this method reduces to measuring the cell that is most likely to contain

the target.

Notice that methods “A” and “B” introduce new assumptions not present in

the information-based algorithm. In particular, both give value only to looking

near where targets are predicted to be. There seems to be no natural extension

of this heuristic to include detection of new targets. Furthermore, algorithm “A”

assumes equal weight to all areas predicted to contain targets and algorithm “B”

gives precedence to areas predicted to contain multiple targets.

We compare the performance of the various managed strategies and the peri-

odic scheme in Figure 3.6 by looking at RMS error versus number of sensor dwells

(”looks”). All tests use Pd = 0.5, SNR = 2, and Pf = P
(1+SNR)
d and are run with

the number of targets and target states initialized with ground truth. As before,

multitarget RMS error is computed by taking the average RMS error across all ten

targets.
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Figure 3.6: A comparison of the information-based method to periodic scan and two other methods.
The other schemes are also based on recursive estimation of the JMPD, but use the
likelihood of target presence as the scheduling criteria, rather than expected information
gain. The performance is measured in terms of the (median) RMS error versus number
of looks and the (average) number of targets in track. The α-divergence strategy out
performs the other strategies, and at 35 looks performs similarly to non-managed with
750 looks.

Figure 3.6 shows that the non-managed scenario at 750 looks performs approx-

imately the same as the managed algorithm at 35 looks in terms of RMSE error.

Thus, we conclude that the sensor manager is approximately 20 times as efficient

as allocating the sensors without management. Furthermore, the divergence driven

sensor management scheme outperforms the local search heuristics A and B.

On the Value of α

We provide in this section a comparison of the performance of the sensor manage-

ment algorithm under different values of α in (3.1). This problem is more challenging

then the simulation of Section 3.4.1 for several reasons (e.g. number of targets, num-

ber of target crossing events, and model mismatch). Of particular interest is the fact

that the filter motion model and actual target kinematics do not match very well.

The asymptotic analysis performed previously (see Section 3.2.4) leads us to believe

that α = 0.5 is the right choice in this scenario.
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In Figure 3.7, we show the results of 50 Monte Carlo trials using our sensor

management technique with α = 0.1, α = 0.5, and α = 0.99999. All tests use

Pd = 0.5, SNR = 2, and Pf = P
(1+SNR)
d and are run with the number of targets and

states initialized with ground truth. The statistics are summarized in Table 3.2. We

find that indeed the sensor management algorithm with α = 0.5 performs best here

as it does not lose track on any of the 10 targets during any of the 50 simulation

runs. We define the track to be lost when the filter error remains above 100 meters

(1 cell) after some point in time. Both the α ≈ 1 and α = 0.1 case lose track of

targets on several occasions.

Table 3.2: Tracking performance for different values of the Rényi Divergence parameter α. The
values are the result of fifty independent simulations of the sensor management algorithm
with three simulated targets.

Mean Position
Position Error

α Error(m) Variance (m)
0.1 49.57 614.01
0.5 47.28 140.25

0.99999 57.44 1955.54

3.4.3 Scheduling a Multimode Sensor using the Information Based Approach

As mentioned earlier, one of the principal benefits of the information based sensor

management approach is that the complex tradeoffs between different sensing actions

are automatically taken into account. We have already seen this in the case of a radar

with an agile array that must trade the decision to measure locations predicted to

contain single targets and a particular uncertainty level versus measuring locations

containing multiple targets with a corresponding uncertainty. The tradeoffs become

even more complex in the case of a sensor that is able to decide between several

modes of operation. In this section, we investigate via simulation studies a situation

involving a sensor that has three modes available for use
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Figure 3.7: A comparison of sensor management performance under different values of the Rényi
Divergence parameter, α. On simulations involving ten real targets, we find that the
choice alpha = 0.5 leads to the best tracking performance.

• A moving target indicator (MTI), which is a mode that able to detect the

position of targets only when they are moving,

• A fixed target indicator (FTI), which is a mode that is able to detect the position

of targets only when they are stopped, and

• An identification (ID) sensor, which is able to determine the type (e.g. jeep or

tank) of a target

In order to task the sensor, we need to compute the myopic gain in information

for each of the possible sensing actions. This includes each possible measurement



96

when using the MTI sensor, each possible measurement when using the FTI sensor,

and each possible measurement when using the ID sensor.

We use an MTI sensor as described in Sections 3.4.1 and 3.4.2 (i.e. using thresh-

olded measurements). We add the additional level of realism here that targets moving

slower than a minimum detectable velocity (MDV) of 1m/s are not detectable by

the MTI sensor and act like empty cells. This enters into the sensor model, in that

χi(xt) now only counts targets that are moving faster the MDV as being coupled

to a sensor cell (see 2.1.2). The FTI sensor is modeled similarly, except that only

targets that are stopped (i.e. ẋ = ẏ = 0) are visible to the sensor. The expected

myopic gain in information is computed using (3.14) for all pointing directions for

each of these two modes.

The ID sensor models a complete automatic target recognition (ATR) system that

involves high range resolution radar and a signal processing algorithm. There are 3

possible target types for this simulation. We model the performance by a confusion

matrix, which describes the probability that algorithm will return a particular clas-

sification when it is pointed at a particular target type. The model is given in Table

3.3 and says that when a single target occupies a detection cell, the probability of

correctly identifying the target is 0.6, with the misclassifications spread evenly about

the other two classes. Also, when multiple targets occupy the same cell or no targets

are in the cell, the ATR algorithm returns a random classification. This model is rea-

sonable for common ATR systems, which rely on the geometry of scattering centers

for targets to provide classification calls. When multiple targets are contributing to

an energy return, this geometry is corrupted and ATR performs very poorly.
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Actual Cell Status
Classification Empty or
Probability Type 1 Type 2 Type 3 Multiply Occupied

Type 1 0.60 0.20 0.20 0.33
Type 2 0.20 0.60 0.20 0.33
Type 3 0.20 0.20 0.60 0.33

Table 3.3: The model for the identification sensor. Each measurement of a single target is indepen-
dent and provides the correct identification 60% of the time. Measurements of empty
cells or cells containing multiple targets return a random classification call.

The expected myopic gain in information from using the ID sensor follows directly

from (3.13), where the number of possible outcomes is now 3:

< Dα >m=
1

α− 1

3∑
z=1

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)
α (3.23)

The goal is to use the sensor to simultaneously determine the position and target

types of a group of maneuvering targets. Again, the target motion is taken from real

targets that are performing combat maneuvers. At each time step, the sensor must

choose from among M different sensing actions (choosing both mode and pointing

angle). Initially, the positions of the targets are known (with some covariance) and

the identification is unknown.

We present in Figure 3.8 a comparison between the performance of the algorithm

using the information based method, periodic scan, and the two methods described

in Section 3.4.2. The periodic scan and alternative sensor management strategies

are defined as they were in Section 3.4.2 with the addition that now the alternate

methods rotate through the 3 possible sensing modalities.

3.4.4 Application of the Modified Divergence Metric

In this section, we give two simulation results to illustrate application of the

modified divergence metrics introduced in Sections 3.3.1 and 3.3.2.
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Figure 3.8: A comparison of the information-based method to periodic scan and two other methods
for simultaneous track and ID. The performance is measured in terms of the (median)
RMS error and the (average) number of targets correctly identified and in track. Again,
the α-divergence strategy out performs the other strategies.

The Weighted Rényi Divergence

In this subsection we consider two simulations of a two-target tracking problem.

Each target has a unique identification which is known to the filter at initialization.

We contrast the performance under two different choices of divergence weighting

in Figure 3.4.4. The first simulation uses f(Xk, T k) = 1 (i.e. the usual Rényi

Divergence based scheduling metric). In the second simulation, the divergence is

biased towards preferring information about target 2 by choosing f(Xk, T k) = .55

if X contains a target of type 2 and f(Xk, T k) = .45 if X contains a target of type

1. In this manner, learning information about target type 2 is of greater importance

than learning information about target type 1.

We see that in the case of uniform information weighting, target 1 is tracked more

successfully than target 2 (86% versus 82%). When the information gain criteria is

weighted toward favoring target 2, target 2 attracts a larger proportion of measure-

ments. Target 2 is now tracked 98% of the time at the expense of tracking target 1,
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which is now tracked only 75% of the time.
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Figure 3.9: An illustration of performance when using a weighted divergence which prefers infor-
mation about a certain type of target. There are two figures, each corresponding to a
particular target. The two targets are of different type. Each of the figures contains two
curves. The first curve gives the performance when information is weighted uniformly.
The second curve shows the performance when the information gain criteria has been
weighted to prefer information about target 2. The plots show that when the metric is
weighted to prefer target 2, tracking performance of this target is significantly improved
(at the expense of the target 1).

Rényi Divergence Between Marginalized JMPDs

As discussed in Section 3.3.2, using a marginalized version of the JMPD in the

divergence calculation will lead the algorithm to schedule using only information

about particular parts of the state space. In this section, we consider one such mar-

ginalization where target type and velocity information is marginalized out of the

JMPD, leaving only position information. Therefore, the sensor will be scheduled

based only on gaining position information about the targets. We contrast the per-

formance with the divergence on the full JMPD in terms of performance at locating

and identifying a target.

In addition, we introduce a new sensor scheduling algorithm which is derived

explicitly to minimize the tracking error [95]. The performance of this new algorithm

will provide a baseline with which to compare the information based algorithms. Let c
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denote a sensor cell. Furthermore, let p(c|Z) denote the probability a target is in cell c

given the measurements Z. Then the sensor allocation strategy to minimize tracking

error is to choose the sensing action m that maximizes the posterior probability the

target is in cell c for the most likely cell c, i.e.

mopt = arg max
m

Ez

(
max

c
p(c|Z, z,m)

)

arg max
m

∫

z

p(z|Z,m)

(
max

c
p(c|Z, z,m)

)
dz (3.24)

The particle filter implementation of JMPD reduces this maximization to an easily

computed quantity, analogous to that of the Rényi Divergence.

Figure 3.4.4 shows that the scheduler that is derived specifically to minimize

tracking error is the best performing algorithm, when only considering tracking per-

formance. The information gain between marginalized JMPDs, is slightly worse in

terms of tracking performance. The information gain between the full state JMPD

performs poorest when only considering tracking performance. This is attributable

to the fact that the information gain criterion puts a premium on correctly identi-

fying the target. Therefore, some dwells are used to identify the target rather than

track the target. Using identification quality as the metric, the information gain

criterion clearly outperforms the other two methods.

3.4.5 Performance under Model Mismatch

In this section, we present empirical results regarding the performance of the

proposed algorithms under model mismatch. As described in Sections 2.1.1 and

2.1.2, the time and measurement evolution of the JMPD requires models of target

kinematics and the sensor.

In practice, these models may not be accurately known to the filter. In particular,

in the simulation experiments of 3.4.2, target motion was taken from real target
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Figure 3.10: Comparison between the Rényi divergence scheduler, a Rényi divergence between mar-
ginalized JMPDs, and a scheduler designed to minimize tracking error. The divergence
criteria is able to do good identification with only a small degradation in tracking per-
formance. As expected, the scheduler designed to minimize track error performs best
in terms of tracking error, followed by the divergence between marginalized JMPDs
and the divergence. However, in terms of identification performance, the divergence
between full state JMPDs is superior.

trajectories and so the kinematic model was imperfectly known (which is anticipated

to result in degraded performance over a situation where the model was perfectly

known). In Figure 3.4.5, we quantify just how a poor estimate of the kinematic

model effects performance of the algorithms. The algorithm is remarkably robust

to kinematic model mismatch, with a graceful degradation as the estimate of target

kinematics becomes more flawed.

Furthermore, the sensor model may not be known exactly to the filter. Using

the pixelated sensor described in Section 2.1.2, we consider the case where the SNR

estimated by the filter is mismatched from the true SNR of the targets under sur-

veillance. This results in a mismatch between the true detection and false alarm

rate of the targets and the detection and false alarm rates estimated by the filter.

Figure 3.4.5 shows simulations where the true SNR of the targets is varied from

SNR = 3 to SNR = 15 and the filter estimate of the SNR is varied from SNR = 2

to SNR = 24. Again, the filter is remarkably robust to sensor model mismatch, with
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Figure 3.11: Tracking performance degradation when the kinematic model is mismatched. The
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degradation in performance present under mismatch (< 1 implies poorer performance
than the matched filer).

a graceful degradation as the estimate of SNR becomes more errant.

3.4.6 Computational Complexity of the Algorithm

We present in this section empirical results regarding the computational complex-

ity of the method. In particular, this simulation involves a 15x15 km surveillance

region with a number of ground moving targets. The sensors are able to measure

100mx100m cells on the ground, meaning that at each time step there are 22,500

cells where the expected Rényi Divergence must be computed in order to determine

the best sensing action.

In Figure 3.13, we investigate the runtime performance of the algorithm versus

number of targets under surveillance. For equitable comparison, as the number of tar-

gets increases, the number of sensor resources increases (i.e. the number of resources
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Figure 3.12: Tracking performance degradation when the sensor model is mismatched. Each graph
corresponds to a true target SNR. The curves show tracking performance as the
estimated SNR (i.e. that used by the filter) is varied. Performance degrades gradually
particularly for large SNR targets.

per target is kept constant throughout the algorithm). With modest optimization, a

hybrid MatLab/C implementation of the algorithm is able to track on the order of

40 targets in real time and perform tracking and sensor management on 10 targets
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in real time.
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Figure 3.13: Execution time on an off the shelf 3GHz Linux box for the myopic sensor management
algorithm in the case of thresholded measurements. The algorithm is able to track on
the order of 40 targets in real time and perform tracking and sensor management on
10 targets in real time. All runs use 250 particles

We also investigate the effect of non-discrete measurements on performance of

the algorithm. As alluded to earlier, one method of addressing the expectation over

z when z is a continuous valued random variable is to quantize z into a set of N

regions defined by z1 · · · zN and evaluate the sensor management integral using the

trapezoid rule, e.g.,

< Dα >m=
1

α− 1

∫ ∞

z=0

dzp(z|Zk−1,m)ln
1

p(z|Zk−1, m)α

Npart∑
p=1

wpp(z|Xp,m)α

≈ 1

α− 1

N∑
i=1

{
p(zi < i < zi+1|Zk−1,m)×

ln
1

p( zi+zi+1

2
|Zk−1,m)

Npart∑
p=1

wpp

(
zi + zi+1

2
|Xp,m

)α
}

. (3.25)

A natural way to choose the region boundaries zi is to generate a training set

of the z which will be encountered and define the regions using the LGB algorithm
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to clustering the samples into N groups. Figure 3.14 shows simulation results for

tracking three real targets when z is quantized to N levels (N = 2, 4, · · · 32). As the

figure illustrates, quantizing to two levels has very little impact on the overall filter

performance.
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Figure 3.14: Performance of the algorithm using continuous valued measurements when the sensor
manager approximates the expectation with a finite sum. Each graph shows the es-
timated number of targets (true target number is 3) and the median tracking error
versus number of quantization levels. The algorithm performs quite well even when
the measurements are quantized to 2 levels.



CHAPTER IV

Non-myopic Information Based Sensor Management

In this chapter, we extend the information based sensor resource allocation strat-

egy of Chapter III to scenarios in which long term scheduling is important. We

maintain the philosophy that actions should be chosen so as to maximize the ex-

pected amount of information extracted from the scene. The extension developed

here is to fold in the long term effect of current decisions, and hence schedule the

sensor to maximize expected information gain over a (potentially infinitely long)

horizon rather than merely for a single step. This extension dramatically increases

the computational burden of the problem. We address this by developing several

approximate solution techniques.

This chapter proceeds as follows. First, in Section 4.1, we provide two motivating

examples where long-term scheduling will provide a benefit over myopic scheduling in

the multitarget detection, tracking, and identification setting studied here. Second,

in Section 4.2, we present several methods of addressing the non-myopic scheduling

problem. Specifically, in Sections 4.2.2 and 4.2.3 we investigate and dismiss as too

computationally burdensome various methods of enumerating action sequences and

computing via rollout the expected long term value. These methods are discussed

and evaluated to give a baseline of performance to which other approximate methods

107
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will be compared. An alternate method, which is based on directly approximating

the long-term value of current actions through a penalty function, is given in Section

4.2.4. This method is motivated as a direct approximation to the value-to-go term

in Bellman’s optimality equation and has the virtue that it does not require explicit

enumeration of action sequences. While it does not apply to all problems, it is

applicable to a broad set of problems including those considered in the motivation

section. Finally, in Section 4.2.5, we investigate an entirely different approach to

the problem which is based on learning the best policy through a set of training

examples. This broadly applicable technique requires a training set and a large

amount of (potentially off-line) computation but is useful for providing bounds on

approximation strategies as well as addressing problems not in the class of those

covered by the value-to-go approximation. We conclude the chapter in Section 4.3,

by presenting simulation results on several model problems that compare and contrast

the various approaches and illustrate the performance gains possible with long term

scheduling.

4.1 Motivating Examples for Non-myopic Scheduling

In this section, we describe two scenarios where non-myopic multistage scheduling

will outperform myopic single stage scheduling as a means of motivating the solution

approaches discussed later. Both examples are situations where the dynamics of the

process is time-varying and evolving in a predictable manner. It is then possible to

predict that the information gathering ability of a particular action will be reduced

at a later time. Therefore, a policy which considers the long term impact of sensing

actions will lead to the best policy.
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Motivating Example 1 : Time Varying Visibility Maps

This model problem considers a moving airborne sensor that is able to image a

portion of a ground surveillance area. As in previous model problems, the goal is to

determine the number of targets in the surveillance area and the state of each target.

The setup is similar to that of the model problems considered in Chapters II and

III, but we add in the additional constraint that the surveillance area has elevated

terrain and the sensor is moving.

This additional constraint means that at each time step, the sensor position rela-

tive to the surveillance area causes certain portions of the ground to be unobservable.

Given the sensor position and the terrain elevation, we can compute a visibility mask

which determines how well a particular spot on the ground can be seen by the sensor.

As an example, in Figure 4.1 we give the visibility masks computed from a sensor

positioned below and to the left of a surveillance area characterized by a particular

elevation map.

Visibility constraints enter into the sensor management formulation through the

sensor model p(z|X, T ). In particular, if a cell is partially obscured, the probability

of a non-detection in that cell is high regardless of the cell occupancy. Therefore,

interrogating a partially obscured cell has small expected information gain (if the cell

is completely obscured, interrogating the cell will have 0 expected information gain).

Hence, any policy (including a myopic policy) will prefer not to task the sensor to

interrogate obscured areas.

Non-myopic sensor management will improve performance over myopic sensor

management in this situation as it is able to take actions to counteract future visibil-

ity constraints. A specific example is when a target is predicted to become obscured

to the sensor for a brief amount of time. In this case, extra sensor dwells immediately
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(b) Visibility mask corresponding to a sensor positioned
below the surveillance region
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(c) Visibility mask corresponding to a sensor positioned
to the left of the surveillance region

Figure 4.1: Visibility masks for a sensor positioned below and to the left of the surveillance region,
along with the elevation map of the region. In this example, we show binary visibility
masks (non-visible areas are black and visible areas are white). However, in general,
visibility may be between 0 and 1 indicating areas of reduced visibility, e.g., an area
partially obscured by foliage.

before the target enters into the obscured area (at the expense of not interrogating

other targets) will sharpen the estimate of target location. This sharpened esti-

mate will allow better prediction of where and when the target will emerge. This is

illustrated graphically with a six time-step vignette in Figure 4.2.

Notice that a myopic sensor management scheme will not be able to take advan-
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Figure 4.2: A motivating example for non-myopic optimization. During the six time step vignette,
the target moves through an obscured area. The target is depicted by an asterisk.
Obscured areas are in black and visible areas are in white. Extra dwells just before
becoming obscured (time = 1) should aid in relocalization after the target emerges
(time = 6).

tage of a predictable change in visibility. By definition, the myopic scheduler only

considers a 1-step prediction, and an action is taken based on maximizing expected

gain in information after the measurement is made. On the other hand, a full long-

term (non-myopic) strategy will choose the sequence of actions that leads to the most

overall gain in information when the present action provides optimal information to

all future sensor actions. In this case, that may mean taking actions corresponding

to small immediate gain in information for the purposes of maximizing long term

gain in information.
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Motivating Example 2 : Multiple Cell Occupancy

A second motivating example is the situation where multiple targets come within

sensor resolution of each other. These situations are common in military scenarios

where a coarse sensor is used to interrogate convoys (i.e., vehicles following each other

closely). Simulations with convoy movement have been already considered with the

myopic sensor manager (e.g., in Sections 3.4.1, 3.4.2, and 3.4.3).

Again, the sensor model p(z|X, T ) describes the performance of the sensor when

such events happen. For the MTI and FTI sensor simulations considered earlier, the

sensor was modeled as having an elevated energy return in any multiply occupied

cell. In particular, the energy returned from each target adds coherently leading to

an increased detection probability at a fixed false alarm rate. On the other hand,

for the ID sensor, the sensor performs poorly when multiple targets occupy the same

detection cell. Since the ID sensor is modeled as some type SAR-based ATR system,

the individual scattering centers of the particular target are important for ID. When

multiple targets are closely spaced, the radar returns add, causing the ATR algorithm

to perform very poorly.

Due to this reduced utility of the sensor when multiple targets enter a single

sensor cell, it is important to plan ahead when it is predicted that targets will come

close together in the future. Specifically, if targets are moving predictably toward

occupying a single cell, the targets should have higher priority for interrogation as

ability to gain information about these targets is soon to diminish. A myopic strategy

does not account for this as it relies only on single-step information gain. A non-

myopic strategy, on the other hand has the ability to plan many steps ahead and

take actions now that will maximize the long term benefit.
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4.2 Approximate Non-myopic Scheduling

The examples illustrated above show that long term sensor scheduling is beneficial

in situations where the future information gathering ability changes in a predictable

manner. However, non-myopic scheduling presents a significant computational chal-

lenge, preventing an exact solution in all but the simplest of situations.

If computational resources were no limit, the optimal solution would be to enu-

merate every possible sequence of future actions that could be made starting at the

current time, e.g., every sequence a of the form a = (ak
1, a

k+1
2 , · · · ak+T

T ), and choose

the sequence that leads to the best expected long term information gain. Obviously,

this cannot be done for any real problem in practice as the number of sequences is

exponential in the number of possible actions M and the number of time steps one

schedules ahead T , i.e., the computations required are O(MT ). We investigate this

brute force method further in Section 4.2.2 as a means of providing a baseline for

the best achievable algorithm performance in a small model problem.

A more efficient strategy is to prune the action sequences that are investigated

so as to only consider those that are potentially fruitful. There are many such

strategies in the literature, including [68][96]. In Section 4.2.3 we investigate one

such method, where the measure of the utility of investigating a path is again based

on its expected information content. While providing a computational speedup, this

algorithm is still exponential in the possible actions and horizon length and therefore

not an acceptable solution.

Since both of these methods are too computationally complex for application

in realistic problems, we turn our attention to a method that does not explicitly

enumerate action sequences. The method is predicated on approximating the long
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term ramifications of taking a particular action at the current time. A penalty is

applied to actions that are not good for the long term, and vice versa. This makes

actions that are rewarding due to future considerations more desirable to choose at

the current time step, thus approximating the non-myopic decision. The algorithm,

which we will refer to as the value-to-go approximation, is O(Npart ∗M ∗ T ) and is

discussed in Section 4.2.4.

A final method of choosing actions in a non-myopic fashion that we consider here

is reinforcement learning. The idea here is to learn the value of actions from a large

set of training examples. This can be done off-line via a large set of training examples

before a mission begins. Alternatively, methods of this type can be accomplished on-

line via policy improvement. The application of learning methods to our problem,

along with the advantages and limitations of such an approach, is discussed in Section

4.2.5.

4.2.1 Notation and Preliminaries

In this section, we introduce the notation necessary to address the long term

scheduling problem. We cast the problem into a Markov Decision Process (MDP)

framework. This will allow us to explicitly demonstrate the qualitative statements

made earlier about the exponential growth in computational requirements for solving

the non-myopic scheduling problem exactly. It will also motivate the approximate

methods discussed later.

Long-term scheduling may be finite horizon or infinite horizon. The former is

appropriate for problems which have some time limit or terminal point where a

decision must be made. In this case, one typically desires to get the maximum reward

over the finite horizon. On the other hand, infinite horizon scheduling is appropriate

for scenarios that do not have a natural end time. In this case, one schedules to
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maximize a weighted sum of rewards where the weight is chosen to exponentially

suppress future rewards relative to current rewards. The infinite horizon setup is

most appropriate for the model problems considered in this work.

We denote the state of the system at time t by St. The state of a system includes

everything required to characterize the problem at a particular time instant. In our

setting, this includes the JMPD, hospitability and visibility maps, and sensor models

among other things.

The goal is to find the best policy Π∗, which over the long term is the most

rewarding mapping from states to actions. The value function associated with any

policy Π, denoted V Π(s), is the expected total discounted reward when being in state

S0 = s and following the actions prescribed by policy Π, i.e.,

V Π(s) = E
{ ∞∑

t=0

γtrt(St, Π(St))|S0 = s
}

, (4.1)

where rt(St, Π(St)) is an immediate reward, and γ is a discount factor included to

value future rewards less than immediate rewards. An optimal policy is a policy that

satisfies

Π∗(s) = arg max
Π∈P

V Π(s),∀s ∈ S . (4.2)

where P is the set of all possible policies (mappings from states to actions).

The optimal policy is the unique solution to Bellman’s equation,

V ∗(s) = max
a

E
{

rt(St, a) + γV ∗(St+1)|St = s, At = a
}

, (4.3)

which says in state s, the action â is to be chosen as

â = arg max
a

E
{

r(s, a) + γV ∗(s′)
}

. (4.4)

The MDP formulation requires a definition of state of the system s as well as the

reward structure r(s, a).
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As mentioned earlier, the JMPD, kinematic and sensor models, and ancillary

information all contribute to the system state. We will see that for the methods in-

vestigated here (with the exception of the reinforcement learning approach discussed

later) there is no need to specify a fixed finite dimension state vector.

In all cases, we choose to use as immediate reward the one-step (myopic) gain

associated with action a. This choice is a direct extension of the myopic sensor

management approach, i.e.,

r(s, a)
.
= Dα

(
p(·|Zk+1)||p(·|Zk)

)
. (4.5)

In principle, one can find the optimal policy via dynamic programming methods

when the state space and action space is discrete and of low cardinality. However,

when the number of states or actions becomes large the solution becomes compu-

tationally intractable. In our setting, the situation is even more challenging as the

state space is continuous and of large dimension. Therefore, approximate techniques

for determining the policy Π∗ are required. In the following subsections, we discuss

several methods of approximating Π∗.

4.2.2 Monte Carlo Rollout for Non-myopic Sensor Management

We first investigate a straightforward Monte Carlo (MC) technique that consid-

ers all action sequences of the form (ak
1, a

k+1
2 , · · · ak+T

T ) and computes the expected

information gain for the sequence by repeatedly simulating its application and com-

puting the average gain acquired. While straightforward to describe, this method

has a computational burden of O(P ∗Npart ∗MT ), where P is the number of Monte

Carlo simulations of each action sequence, M is the number of actions at each time

and T is the number of time steps the algorithm looks ahead. This method does

have the nice property that its complexity is independent of the size of the state
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space. However, it is still exponential in the number of actions and time horizon.

Due to this computational complexity, it is not a viable solution to the long term

scheduling problem. However, it is useful as it will allow us to judge the performance

of approximate techniques to be developed later (on very small model problems).

The term “rollout” has been used to describe this technique by Tesauro [97] in

the context of determining good strategies for playing the game backgammon. It

is used there as a synonym for repeatedly playing out a given position in order to

calculate the expected reward starting from that position. A similar strategy has

been used in the computer science literature under the name “sparse sampling” [98].

For simplicity, we first describe the two-step non-myopic solution in this section and

comment on the extension to multiple time steps later.

The two-step rollout procedure is shown graphically in Figure 4.3. We first predict

the target density at the measurement time (k + 1) by performing model update as

in the myopic scheme. The prediction density, p(Xk+1, T k+1|Zk) is used to determine

all possible actions at time k + 1, ak+1
1 · · · ak+1

N .

For each action at time k + 1, we perform the following two steps repeatedly

to generate a MC average of the information gain, which is used to approximate

the expected value. First, the action is simulated resulting in a measurement ẑk+1.

The density of ẑk+1 is formed from p(Xk+1, T k+1|Zk), as in (3.12). The simulated

measurement is then used to update the density and form p(Xk+1, T k+1|Zk, ẑk+1).

The realized gain in information from this measurement is calculated between the

densities p(Xk+1, T k+1|Zk) and p(Xk+1, T k+1|Zk, ẑk+1) using (3.1).

This predicted posterior is then model updated to form the prediction density at

time k + 2, p(Xk+2, T k+2|Zk, ẑk+1). At this point, the expected one-step (myopic)

gains for each possible action at time k + 2 is generated using (3.14). The value of
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Figure 4.3: A two-step rollout approach to non-myopic scheduling. The value of an action at time
k +1 is taken to be the realized gain from the action plus the expected gain at the next
step. This procedure is run many times to generate a MC average of the two-step gain
for each action ak+1

i .

action ak+1
i is then the actual realized gain from time step k + 1 to time step k + 2

plus the mean of the expected gain at time k + 2. We call this 2-step procedure

”searching the path associated with the action ak+1
i ”.

The extension to looking more than two time steps into the future is straight-

forward but computationally prohibitive – as mentioned earlier the algorithm is

exponential in the number of actions and the horizon. For example, a three-step

rollout would perform an additional simulation step using p(Xk+2, T k+2|Zk, ẑk+1)

to simulate a measurement ẑk+2 at time k + 2. This would generate a predicted

posterior at time k + 2, p(Xk+2, T k+2|Zk, ẑk+1, ẑk+2). A model update would form

p(Xk+3, T k+3|Zk, ẑk+1, ẑk+2), and the expected myopic gain at time k + 3 would be
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calculated. This procedure would be repeated for each action at time k + 1 many

times to generate a MC average of the expected gain for making that measurement.

A related approach has recently been given by Chong [99]. The main difference

is that only “partial” rollout is used. All actions at the first level of the tree are

considered. From there, rather than considering all possible next actions, a base

policy is executed. The performance in large part depends on good choice of the

base policy. Furthermore, Chhetri [68] performs a tree search but uses only the

maximum likelihood estimate of ẑ rather than averaging over realizations of z.

4.2.3 Adaptive Trajectory Selection for Improved Monte Carlo Rollout

In this section, we describe a method of performing the MC rollout discussed

above where we restrict ourselves to searching down the tree only a small number

of times. Given this computational budget, we wish to adaptively determine the

best trajectories to investigate. We find that this method reduces computational

expense required to achieve a certain level of performance, but does not achieve the

computational simplification required for tractability.

At time k + 1, there are M possible actions. Each action corresponds to the first

step in a trajectory down the tree. Associated with each action is an expected (long-

term) gain in information for executing that action, and we wish to determine this as

precisely as possible. In Section 4.2.2, we determined this gain by simply searching

down each path many times and using the empirical average of information gain as

a surrogate for the expected information gain.

Here we wish to select the paths to search so as to best estimate the expected

information gain with a fixed number of samples. We propose to select the best

trajectory to simulate by computing the gain in information about the trajectory that

making an additional simulation will garner. This will provide an automatic method
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to prune trajectories – i.e., decide which paths are not worth further investigation

and which paths deserve greater attention.

We define pai
(g|Gai

) to be a density on the expected long-term gain in information

g if we were to actually take action ai, conditioned on the long-term information gains

simulated so far from searching down trajectories starting with action ai, Gai
. Of

course, at beginning of each decision epoch, we will have not searched any trajectories

yet and so Gai
= ∅. Our goal is to determine pai

(g|Gai
) for all actions ai as accurately

as possible using a fixed search budget, so that when we actually task the sensor we

are tasking it to make the action that maximizes the expected long-term gain in

information. At the onset, we have N possible actions and no idea which action is

the best to take. We propose to construct the initial density on the expected long-

term information gain for actually taking action ai by looking down the trajectory

associated with action ai a small number of times (P ) to generate samples from

the density pai
(g|Gai

). These samples from pai
(g|Gai

) will be used to approximate

pai
(g|Gai

) in a particle filter like manner, e.g., pai
(g|Gai

) = 1
P

∑P
p=1 δ(g − gp).

We then wish to simulate an additional K trajectories to improve our estimate

of the expected long term information gain when taking action ai, pai
(g|Gai

). We

use an information directed method for selecting which trajectory to investigate for

each of the K investigations. The method proceeds as follows. For each action ai,

we compute the expected gain in information with respect to pai
(g|Gai

) that making

one additional simulation of that action will garner. Then we investigate that path

that generates the largest expected gain in information. We repeat this procedure

for all K investigations that we are to make.

Formally, we can compute the expected gain in information for investigating action

ai as follows. Before investigating a new path, we have a density pai
(g|Gai

). Assume
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that we have decided to investigate a particular action and this investigation has

generated a new realization of the expected long-term gain ĝ. The updated density

(by Bayes’ rule) becomes

pai
(g|Gai

, ĝ) =
pai

(ĝ|g)pai
(g|Gai

)

pai
(ĝ|Gai

)
. (4.6)

Using the Alpha-Divergence metric (3.1), and a method identical to that of Section

3.2, we can determine that the expected gain in information between pai
(g|Gai

) and

pai
(g|Gai

, ĝ) for searching the trajectory starting with action ai is proportional to

the entropy of the distribution associated with that action,

∫

g

pai
(g|Gai

)ln (pai
(g|Gai

)) dg , (4.7)

which is the intuitive result that the best trajectory to search is the trajectory asso-

ciated with the highest uncertainty (entropy). The method then proceeds as follows.

Given a fixed computational (time) budget, we first investigate each possible action

a small number of times (e.g., 10). We then use the remaining of the allotted time to

select which trajectory to investigate based on that path that has the highest entropy.

In expectation, this strategy maximally increases information about the paths. Af-

ter the time budget has been exhausted we choose to make the measurement with

highest expected long-term information gain.

A related approach has been considered by [68]. The approach considers reducing

the trajectories searched via branch and bound techniques rather than the informa-

tion directed strategy discussed here.

4.2.4 Direct Approximation of the Value-to-go Function

In this section, we look at the non-myopic scheduling problem from a different

viewpoint [100]. Instead of enumerating action sequences and searching trajectories,
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we instead work to devise a penalty function that incorporates the long term effect of

taking a current action. Specifically, this method directly approximates the second

term on the right hand side of equations (4.3) and (4.4), the long term value (also

known as the value-to-go). While not applicable to all scenarios, this method applies

to a broad class of situations commonly encountered in the multitarget tracking

problem. When applicable, it has the potential to be a computationally efficient

method of biasing actions towards those that are beneficial in the long term.

The strategy is predicated on the following observations. First, if by waiting to

perform an action until a later time step the ability to gain (myopic) information

decreases, the action should have higher priority to perform now. Conversely, if the

ability to gain (myopic) information is greater in the future, the action should be

delayed.

The approximation we advocate is to replace the value-to-go term with an in-

formation based quantity which gives the difference between the expected myopic

information gaining capability at the current time and the expected myopic informa-

tion gaining capability at a future time. Intuitively, this captures the “opportunity

cost” or “regret” for not taking an action at the current time.

For a concrete example, consider the case of time varying visibility. If an area is

predicted to be less visible in a future time step, the desire to interrogate it at this

time step should be enhanced. Conversely, if an area is predicted to be more visible in

a future time step, the desire to interrogate it at this time step should be supressed.

Of course, more than just visibility must be accounted for. The expected future

occupancy and expected future uncertainty is relevant as well. As it is based on the

expected gain in information available, the proposed method nicely accommodates

all of these factors simultaneously.
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This technique applies to a variety of other scenarios. For example, consider

the convoy-movement scenario. By using kinematic prediction, one may be able to

determine that two targets are about to come close together (e.g., enter the same

sensor detection cell). This signals reduced ability to gain information about those

targets in the future and therefore the targets should be interrogated at the current

time step.

To specify the technique precisely, recall that the optimal method for choosing

the action to make at the current time is given by (4.3). We wish to approximate

the value-to-go term, E[V ∗(s′)], by a function N(s, a) which captures the long term

reward of action a in state s and is easily computable. That is, we make the approx-

imation that

â = arg max
a

{
E

[
r(s, a)

]
+ γE

[
V ∗(s′)

]}

â ≈ arg max
a

{
E

[
r(s, a)

]
+ N(s, a)

}
. (4.8)

We propose to use as N(s, a) the “gain in information for waiting”. Specifically, let

ḡk
a denote the expected myopic gain when taking action a at time k. Furthermore,

let pk
a(·) denote the distribution of myopic gains when taking action a at time k.

Then we approximate the long-term value of taking action a by the gain (loss) in

information received by waiting until a future time step to take the action,

N(s, a) ≈
T∑

t=1

γtsgn
(
ḡk

a − ḡk+t
a

)
Dα

(
pk

a(·)||pk+t
a (·)) , (4.9)

where T is selected as the number of time steps in the future that are to be considered

(i.e., the horizon length).

Each term in the summand has two components. First, sgn
(
ḡk

a − ḡk+t
a

)
is a sign

term which signifies if the expected information gain in the future is more or less than

the expected information gain in the present. A negative value implies that the future
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presents a better opportunity and that the action ought to be discouraged at present.

A positive value implies that the future presents a poorer opportunity and that

the action ought to be encouraged at present. The second term, Dα

(
pk

a(·)||pk+t
a (·))

measures the Rényi divergence between the density on myopic gains at the current

time step and the density on myopic gains t time steps in the future. What results

is a magnitude of the difference between the two densities. A small number implies

the two are very similar and therefore the non-myopic term will have little impact on

the decision making. Conversely, a large number implies the two are very different

and the non-myopic term should contribute strongly to the decision making. The

product of these terms gives the magnitude and direction in which the information

gain is changing with time.

A practical problem involved with implementing this method is determining den-

sities on information gains pk
a(·). We have found in the case where thresholded

measurements are made, these densities can quickly and efficiently be approximated

as Gaussian, which results in a nice closed form expression for Dα

(
pk

a(·)||pk+t
a (·)).

Specifically, if p ∼ N(µ, σ2) and q ∼ N(m, s2), the Rényi divergence between p and

q can be shown to be given by

Dα

(
p||q) =

1

α− 1
ln

e
(m−µ)2

2(s2/(1−α)+σ2/α)

s−ασα−1
√

σ2(1− α) + αs2
. (4.10)

Therefore, the Rényi Divergence between the distribution on current and future

information gaining ability is given in closed form under the Gaussian approximation.

To completely specify the approximatimation technique advocated here, we intro-

duce a weighting w which gives relative precedence to the non-myopic and myopic

terms in the approximation to Bellman’s equation, i.e., the complete approximation
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to (4.3) is given by

â = arg max
a

(
E

[
r(s, a)

]
+ w

T∑
t=1

γtsgn
(
ḡk

a − ḡk+t
a

)
Dα

(
pk

a(·)||pk+t
a (·)

))
. (4.11)

As w → 0 the approximate technique schedules myopically (ignores the future),

and as w → ∞ the technique schedules considering only the future (ignores the

immediate benefit). An appropriate choice for w will balance the needs of the present

with the needs of the future.

4.2.5 Reinforcement Learning for Non-myopic Scheduling

In this section, we investigate another approach to the non-myopic scheduling

problem. Specifically, we look at reinforcement learning (RL) methods which use

training episodes to learn an effective policy. This method has some advantages over

the previous approaches. In particular, policies developed earlier are static, i.e., they

cannot learn the dynamics of the problem automatically from experience or training

data. In situations where there is model mismatch (e.g., poor estimates of sensor

SNR) or if the sensor or target kinematics are changing with time (e.g., sensor drift)

a RL approach may be more appropriate. The drawbacks to the RL approach are

twofold: one must be able to generate training samples (either via off-line simulation

or by learning while another policy is executed) and there is a large computational

complexity associated with computing good policies. Training sample generation is

problematic in that the real scene cannot typically be simulated before the mission.

On-line learning is possible but requires policy exploration (i.e., deliberately taking

non-optimal actions).

Q-learning [101], a special case of RL, is a popular and well studied method of

learning the value function given in Section 4.2.1. For these reasons, we use it in

our setting. First, define the Q-function Q(s, a) as the (long-term) value for taking
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action a when in state s. Q is directly related to the value function via

V (s) = max
a

Q(s, a) (4.12)

Q-learning is a simple strategy where a set of training data is used to estimate the

Q-function on-line. After sufficient refinement of the Q-function, it is then used to

schedule the sensor by choosing

â = arg max
a

Q(s, a). (4.13)

Conceptually, one envisions a table which enumerates all possible discrete states

s and discrete actions a. The number associated with each table entry, Q(s, a), is

the long-term value of taking action a when in state s. Q learning is a strategy

where training examples consisting of state, action, next-state, immediate reward 4-

tuples {s, a, s′, r} are used to learn the number in each table position. In the discrete

action/state case, these training examples are used to learn the true mean value of

taking the action via gradient descent as

Q(s, a) W (1− β)Q(s, a) + β (r + γV (s′)) . (4.14)

Where β is a learning rate parameter and the value of the next state is computed

using the Q-function approximation,

V (s′) = max
a

Q(s′, a) . (4.15)

This procedure is repeated again and again with training data. In practice, a

modified version of this learning procedure is employed. A large set of training

examples all corresponding to the same state are used to generate the Q(s, a) that

best fits all of the training examples. This is referred to as ”batch” training and is

typically done via a conjugate gradient type approximation. In the discrete state
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case, under certain conditions on the learning rate and exploration of the training

policy [102], it can be shown that the Q-learning algorithm converges to the optimal

value function and hence the optimal scheduling policy.

However, in many target tracking problems (ours included) it is not possible to

construct a small number of discrete states that completely capture the system state.

Therefore, we use function approximation to represent the Q-function rather than

a lookup table. The standard and simplest class of Q-function approximators are

linear functions, i.e.,

Q(s, a) = θT
a φs . (4.16)

Where φs is a feature vector associated with the state s and the coefficients of θ are

to be estimated, i.e., the training data is used to learn the coefficients θa. Gradient

descent is again used with the training data generate an to updated estimate of θ,

θa W θa + β
(
r + γ max

a′
Q(s′, a′)−Q(s, a)

)
∇θaQ(s, a) . (4.17)

where for the linear function approximation, ∇θaQ(s, a) = φs.

We use Q-learning with linear function approximation to learn a policy which

behaves non-myopically and is capable of dynamically adjusting to the scenario.

The training process involves generation of {estimated state, action, estimated next

state, immediate reward} 4-tuples over a large number of training episodes. This

training data is then used to determine the coefficients of a linear function which

represents the Q-function for each action. We use a conjugate gradient method for

efficient training and the coefficients are chosen so as to minimize the mean squared

error between the predicted reward and the received reward.

This is done in batch fashion, with the trained Q-function from the first set of

episodes used to estimate the total (immediate + long term) reward from the second
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set of episodes, and so on. In the training process, the value of an action is computed

using the actual gain in information as measured by the Rényi Divergence.

Generating the feature vector φ is a challenging design problem for any learning

algorithm. In our setting, the state of the system is characterized by the JMPD

(which captures all of the uncertainty in the filter), the models of target kinematics

and sensor effectiveness, as well as all ancillary information (e.g., terrain elevation

maps). To generate the feature vector φ, we extract information-based features that

provide a condensation of all of these quantities. Specifically, we use the expected

myopic gains in information at time step k, for cells c = 1 · · ·C, < Dα >k
c , and the

expected myopic gains in information at the next time step, < Dα >k+1
c , as features

which characterize the state, i.e

φ =

[
< Dα >k

1, · · · , < Dα >k
C , < Dα >k+1

1 , · · · , < Dα >k+1
C

]
. (4.18)

In the situation of time varying visibility, these features capture the immediate

value of various actions and allow the system to learn the long term value by looking

at the change in immediate value of the actions over time.

4.3 Simulation Results

In this section, we investigate several model problems to show the relative efficacy

of the myopic scheme and the various approximate non-myopic schemes described

above.

4.3.1 Target Localization with Time Varying Visibility

We investigate the following model problem, which is inspired by the first scenario

described in Section 4.1. This problem is intentionally made to be simple with a small

state space and a small action space so that the brute force method can be applied
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and compared to the approximate methods. There are two targets which are each

described by a one-dimensional position. Target 1 is initially positioned at x = 2.1

and Target 2 is initially positioned at x = 14.9.

For each dwell, the sensor may measure any one of 16 cells, each of which is 1 unit

wide. The cell locations are fixed and centered at .5, 1.5, · · · , 15.5 units. The sensor

is allowed to make three (not necessarily distinct) dwells per time step. The sensor

receives binary returns from the cell interrogated, which are independent from dwell

to dwell. In cells that are occupied, a detection is received with probability Pd (set

here at 0.9). In cells that are unoccupied a detection is received with probability

Pf (set here at .01). This corresponds to a signal to noise ratio of 16dB, assuming

Rayleigh distributed threshold detected returns.

At the onset, positions of the targets are known only probabilistically to the filter.

The filter is initialized with the probability of target 1 location uniformly distrib-

uted across sensor cells {2 · · · 6} and the probability of target 2 location uniformly

distributed across sensor cells {11 · · · 15}.

The visibility of the various sensor cells is constructed to change in the following

manner. At time step 1, all cells are visible to the sensor. At time steps 2, 3, 4,

cells {11 · · · 15} are invisible to the sensor. At time step 5 all cells are visible to

the sensor again. This model problem closely emulates the situation where a target

is initially visible to the sensor, becomes obscured, and then reemerges from the

obscuration. This scenario can benefit from non-myopic scheduling as looking in the

cells that are about to become obscured will minimize total track error at the end of

the simulation.

At time 1 the myopic strategy, having no information about the future visibility,

will choose cells uniformly from the set {2...6} ∪ {11...15}. As a result, target 1
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Figure 4.4: An illustration of the model problem with time varying visibility. At the onset, the
filter has its position estimates of target 1 and target 2 uniformly distributed across
cells {2...6} and {11...15}, respectively. At time 1 all cells are visible to the sensor.
At time 2, 3, and 4 cells {11...15} are obscured. This situation emulates the situation
where one target is initially visible to the sensor, becomes obscured and then reemerges.

and target 2 will on the average be given equal attention. The non-myopic strategy

should preferentially choose cells from {11...15} as they are to become invisible.

Results Using Full Monte Carlo Search and Information Directed Path Interrogation

We present a comparison between uniform searching of all paths as described

in Section 4.2.2 with the information-directed search algorithm of Section 4.2.3 in

Figure 4.5. Performance is compared in terms of median error after time 4 versus

number of paths searched (which measures algorithm complexity). As expected, as

either algorithm searches more paths, better decisions are made resulting in lower

tracking error. However, uniform search requires more path interrogations to yield a

desired error since it wastes investigations on paths of little value. The information

directed method saves on the order of a factor of 2 − 4 in computation time for a

given error budget.

Results Using Approximation of Value-to-go

We illustrate here the performance of the information-based approximation to

Bellman’s equation given in Section 4.2.4. Figure 4.6 shows the tracking performance

in the model problem as a function of the weighting of the value-to-go function, w.

Included for reference is the myopic performance and the full Monte Carlo non-

myopic performance.
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Figure 4.5: A comparison between uniform Monte Carlo and information-directed search. This
graph contains three curves. The top curve contains the results of searching each path
equally (uniform search) where the number of searches of each path. The bottom
two curves are each seeded with uniform search and followed by information-directed
searches. A comparison is made in terms of the total number of paths searched between
the algorithms, which is a measure of algorithm complexity. For a given number of paths
searched, information-directed search yields better performance. Shown for comparison
are the results of myopic scheduling and an exhaustive non-myopic scheduling.

As mentioned earlier, at w = 0 the algorithm acts myopically and so the per-

formance is identical to that of the myopic scheduler of Section 3.2. At large w,

the algorithm takes actions based only on long term considerations (i.e., ignores the

one-step value of an action, and is “overly” non-myopic). The resulting errors are

slightly worse than being myopic. In between these two extremes, the proper trade-

off between short term and long term considerations is made and the performance

nearly reaches that of the exact non-myopic scheduler.

Comparison of myopic and approximate non-myopic strategies

In Table 4.1, we summarize the performance algorithms discussed in here in terms

of computational complexity and tracking performance. We see that the value-to-

go approximation provides performance similar to the full Monte Carlo search at a



132

0 0.1 0.2 0.3 0.4 0.5 0.6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Weighting of value−to−go approximation, w

M
ed

ia
n 

E
rr

or
 a

fte
r 

T
im

e 
4

Performance of Approximate Method

Myopic Performance

Full MC Non−Myopic Performance

Figure 4.6: Performance of the approximate non-myopic scheduler as a function of the weighting
of the value-to-go approximation, w. w weights the influence of the one-step value of
an action with the long-term value. When chose properly, the two considerations are
balanced and the performance equals that of the exact non-myopic scheduler.

computational cost similar to the myopic algorithm.

Table 4.1: Performance of the non-myopic scheduling algorithms in the case of time varying visi-
bility.

Description CPU Time Median Error
Method (Section) (sec) (cells)
Myopic 3.2 0.189 2.054

Monte Carloa 4.2.2 10.24 1.473
Monte Carlo 4.2.2 53.030 0.949
Monte Carlo 4.2.2 157.32 0.925

Information-Directed 4.2.3 8.458 1.249

Approximate (w = 0.05) 4.2.4 0.258 0.932

aMC Non-myopic shown for 250, 2500, and 5000 searches/path

Reinforcement Learning Methods

Figure 4.7 illustrates the performance of the Q-learning approach in comparison

to the value-to-go approximation and a myopic strategy. The SNR in the model

problem is slightly modified from that of Section 4.3.1 resulting in lower error for
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each of the methods.

Q-learning is performed off-line via a large training set as discussed in Section

4.2.5. First, examples of states, actions, next states and rewards are generated

over many training episodes. Next, the Q-function is trained using (batch) gradient

descent to learn the best coefficients for θ. Finally, the trained Q-function is used to

schedule the sensor.
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Figure 4.7: Performance of Q-learning versus random, myopic, and the value-to-go approximation
in the model problem. The performance of the Q-learning algorithm is shown versus
number of training episodes run. The performance converges to that of the value-to-go
approximation with enough training episodes.

4.3.2 Target Localization with Time Varying Visibility and Real Targets

In this section, we consider a more realistic model problem which involves time

varying visibility. Two targets move in a 5km x 5km surveillance region. The goal

of the algorithm is to estimate the position and velocity of each target, i.e., estimate

[x, ẋ, y, ẏ] for targets 1 and 2. The target trajectories used in the simulation are taken

from real, recorded target trajectories captured during the army training exercise
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mentioned earlier (see Section 3.4 for a description of the exercise).

The sensor is able to image 100m x 100m cells on the ground, giving 2500 pos-

sible sensor actions. At each time step, the sensor can measure exactly one cell to

determine the presence or absence of a target in the cell. With detection probability

Pd, the sensor correctly detects a target in a cell. With false alarm probability Pf ,

the sensor incorrectly receives a detection from a cell that contains no targets. This

is the usual thresholded Rayleigh detection model used throughout this work.

The sensor is moving, so the line of sight between the sensor and a detection cell

is time varying. Coupled with terrain elevation, this results in the situation where

the ability of the sensor to see a cell changes with time. In particular, target 2 is

in an area of rapidly changing visibility. In this situation, the algorithm will benefit

from non-myopic decisions, specifically those that encourage the sensor to measure

cells that are about to become obscured.

At initialization, the filter has a (relatively) large uncertainty as to the target

positions and is to learn the states while the targets are moving during a 50s episode.

In each simulation, a random vehicle was chosen from the large database of recorded

trajectories and placed randomly in this 500mx300m region. The filter only has the

prior information that the target positions are uniformly distributed over a 500m x

300m region. Therefore, of the 2500 possible actions a much smaller number have

any chance of yielding useful information during the course of the episode (the 15

cells from the initial prior plus surrounding cells, since the targets are moving). For

that reason, the actions considered by the algorithm are pruned to a 6x6 block of

cells (a 600m x 600m region on the ground) surrounding each target.

A myopic strategy makes tasking decisions based only on expected immediate

reward. In particular, at the first time step all cells visible to the sensor are given



135

5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

110

120

130

140

150

160

R
M

S
 T

ra
ck

in
g 

E
rr

or
 (

m
et

er
s)

Time step

Random Strategy
Myopic Strategy
Non−myopic (VTG Approx)
Non−myopic (Reinforcement Learning)

Figure 4.8: The performance of the approximate non-myopic scheduling policies on the realistic
model problem described here. Performance is measured in terms of RMS tracking
error (low is good) versus time. The approximation to Bellmans equation uses w = 0.5.
The Q-learning strategy uses 500, 000 {state,action,next state,reward} examples to learn
a policy. As the policy learned (and hence performance) varies with the particular set
of training examples, we show the mean and standard deviation of performance over
10 independent realizations of the training set. Shown for the purposes of comparison
is the error for a purely random sensor allocation strategy, and the information based
myopic strategy.

equal value. A non-myopic strategy, on the other hand, favors interrogating cells

that will soon become obscured to the sensor.

In Figure 4.8, we present results of target localization in this scenario using the

two approximate non-myopic scheduling algorithms advocated here : the information

based reinforcement learning strategy and the value-to-go approximation. The Q-

learning algorithm was trained on 10, 000 episodes (each consisting of 50 time steps)

of the scenario. These 50 time step episodes record state, action, next state, and

reward as mentioned earlier. In each of the training and testing episodes, the vehicle

and start position was chosen randomly. Actions were chosen randomly during the

simulation for maximal exploration of the state space. The value-to-go approximation
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uses w = 0.5 as the weighting between immediate and future gains.

We see that the RL method performs best of all techniques considered here. How-

ever, the value-to-go approximation also significantly outperforms the myopic policy.

Considering computational costs, this makes the value-to-go approximation a very

powerful approach.

4.3.3 Target Classification with Multiple Occupancy

We turn our attention to a second model problem, which is related to the second

scenario described in Section 4.1. There are four targets which are described by a

one-dimensional position. The kinematic states (position and velocity) of the targets

is known well. The goal is to point a target identification sensor so as to determine

the correct type of each target. The classification sensor is modeled similarly as in

Section 3.4.3. Specifically, cells that are multiply occupied produce random results

when using the ID sensor. Furthermore, here we allow the misclassification rate of

the sensor to be a variable p.

At time step 1, the targets are in separate sensor detection cells. The targets are

moving so that at time step 2, two targets enter the same sensor detection cell. This

situation is illustrated graphically in Figure 4.9.

Figure 4.9: An illustration of the model problem with a multiple occupancy cell. At time 1, the
filter knows the kinematic states of the targets well, but the identification is unknown.
At time 2, two targets enter the same detection cell and stay there for the rest of the
simulation. This situation corresponds to convoy movement.

At time 1 the myopic strategy, having no prediction about future cell occupancy,

chooses to measure cells 3, 9, 10, and 15 with equal probability. As a result, at time
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step 2 the targets in cells 9 and 10 may not have yet been interrogated and hence

classification performance will be no better than chance (as the targets are now in a

multiply occupied cell).

On the other hand, a non-myopic policy will preferentially interrogate cells that

are about to become multiply occupied. Specifically, the approximate non-myopic

algorithm which replaces the value-to-go function with an opportunity cost will re-

alize that the ability to gain information at time step 2 is depressed for the targets

in cells 9 and 10. This will force the sensor to preferentially measure these cells at

time step 1.

We compare the performance of myopic scheduling with that of non-myopic schedul-

ing and “overly” non-myopic scheduling by varying the weighting of the non-myopic

term w in (4.11). The results are shown in Figure 4.3.3, where the performance is

measured as a function of misclassification rate p and the number of looks available

at each time step, L. We see that the non-myopic technique with properly chosen w

(here w = 0.5) outperforms both the myopic (w = 0) and overly non-myopic (w = 2)

strategies.

4.3.4 Tracking “Smart” Targets

In this subsection, we examine a problem involving “Smart” targets [103]. Smart

targets are targets that are able to detect when they are under surveillance and

react in a manner that makes future surveillance more difficult. We use the rein-

forcement learning approach to adaptively schedule a multi-modality sensor so as

to most quickly and effectively detect the presence of smart targets and track them

as they travel through a surveillance region. We investigate algorithms capable of

choosing whether to use the active or passive mode of an agile sensor. The active

mode is easily detected by the target, which makes the target prefer to move into
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Figure 4.10: Performance of the information based approximate non-Myopic scheduler in the case of
multiple occupancy. Performance is plotted as a function of the number of sensor dwells
allowed at each time step and the single scan misclassification rate. The approximate
non-myopic strategy outperforms the myopic strategy, particularly when the number
of looks is small (e.g., 2)

hide mode. The passive mode is undetectable to the target. However, the active

mode has substantially better detection and tracking capabilities then the passive

mode. Using this setup, we characterize the advantage of a non-myopic policy with

respect to myopic and random polices for multitarget detection and tracking.

The model problem is constructed as follows. There are two targets in the sur-

veillance region with unknown initial position. At each time step, the sensor is able

to measure a single cell to determine the presence or absence of targets. The sensor

can use active mode or passive mode. Sensor modes are again characterized by a
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detection probability Pd and a false alarm probability Pf dictated by a Rayleigh

assumption on target returns.

When the target is in visible mode, the active mode works with high detection

probability and low false alarm probability, Pd = .9 and Pf = 1e− 4 (corresponding

to SNR = 20dB). The passive sensor mode works with detection probability Pd = .5

and false alarm probability Pf = 1e − 4 (SNR = 10dB). When in hide mode, both

sensor modes are severely degraded and correspond to a target with SNR = 0dB.

Targets can sense when the active mode is used and move into hide mode to

prevent further interrogation. Additionally, targets that have moved into hide mode

may move back into visible mode when the passive sensor mode is used. The para-

meters of interest can be summarized by the following transition probabilities when

for each of the two sensor modes:



Pr(visible to visible) Pr(visible to hide)

Pr(hide to visible) Pr(hide to hide)




A myopic strategy of sensor management makes tasking decisions based only on

the expected immediate reward. Here the myopic strategy will advocate using the

active mode at all times as it has the largest expected gain in immediate informa-

tion. Depending on the transition probabilities, this will often immediately force the

targets into hide mode, making them difficult to observe in future time steps. A

non-myopic strategy, on the other hand, will take into account the effect of current

actions on future information gaining ability and be more prudent in using the active

mode.

We present two simulations with different values for the transition probabilities.
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In the first simulation, we use

Transition Matrix Active Sensor Mode =




0 1

0 1




Transition Matrix Passive Sensor Mode =




1 0

.2 .8




which indicates that the target always moves into hide when the active mode is used,

and moves from hide to visible with probability .2 when the active mode is used.

In the second simulation we ease the tendency of the target to be in hide mode,

specifically we use

Transition Matrix Active Sensor Mode =




.1 .9

0 1




Transition Matrix Passive Sensor Mode =




1 0

.33 .67




which indicates that the target has some chance (10%) of staying in visible mode

even if the active mode is used, and is more likely to move back into visible mode

when the passive mode is used.

We trained a Q-function as discussed in Section 4.2.5 by running 100,000 training

episodes for each of the two scenarios. Episodes were generated with random sensor

allocations using the models of target behavior. The initial position of the targets

and realization of the diffusive motion of the targets was chosen randomly for each

training episode. The Q-function was trained using a linear function approximation

on the set of state, action, next state, immediate reward 4-tuples generated during

training in batch fashion. The algorithm was tested on 1,000 example episodes
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where the initial position and realization of the diffusive motion of the targets was

chosen randomly for each testing episode. The Q-function learned during the training

episode was used to schedule the sensor by selecting mode and pointing direction.

In Figures 4.11 and 4.12, we present results of target localization using the Q-

learning strategy detailed in Section 4.2.5 for the two simulations. We compare this

performance to (a) a random strategy, (b) a myopic strategy, (c) a random strategy

that only uses the passive mode, and (d) a myopic strategy that only uses the passive

mode. The Q-learning strategy performs as well or better than the best of the four

competing strategies in both cases.
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Figure 4.11: Target tracking performance for the first smart target simulation. Included are a
random strategy, a myopic strategy, a random strategy that uses only the passive
mode, a myopic strategy that uses only the passive mode, and the Q-learning strategy.
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Figure 4.12: Target tracking performance for the second smart target simulation. Included are
a random strategy, a myopic strategy, a random strategy that uses only the passive
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CHAPTER V

Conclusion

This thesis has addressed the problem of scheduling the resources of agile sensors.

We investigate an information-based approach, wherein sensor tasking decisions are

made based on the principle that actions should be chosen so as to maximize the

information expected to be extracted from the scene. The main benefit of this

approach is that it provides a single unifying metric that is able to automatically

capture the complex tradeoffs involved when choosing between the large number of

possible sensor taskings.

The information-based approach to sensor management involves the development

of three interrelated elements.

First, we form the joint multitarget probability density (JMPD), which is the

fundamental entity capturing knowledge about the number of targets as well as the

states of the individual targets (e.g. position, velocity and identification). Unlike

more traditional methods, the JMPD does not assume any independence, but in-

stead explicitly models the coupling in uncertainty between target states, between

targets, and between target state and the number of targets. Furthermore, we do

not assume the JMPD is of some parametric form (e.g. Gaussian, sum of Gaussian,

etc.) but rather allow for complete generality in distribution. Because of this gener-

143
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ality, the JMPD is a very high dimensionality object which must be estimated using

sophisticated numerical techniques. Our representation of the JMPD is done via

a novel multitarget particle filter using adaptive sampling schemes, which provides

computational tractability.

Second, we use the estimate of the JMPD to make (myopic) sensor resource al-

location decisions. The fundamental paradigm for sensor scheduling is to choose

sensing actions which maximize the expected amount of information gained. This

unifying metric allows us to automatically trade between sensor allocations that

provide different types of information (e.g. actions that provide information about

position versus actions that provide information about identification) without any

adhoc assumptions as to the relative utility of each.

Finally, we extend the information-based sensor resource allocation paradigm to

long-term (non-myopic) sensor scheduling. This extension is computationally chal-

lenging due to an exponential growth in action sequences with horizon time. We

investigate two approximate methods to address this complexity. First, we look

at directly approximating Bellman’s equation by replacing the value-to-go function

with an easily computed function of the ability to gain information in the future.

Second, we apply the reinforcement learning technique called Q-learning as a means

of learning a non-myopic policy from a set of example episodes.

There are several interesting directions in which to take this work. The first is

that of decentralization, i.e., performing the tracking and sensor management in a

distributed network of sensors. This involves determining how, when, and what

to communicate between bandwidth and processing power constrained nodes in a

network. Communications must be secure, reliable, and minimal. Computations

must be light and memory must be used sparingly. This evolution is a necessity for
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the transition of this work to a operational platform.

A second area of future work is the exploration of other applications of non-myopic

scheduling. Some scenarios not considered in this work include sensors with time

latencies, sensors with global constraints (e.g., power), and sensors with mobility.

One needs to investigate whether the approximations developed here are viable or

need to be extended to accommodate these situations. Furthermore, it needs to be

determined if the learning methods can be made computationally tractable for use

in a real system.

Other areas of future work include the generalization of the method to include

continuous action spaces, applications involving three-dimensional tracking over a

topographical domain, simultaneous scheduling of multiple sensors, and target de-

tection where multiple targets may occupy the same resolution cell.
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