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Abstract— This paper presents a particle filter approach to
recursively estimating the joint multitarget probability den-
sity (JMPD) for the purposes of simultaneous multitarget de-
tection and tracking. The JMPD is a conditional probabil-
ity density that characterizes uncertainty in both target state
and target number given the measurements. Estimation of the
JMPD presents a formidable computational challenge due to
the high dimensionality of the state space needed to explic-
itly model the correlations between target states and between
target states and target number. We address this challenge
with an importance density that is measurement directed and
which adaptively factorizes the problem into a set of smaller
sub-problems when possible. We demonstrate the algorithm
on a set of real targets whose motion is taken from a set of
military battle exercises.
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1. INTRODUCTION

This paper presents a unified approach to multitarget detec-
tion and tracking which is based on recursive estimation of
the joint multitarget probability density (JMPD). The JMPD
is a single probabilistic entity that captures uncertainty about
the number of targets present in the surveillance region as
well as their individual states. As a nonlinear filter, the JMPD
technique does not require assumptions of linearity or Gaus-
sianity in either the temporal or the measurement update. The
implementation presented in this paper improves and expands
those of [19][20] by addressing the detection and tracking
problem simultaneously.

Since the JMPD is a very high dimensional entity, sophisti-
cated numerical techniques are required for tractable imple-
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mentation of this technique. We advocate a particle filtering
approach, where each particle is a sample from the JMPD.
Each particle therefore contains an estimate of both the num-
ber of targets and the states of each individual target. Taken
as a collection, the particles represent the uncertainty in both
target number and states of the individual targets. We use a
particle proposal scheme that is measurement directed for the
evolution of existing targets, the introduction of new targets,
and removal of existing targets.

The multitarget tracking problem has been traditionally ad-
dressed with techniques such as multiple hypothesis track-
ing (MHT) and joint probabilistic data association (JPDA)
[3][2][5]. Both techniques work by translating a measure-
ment of the surveillance area into a set of detections by
thresholding. The detections are then either associated with
existing tracks, used to create new tracks, or deemed false
alarms. Typically, Kalman-filter type algorithms are used to
update the existing tracks with the new measurements after
association. The challenge, of course, is to determine the cor-
rect association between measurements and targets.

Others have approached the problem from a fully Bayesian
perspective. Stone [33] develops a mathematical theory of
multiple target tracking from a Bayesian point of view. Sriv-
istava, Miller [22], and Kastella [18] also did early work in
this area. These methods have the advantage that they are
able to handle pre-thresholded measurements, as well as ar-
bitrary models of kinematics.

Recently, some researchers have applied particle filter based
strategies to the problem of multitarget tracking. In [11], Hue
and Le Cadre use a particle filter based on the probabilis-
tic multiple hypothesis tracker (PMHT) introduced by Streit
[36]. Considerable attention is given to dealing with the mea-
surement to target association issue. Others have done work
which amounts to a blend between JPDA and particle filtering
[14][6].

The BraMBLe [12] system, the independent partition parti-
cle filter (IPPF) of Orton and Fitzgerald [30] and the work
of Maskell [27] consider multitarget tracking via particle fil-
tering from a purely Bayesian perspective. Measurement-
to-target association is not done explicitly; it is implicit
within the Bayesian framework. This work has focussed on a
tractable implementation of ideas in [33].
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Mahler [23][26][29] has developed an approach to multitar-
get tracking based on random sets called ”finite-set statis-
tics” (FISST). Recently, FISST has been combined with par-
ticle filtering methods for multitarget tracking [37][34]. To
date, these implementations have been limited to small scale
problems for computational reasons. While developed inde-
pendently ([17][18][18]), the JMPD method can be derived
using the mathematics of random sets and expressed in the
FISST framework (see [29]). As discussed there, JMPD can
be traced back to the Event-Averaged Maximum Likelihood
Estimation (EAMLE) work of Kastella [17][18] and many
earlier works, e.g. [13][28][32].

The main contribution of this paper is the description of a
multiple target tracker that recursively estimates the entire
joint multitarget probability density using particle filtering
methods for simultaneous multitarget detection and tracking.
As such it as an extension and improvement to the work in
[19][20]. The particle filter implementation uses a measure-
ment directed importance density that includes both persistent
targets (targets that remain from time step to time step) and
target addition/removal. For persistent targets, we build on
the independent partition idea of [30]. For target addition and
removal, the importance density uses a measurement directed
method of deciding which areas of the surveillance region are
more likely to have had a target arrive or leave.

The rest of this paper is organized in the following manner.
In Section 2, we introduce the notion of the joint multitarget
probability density and show how the rules of Bayesian Fil-
tering are applied to produce a recursive filtering procedure.
We give the particle filter based estimation of the JMPD in
Section 3. We detail therein the adaptive sampling strategy
applied to automatically factor the JMPD when targets are
behaving independently, while appropriately handling targets
that are coupled. This automatic factorization is key to the
computational tractability of this implementation. In Section
4, we give simulation results detailing the performance of the
particle filter based multitarget tracker. Finally, we conclude
in Section 5 with a brief summary and discussion.

2. MATHEMATICAL FORMULATION : THE
JOINT MULTITARGET PROBABILITY

DENSITY

In this section, we give the details of a Bayesian method
of multitarget tracking predicated on recursive estimation
of the Joint Multitarget Probability Density (JMPD). Others
have studied Bayesian methods for tracking multiple targets
[33][22][4]. We provide here a comprehensive framework
for multitarget detection, tracking, and identification that in-
cludes unknown and time varying target number followed by
a tractable implementation strategy based on particle filtering.

Mahler [26][24][25] advocates a related approach based on
random sets which he calls “finite-set statistics” (FISST).
Since FISST and the JMPD approach attack some of the same
problems, many of the concepts that appear here such as mul-

titarget motion models and multitarget measurement models
also appear in the work of Mahler et. al [24]. The JMPD tech-
nique does not require the random set formalism of FISST; in
particular, in contrast to the random set approach, the JMPD
technique adopts the view that likelihoods and the joint mul-
titarget probability density are conventional Bayesian objects
to be manipulated by the usual rules of probability and statis-
tics. Therefore, the JMPD approach described here makes
no appeal to random sets or related concepts such as Radon-
Nikodym derivatives.

The concept of JMPD was discussed in [25][16][15], where a
method of tracking multiple targets that moved between dis-
crete cells on a line was presented. We generalize the dis-
cussion here to deal with targets that have N -dimensional
continuous valued state vectors and arbitrary kinematics. In
many of the model problems, we are interested in tracking the
position (x, y) and velocity (ẋ, ẏ) of multiple targets and so
we describe each target by the four dimensional state vector
[x, ẋ, y, ẏ]′. If we were interested in estimating target mode
or target identification, these states would be added to the fea-
ture vector.

A simple schematic showing three targets (Targets A, B, and
C) moving through a surveillance area is given in Figure 1.
There are two target crossings, a challenging scenario for
multitarget trackers.

0 500 1000 1500 2000 2500 3000 3500 4000
400

600

800

1000

1200

1400

1600

1800

2000

2200

Target A

Target B

Target C

X position (meters)

Y
 p

os
iti

on
 (

m
et

er
s)

Figure 1. A schematic showing the motion of three of the
ten targets in the simulation scenario, which is based on real
collected target trajectories. The target paths are indicated by
the lines, and direction of travel by the arrows. There are two

instances where the target paths cross (i.e. are at the same
position at the same time).

Recursive estimation of the JMPD provides a means for track-
ing an unknown number of targets in a Bayesian setting. The
statistical model employed uses the joint multitarget condi-
tional probability density

p(xk
1 , xk

2 , ...xk
T−1, xk

T , T k|Zk) (1)

as the probability density for exactly T targets with states
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x1, x2, ...xT−1, xT at time k based on a set of past observa-
tions Zk. The number of targets T is a variable to be esti-
mated simultaneously with the states of the T targets. The
observation set Zk refers to the collection of measurements
up to and including at time k, i.e. Zk = {z1, z2, ...zk}, where
each of the zi may be a single measurement or a vector of
measurements made at time i.

Each of the state vectors xt in the joint multitarget probabil-
ity density p(xk

1 , xk
2 , ...xk

T−1, xk
T , T k|Zk) is a vector quantity

and may (for example) be of the form [x, ẋ, y, ẏ]. We refer
to each of the T target state vectors x1, x2, ...xT−1, xT as a
partition of the multitarget state X. For convenience, the den-
sity will be written more compactly in the traditional manner
as p(Xk, T k|Zk), which implies that the state-vector X repre-
sents a variable number of targets each possessing their own
state vector. We will often drop the time superscript k for
notational simplicity when no confusion will arise.

As an illustration, some examples illustrating the sample
space of p are

• p(∅, T = 0|Z), the posterior probability density for no tar-
gets in the surveillance volume
• p(x1, T = 1|Z), the posterior probability density for one
target with state x1

• p(x1, x2, T = 2|Z), the posterior probability density for
two targets with states x1 and x2

Likelihoods such as p(z|X, T ) and the joint multitarget prob-
ability density p(X, T |Z) are conventional Bayesian objects
manipulated by the usual rules of probability and statistics.
Thus, a multitarget system has state X = (x1, · · · , xT )
with probability distribution p(x1, · · · , xT , T |Z). This can be
viewed as a hybrid stochastic system where the discrete ran-
dom variable T governs the dimensionality of X. Therefore
the normalization condition that the JMPD must satisfy is

∞∑

T=0

∫
dx1 · · · dxT p(x1, · · · , xT , T |Z) = 1 . (2)

Quantities of interest can be deduced from the JMPD. For ex-
ample, the probability that there are exactly T targets present
in the system is given by the marginal distribution

p(T |Z) =
∫

dx1 · · · dxT p(x1, · · · , xT , T |Z) . (3)

An important factor that is often overlooked in multitarget
tracking algorithms is that the JMPD is symmetric under per-
mutation of the target indices. This symmetry is a fundamen-
tal property of the JMPD which exists because of the physics
of the problem and not because of mathematical construc-
tion. Specifically, the multitarget states X = [x1, x2] and
X = [x2, x1] refer to the same event, namely that there are
two targets in the surveillance area – one with state x1 and
one with state x2. This is true regardless of the makeup of
the single target state vector. For example, the single target

state vector may include target ID or even a target serial num-
ber and the permutation symmetry remains. Therefore, all
algorithms designed to implement the JMPD are permutation
invariant.

If targets are widely separated in the sensor’s measurement
space, each target’s measurements can be uniquely associ-
ated with it, and the joint multitarget posterior density ap-
proximately factors. In this case, the problem may be treated
as a collection of single target problems. The characteriz-
ing feature of multitarget tracking is that in general some of
the measurements have ambiguous associations, and there-
fore the conditional density does not factor.

The temporal update of the posterior likelihood proceeds
according to the usual rules of Bayesian filtering. The
model of how the JMPD evolves over time is given by
p(Xk, T k|Xk−1, T k−1) and will be referred to as the kine-
matic prior (KP). The kinematic prior includes models of tar-
get motion, target birth and death, and any additional prior
information that may exist such as terrain and roadway maps.
In the case where target identification is part of the state being
estimated, different kinematic models may be used for differ-
ent target types.

The time-updated (prediction) density is computed via the
model update equation as given by eq. 4. The measurement
update equation uses Bayes’ rule to update the posterior den-
sity with a new measurement zk as given by eq. 5.

This formulation allows JMPD to avoid altogether the prob-
lem of measurement to track association. There is no need
to identify which target is associated with which measure-
ment because the Bayesian framework keeps track of the en-
tire joint multitarget density. In fact, there is no need for
thresholded measurements (detections) to be used at all. A
tractable sensor model merely requires the ability to compute
the likelihood p(z|X, T ) for each measurement z received.

Kinematic Modelling : The Model p(Xk, T k|Xk−1, T k−1)

The Bayesian framework outlined above requires a model of
how the system state evolves, p(Xk, T k|Xk−1, T k−1). This
includes both how the number of targets changes with time
(i.e. T k versus T k−1) and how individual targets that per-
sist over time evolve (i.e. xk versus xk−1). In general, this
model is chosen using the physics of the particular system un-
der consideration. The simulation studies used herein come
from a set of real ground targets recorded during a military
battle exercise. Therefore, we specialize the models here to
this application.

To specify the model, we need to generate an expression for
p(Xk, T k|Xk−1, T k−1) which can be evaluated for any set of
multitarget states and target counts {Xk, T k, Xk−1, T k−1}.

We first define a set of spatially varying priors on target ar-
rival and death. Let αk(x) denote the a priori probability
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p(Xk, T k|Zk−1) =
∞∑

T k−1=0

∫

X
dXk−1p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Zk−1) (4)

p(Xk, T k|Zk) =
p(zk|Xk, T k)p(Xk, T k|Zk−1)

p(zk|Zk−1)
(5)

that a target will arrive at location x at time k. Similarly,
let the a priori probability that a target in location x will die
be denoted by βk(x). For the simulation studies, we assume
temporally and spatially invariant (i.e. constant) rates for the
birth and death and specify only α and β. The more general
case is straightforward to implement, however it significantly
complicates the notation.

For targets that persist over a time step, we model the target
motion as linear and independent for each target, i.e. if the
state of a target is given by x = (x, ẋ, y, ẏ) the model is

xk
i = Fxk−1

i + wk
i , (6)

where

F =




1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1


 . (7)

wk
i is 0-mean Gaussian noise with covariance Q =

diag(20, .2, 20, .2), which was selected based on an empir-
ical fit to the data. In the cases where we are interested in
tracking the mode or identification of targets, the state vector
and F and Q matrices are augmented appropriately.

We emphasize here that Linear/Gaussian models are not a re-
quirement of the formulation, but are used as they have been
found to perform well in simulation studies with the real data.
More complicated models of target motion can be inserted
where appropriate without directly effecting computations in
the algorithm.

Sensor Modeling : The Model p(zk|Xk, Tk)

In order to implement Bayes′ Formula (eq. 5), we must com-
pute the measurement likelihood p(z|X, T ). There are two
approaches to modeling the likelihood, which we refer to as
the “associated measurement” model and the “association-
free” model. In both models, the sensor produces a sequence
of scans at discrete instants in time. Each scan is a set of
measurements produced at the same instant. The difference
between the models lies in the structure of the scans.

In the associated measurement model, an observation vector
consists of M measurements, denoted z = (z1, . . . , zM ). z is
composed of threshold exceedances, i.e. valid detections and
false alarms. Each valid measurement is generated by a single
target and is related (possibly non-linearly) to the target state.
False alarms have a known distribution independent of the
targets (usually taken as uniform over the observation space)

and the targets have known detection probability Pd (usually
constant for all targets). The origin of each measurement is
unknown. If measurement m is generated by target t, then
it is a realization of a measurement random process H , i.e.
zm ∼ Ht(xt, wt).

In its usual formulation, the associated measurement model
precludes the possibility of two different targets contributing
to a single measurement. This model predominates most cur-
rent tracking, data fusion and sensor management work. The
practical advantage of this model is that it breaks the tracking
problem into two disjoint sub-problems: data association and
filtering. The filtering problem is usually treated using some
kind of Kalman filter. The disadvantages are a restricted sen-
sor model and the difficult combinatorial problem of asso-
ciating observations to filters. The associated measurement
model was initially conceived in order to cast the problem
into a form in which the Kalman filter can be applied, which is
understandable in light of the enormous success the Kalman
filter has enjoyed.

In contrast, nonlinear filtering methods allow much greater
flexibility regarding the way measurements are modeled. As a
result, we are free to employ an association-free sensor model
in the work presented here. This type of model has been used
in track-before-detect algorithms, in the “Unified Data Fu-
sion” work of Stone et. al [33] and in the grid-based sen-
sor management work of [16]. There are several advantages
to the association-free method. First, it requires less ideal-
ization of the sensor physics and can readily accommodate
issues such as merged measurements, side-lobe interference
amongst targets and velocity aliasing. Second, it eliminates
the combinatorial bottleneck of the associated-measurement
approach. Finally, it simplifies the processing of unthresh-
olded measurements to enable improved tracking at lower tar-
get SNR.

As motivation, we consider a few of the sensor types encoun-
tered in tracking and surveillance applications. First, an imag-
ing sensor may observe a collection of unresolved point ob-
jects. The imager returns a collection of 1- or 2-dimensional
pixel intensities. The output of each pixel is related to the in-
tegrated photon count in that pixel which is in turn determined
by the background rate and how many targets are present
within the pixel during the integration interval, and their lo-
cations within the pixel. This is represented numerically as
either a positive integer or real number. Depending on the na-
ture of the optics and their impulse response function, one or
more pixels may respond to a target. Furthermore, multiple
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targets can contribute to the output of a single pixel, violating
the assumptions of the associated measurement model.

Another commonly used sensor type is radar. In a ground
moving target indicator (GMTI) radar, a collection of pulses
is emitted, their returns are collected and integrated over some
coherent processing interval (CPI) [35]. The output of suc-
cessive CPIs may also be averaged non-coherently. During
the integration interval, the radar antenna is directed at some
fixed or slowly varying bearing. The integrated pulse data is
processed to obtain the reflectivity as a function of range and
range-rate at that average bearing. Depending on the nature
of the integration process, the return amplitude may be enve-
lope detected or it may be available in complex form. Given
the ubiquity of modern digital signal processing, radar data is
usually available somewhere within the radar system as an ar-
ray indexed by discrete range, range-rate and bearing values.

With this as background motivation, we present the
association-free model. We compute the measurement likeli-
hood p(z|X, T ), which describes how sensor output depends
on the state of all of the targets in the surveillance region. A
sensor scan consists of M pixels, and a measurement z con-
sists of the pixel output vector z = [z1, . . . , zM ], where zi is
the output of pixel i. In general, zi can be an integer, real, or
complex valued scalar, a vector or even a matrix, depending
on the sensor. If the data are thresholded, then each zi will be
either a 0 or 1. Note that for thresholded data, z consists of
both threshold exceedances and non-exceedances. The fail-
ure to detect a target at a given location can have as great an
impact on the posterior distribution as a detection.

We model pixel measurements as conditionally independent
so

p(z|X, T ) =
∏

i

p(zi|X, T ) (8)

Independence between the measurements given the state is
often approximately true, and modeling as such often pro-
vides a nice simplification. However, conditional indepen-
dence amongst the measurements is not a necessary part of
this framework. Occasions where the physics of the situation
imply sensor returns are dependent warrant a more general
sensor model. This will not change the framework given here,
only the implementation of the likelihood p(z|X, T ).

Let X = [x1, . . . , xT ] and let χi(xt) denote the indicator func-
tion for pixel i, defined as χi(xt) = 1 when a target in state
xt projects into sensor pixel i (i.e. couples to pixel i) and
χi(xt) = 0 when it does not. Observe a pixel can couple to
multiple targets and single target can contribute to the out-
put of multiple pixels, say, by coupling through side-lobe re-
sponses. The indicator function for the joint multitarget state
is constructed as the logical disjunction

χi(X, T ) =
T∨

t=1

χi(xt) (9)

The set of pixels that couple to X is

iX = {i|χi(X, T ) = 1} (10)

For the pixels that do not couple to X, the measurements are
characterized by the background distribution, denoted p0(zi).
With this, eq. (8) becomes

p(z|X, T ) = (11)
∏

i∈iX

p(zi|X, T )
∏

i/∈iX

p0(zi) ∝
∏

i∈iX

p(zi|X, T )
p0(zi)

Equation (12) allows for fairly general modeling of a pix-
elized sensor response to a collection of targets including
non-linear effects due to multiple targets contributing to a sin-
gle pixel. One limitation is aggregations of targets only cou-
ple to the union of pixels that the individual targets couple to.
If a pair of targets have some type of nonlinear coupling that
results in a contribution to a pixel that they do not couple to
individually, this is not captured in the model. This is likely
to be a very small effect in most situations, so we choose to
ignore it here.

We further idealize the sensor as having a box-car resolution
cell in position coordinates. We assume that the sensor scans
a fixed rectangular region consisting of Nx ×Ny contiguous
pixels. The x- and y- ground-plane projection of each pixel
is ∆x and ∆y . The sensor response within pixel i is uniform
for targets in i and vanishes for targets outside pixel i. It is
convenient to define the occupation number ni(X) for pixel i
as the number of targets in X that lie in i. The single target
signal-noise-ratio (SNR), assumed constant across all targets,
is denoted λ. We assume that when multiple targets lie within
the same pixel their amplitudes add non-coherently (this will
be an accurate model for unresolved optical targets and radar
targets not moving as a rigid body). Then the effective SNR
when there are n targets in a pixel is λn = nλ and we may
use pn(zi) to denote the pixel measurement distribution (note
that the background distribution is obtained by setting n = 0).

With these modeling assumptions, the measurement distribu-
tion in pixel i depends only on its occupation number and eq.
(12) becomes

p(z|X, T ) ∝
∏

i∈iX

pni(X),T (zi)
p0(zi)

(12)

To complete the specification of the sensor model, we must
give its dependence on SNR. Many models are plausible, de-
pending on the detailed nature of the sensor. We have elected
to use Rayleigh-distributed measurements. This distribution
corresponds to envelope detected signals under a Gaussian
model, and has been used for example to model interfering
targets in a monopulse radar system and to model clutter and
target returns in turbulent environments. Rayleigh models are
also often used for diffuse fading channels. In the unthresh-
olded case, this is

pn(z) =
z

1 + nλ
exp

(
− z2

2(1 + nλ)

)
(13)
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When the tracker only has access only to thresholded mea-
surements, we use a constant false-alarm rate (CFAR) model
for the sensor. If the background false alarm rate is set at Pf ,
then the detection probability when there are n targets in a
pixel is

Pd,n = P
1

1+nλ

f (14)

This extends the usual relation Pd = P
1

1+λ

f for thresholded
Rayleigh random variables at SNR λ [2].

3. NUMERICAL IMPLEMENTATION : THE
PARTICLE FILTER IMPLEMENTATION OF

JMPD

We now turn to the development of a particle filter approxi-
mation to the Joint Multitarget Probability Density (JMPD).
Even for modest problems, the sample space of the JMPD
is large since it contains all possible configurations of state
vectors xt for all possible values of T . Earlier implementa-
tions of JMPD given by Kastella [16] approximated the den-
sity by discretizing on a grid. The computational burden in
this scenario makes evaluating realistic problems intractable,
even when using the simple model of targets moving between
discrete locations in one-dimension. In fact, for a fixed ap-
proximation error, the number grid cells needed grows as LT ,
where L is the number of discrete locations the targets may
occupy and T is the number of targets.

Thus, to estimate the JMPD in a computationally tractable
manner, a more sophisticated approximation method is re-
quired. We find that a particle filter (PF) based implemen-
tation of JMPD breaks the computational logjam and allows
us to investigate more realistic problems.

The Single Target Particle Filter

Before detailing the particle filter implementation of JMPD,
we first review standard single target particle filtering. Parti-
cle filtering is a method of approximately solving the predic-
tion and update equations by simulation [1][9], where sam-
ples from the target density are used to represent the density
and are propagated through time.

To implement a single target particle filter, the single target
density of interest, p(x|Z), is approximated by a set of Npart

weighted samples (particles):

p(x|Z) ≈
Npart∑
p=1

wpδD(x− xp) (15)

Where δD represents the usual Dirac delta function.

The model update eq. (4) and the measurement update eq. (5)
are simulated by the following three step recursion, summa-
rized in Table 1.

First, the particle locations at time k are generated using the
particle locations xp at time k − 1 and the current measure-
ments zk by sampling from an importance density, denoted

q(xk|xk−1, zk). The design of the importance density is a
well studied area [7], as the choice of the importance density
can have a dramatic effect of the efficiency of the particle fil-
ter algorithm. It is known that the optimal importance density
(OID) is given by p(xk|xk−1, zk), but this density is typically
prohibitively difficult to sample from. In practice, oftentimes
the importance density is chosen just to be the kinematic prior
p(xk|xk−1). However, more sophisticated choices of impor-
tance density lead to better results for a fixed number of parti-
cles. As we will see in the multitarget case, approximating the
OID (rather than simply using the kinematic prior) becomes
crucial as problem dimension increases.

Second, particle weights are updated according to the weight
equation, which involves the likelihood, the kinematic model,
and the importance density [1].

wk
p = wk−1

p

p(zk|xk
p)p(xk

p|xk−1
p )

q(xk
p|xk−1

p , zk)
(16)

When using the kinematic prior as the importance density, the
weight equation reduces to simply wk

p = wk−1
p ∗ p(zk|xk

p).

Finally, a resampling step is used to prevent particle degener-
acy. Without resampling, the variance of the particle weights
increases with time, yielding a single particle with all the
weight after a small number of iterations [8]. Resampling
may be done on a fixed schedule or based on the weight vari-
ance.

The particle filter algorithm that uses the kinematic prior as
the importance density and resamples at each time step is
called sampling importance resampling (SIR) in the litera-
ture. The algorithm is illustrated in Table 1.

Table 1. SIR Single Target Particle Filter

1. For each particle p, p = 1, · · · , Npart, sample xk
p ∼

q(xk|xk−1, zk) = p(x|xk−1
p )

2. Compute wk
p = wk−1

p ∗ p(z|xp) for each p

3. Normalize wp to sum to 1, wp ← wp/
∑Nparts

i=1 wi.
4. Resample Npart particles with replacement

from xp based on the distribution defined by wp

SIR Multitarget Particle Filtering

To implement the JMPD recursions via a particle filter, we
similarly approximate the joint multitarget probability den-
sity p(X, T |Z) by a set of Npart weighted samples. A parti-
cle now becomes more than just the estimate of the state of a
target; it incorporates both an estimate of the states of all of
the targets as well as an estimate of the number of targets.

As we write the multitarget state vector for T targets as

X = [x1, x2, ..., xT−1, xT ] , (17)

the particle state vector will be written as

Xp = [xp,1, xp,2, . . . xp,Tp ] . (18)
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The notation we use here is that a particle Xp has Tp targets,
where Tp can be any non-negative integer. With δD denoting
the Dirac delta, we define

δ(X− Xp) =
{

0 T 6= Tp

δD(X− Xp) otherwise
(19)

Then the particle filter approximation to the JMPD is given
by a set of particles Xp and corresponding weights wp as

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X− Xp) (20)

where
∑Nparts

p=1 wp = 1.

The joint multitarget probability density p(X, T |Z) is defined
for all possible numbers of targets, T = 0, 1, 2, · · · . As each
of the particles Xp, p = 1...Npart is a sample drawn from
the JMPD p(X, T |Z), a particle Xp may have 0, 1, 2, · · · par-
titions, each partition corresponding to a different target. Dif-
ferent particles in the approximation may correspond to dif-
ferent estimates of the number of targets in the surveillance
region. In practice, the maximum number of targets a particle
may track is truncated at some large finite number Tmax.

We will denote the tth partition of particle p by Xp,t, i.e. Xp,t

refers to the estimate of the tth target state made by particle
p. Since a partition corresponds to a target, the number of
partitions that a particle has is that particle’s estimate of the
number of targets in the surveillance area.

With these definitions, the SIR particle filter extends directly
to JMPD filtering, as shown in Table 2. This method simply
proposes new particles at time k using the particles at time
k − 1 and the target kinematic model eq. (4) and the weight
update becomes

wk
p = wk−1

p

p(zk|Xk
p)p(Xk

p|Xk−1
p )

q(Xk
p|Xk−1

p , zk)
(21)

As in the single target case, since the model of target kine-
matics is used to propose particles, the weight equation (16)
simplifies to become the measurement likelihood, p(z|Xp).

Targets entering or leaving the surveillance region are ac-
counted for as the proposed particle Xk

p may have either fewer
targets or more targets than Xk−1

p (i.e. T k
p = T k−1

p − 1 or
T k

p = T k−1
p + 1). This algorithm is illustrated in Table 2.

The Inefficiency of the SIR Method

The SIR multitarget particle filter has the benefit of being
simple to describe and easy to implement. These benefits,
however, are erased since using the kinematics requires an
enormous amount of particles for successful tracking. In fact,
SIR is so numerically inefficient that problems of any realistic
size are intractable.

Table 2. SIR Multitarget Particle Filter

1. For each particle p, p = 1, ..., Npart, Sample (Xp, Tp)
from q(Xk, T k|Xk−1, T k−1, zk) = p(Xk, T k|Xk−1, T k−1)

2. Compute wk
p = wk−1

p ∗ p(z|Xp) for each p

3. Normalize wp to sum to 1, wp ← wp/
∑Nparts

i=1 wi.
4. Resample Npart particles with replacement from Xp

based on wp

Assume for discussion that the sensor is pixelated, returning
energy in one of C sensor cells as discussed in Section 2. Tar-
get birth may occur in any unoccupied cell at any time step.
Target death may occur in any occupied cell at any time step.
One method of handling this would be to have a very large
number of particles, capable of encoding all possibilities of
the next state, i.e. no new target, one new target (in each of the
possible unoccupied cells), or one less target (in each of the
occupied cells) and still retain the particle diversity required
for efficient filtering. Since the state space contains many
possible locations for the new target (e.g. a 100x100 sensor
grid), the straightforward method would require an enormous
number of particles to include the possible permutations of
targets removed and added.

Furthermore, even in the (artificial) case where there is no
birth and death target proposals using the kinematics are too
inefficient to be useful on realistic problems. Consider the
case where there are M targets in the surveillance region. In
order for a particle to be a good estimate of the multitarget
state, all M partitions must be proposed to good locations.
Without knowledge of the measurements, the probability of
an individual target being proposed to a good location is much
less than 1. Therefore, as the number of targets grows, the
number of particles required to perform good tracking with
high probability grows exponentially.

Both of these problems can be remedied by using an im-
portance density that more closely approximates the op-
timal importance density (i.e. uses the current measure-
ments to direct particle proposals to higher likelihood mul-
titarget states). Therefore, rather than using the kinematics
p(Xk, T k|Xk−1, T k−1) for proposal, we will carefully design
an importance density that more closely approximates the op-
timal density p(Xk, T k|Xk−1, T k−1, zk).

Importance Density Design for Target Birth and Death

In order to reach the efficiency required for tractable detec-
tion of multiple targets, we advocate a measurement directed
sampling scheme for target birth and death. Specifically, we
keep an existence grid (separate from the particles and tied to
the sensor grid) which contains the probability for t targets in
cell i at time k given the measurements Zk, pi(tk|Zk). We
consider only two possible values for t: 0 (no target in cell i)
and 1 (a target exists in cell i). Therefore, the existence grid
is merely a single vector of floating point numbers, one for
each sensor cell.
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The existence grid cells are initialized with a prior probability,
pi(t0|Ø), which may be spatially varying. The probability of
target existence in each cell is propagated forward in time via

pi(tk+1|Zk) =
∫

pi(tk+1|tk)pi(tk|Zk)dtk . (22)

Where pi(tk+1|tk) is the model of time evolution of target
number. Specifically, it encapsulates the probability of 1 tar-
get at time k + 1 given there were 0 targets at time k, the
probability of 1 target at time k + 1 given there was 1 target
at time k, and so on. According to the model outlined above,
new targets arrive at the rate α and leave at the rate of β. This
model completely specifies the transition density. Since t can
only take on one of two values, this integral becomes a simple
summation that is easily computable.

The existence grid is updated according to Bayes’ rule when
new measurements, zk+1, come in as

pi(tk+1|Zk+1) =
pi(tk+1|Zk)pi(zk+1|tk+1)

pi(zk+1)
. (23)

These update procedures result in an existence grid that is
separate from the particles and which contains a probability
of target existence.

To handle target birth, new targets are preferentially added
in locations according to the rate dictated by pi(targetk|Zk)
rather than at the nominal rate given by α(x). This is a bias
which will be removed during the weight update process so
that the Bayesian recursions are still exactly implemented.
This implementational technique allows particles to be used
more efficiently as new targets are only added in highly prob-
able areas. Similarly, to handle target death, targets are pref-
erentially removed at the rate dictated by pi(no targetk|Zk)
rather than the nominal rate given by β. Again, this bias is
removed during the weight update so that the Bayesian recur-
sions are still exactly implemented.

Let the number of possible locations a target could be
added in the surveillance region at time k be denoted ek.
Furthermore, denote the existence grid weight in cell i
at time k by gk

i . Finally, for a set of integers Z let
µZ

m(1, j), . . . , µZ
m(m, j), j ∈ {1, . . . ,

(|Z|
m

)} denote the jth
combination of m integers from Z. Then, if particle p adds a
targets preferentially in cells j1 and removes b targets prefer-
entially from cells j2, the bias correction factor (to be used in
particle weight update) is given by

mp =
λaρb

νa,j1κb,j2

(24)

where λ and ρ are defined using the prior addition and re-
moval probabilities as

λa = (1− α)ek

( α

1− α

)a

(25)

ρb = (1− β)T k−1
( β

1− β

)b

(26)

and ν and κ are defined using the addition and removal rates
used by the filter as

νa,j =
∏

i∈Ak

(1− gk
i )

a∏

l=1

gk
µAk

a (l,j)

/(
1− gk

µAk
a (l,j)

)
(27)

κb,j =
T k−1∏

i=1

(
1− τk

i

) b∏

l=1

τk

µT k−1
b (l,j)

/(
1− τk

µT k−1
b (l,j)

)
(28)

where

τk
i = β

1− gk
vk

i

1/T k−1
∑T k−1

l=1 (1− gk
vk

i

)
(29)

Importance Density Design for Persistent Targets

The drawback to using the kinematic prior for persistent tar-
gets is that the fact that the state vector represents many tar-
gets is not explicitly taken advantage of. Targets that are far
apart in measurement space behave independently and should
be treated as such. Furthermore, similar to that of the uni-
formed birth/death proposal, the current measurements are
not used when proposing new particles. These two consid-
erations taken together result in an inefficient use of particles
and therefore require large numbers of particles to success-
fully track.

To overcome these deficiencies, we have developed alterna-
tive particle proposal techniques which bias the proposal pro-
cess towards the measurements and allow for factorization of
the target state when permissible. These strategies propose
each partition (target) in a particle separately, and form new
particles as the combination of the proposed partitions. We
describe two methods here, the independent partitions (IP)
method of [30] and the coupled partitions (CP) method. The
basic idea of both CP and IP is to construct particle proposals
at the partition level, incorporating the measurements so as
to bias the proposal towards the optimal importance density.
We show that each has benefits and drawbacks and propose an
adaptive partition (AP) method which automatically switches
between the two as appropriate. All of the methods are per-
formed only on the persistent targets, and the algorithm is
done in conjunction with the addition and removal of targets
as described in the preceding section. Therefore the bias com-
pensation term derived from addition/removal of targets, mp,
is part of each algorithm.
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The permutation symmetry of the JMPD must be carefully
accounted for when using these advanced sampling schemes.
The CP method proposes particles in a permutation invariant
manner, however it has the drawback of being computation-
ally demanding. When used on all partitions individually, the
IP method is not permutation invariant. Our solution is to per-
form an analysis of the particle set to determine which parti-
tions require the CP algorithm, and which partitions may be
proposed via the IP method. This analysis leads to the AP
method of proposal which is permutation invariant.

Independent-Partition (IP) Method— The independent parti-
tion (IP) method given by Orton [30] is a convenient way to
propose particles when part or all of the joint multitarget den-
sity factors. The Independent-Partition (IP) method proposes
a new partition independently as follows. For a partition t,
each particle at time k − 1 has it’s tth partition proposed via
the kinematic prior and weighted by the measurements. From
this set of Npart weighted estimates of the state of the tth tar-
get, we select Npart samples with replacement to form the
tth partition of the particles at time k.

Note that the importance density q(Xk, T k|Xk−1, T k−1)
is no longer simply the model of target kinematics
p(Xk, T k|Xk−1, T k−1) as in the SIR Multitarget particle fil-
ter. Therefore, the weight given by eq. (16) does not sim-
ply become the likelihood p(zk|Xk, T k). There is a bias
which prefers to select partitions in accordance with the like-
lihood of the partition. To account for this sampling scheme,
the biases corresponding to each particle for each target,
bp,t, are retained to use in conjunction with the likelihood
p(zk|Xk, T k) when computing particle weights. This is sum-
marized in Table 3.

Table 3. Independent Partition Particle Filter

1. For each partition, t = 1 · · ·Tmax,
(a) Propose partition t via Independent Partition Subroutine
2. Remove or add partitions as in Section 3 resulting in bias

term mp

3. Compute wk
p = wk−1

p ∗ p(z|Xp)

mp

QTp
t=1 bp,t

Independent Partition Subroutine for Target t:
1. For each particle p = 1, ..., Npart,
(a) Sample X∗p,t ∼ p(Xk

p,t|Xk−1
p,t )

(b) Compute wp = p(z|X∗p,t)
2. Normalize wp to sum to 1, wp ← wp/

∑Nparts

i=1 wi.
3. For each particle p = 1, ..., Npart,
(a) Sample an index j from the distribution defined by w
(b) Set Xp,t = X∗j,t
(c) Retain bias of sample, bp,t = wj

It is important to carefully account for the permutation sym-
metry issue discussed in Section 3 here. The IP method
makes the critical assumption that partition t in each parti-
cle corresponds to the same target. Therefore, the partitions
in each particle must be identically positioned before this

method is applied. If IP is applied to particles that have dif-
ferent orderings of partitions, multiple targets will be grouped
together within the same partition and erroneously used to
propose the location of a single target. However, when this
assumption of target/partition correspondence is valid, IP is
an effective sampling strategy because it combines results for
each partition across particles, resulting in improved numeri-
cal efficiency.

In the case of well separated targets, this method allows many
targets to be tracked with the same number of particles needed
to track a single target. Indeed, as mentioned earlier, in the
case of well separated targets, the multitarget tracking prob-
lem breaks down into many single-target problems. The IP
method is useful for just this case, as it allows the targets to
be treated independently when their relative spacing deems
that appropriate. Note, however, that this method is not ap-
plicable when there is any measurement-to-target association
ambiguity. Therefore, when targets are close together in sen-
sor space, an alternative method must be used.

Coupled Partition (CP) Proposal Method— When the poste-
rior distributions on target position begin to overlap, we say
that the corresponding partitions are coupled. In these in-
stances, the IP method is no longer applicable, and another
method of particle proposal such as Coupled Partitions (CP)
must be used. An alternative method would be to use the IP
strategy on groups of partitions as suggested in [30].

We apply the coupled partitions method as follows. To pro-
pose partition t of particle p, CP proposes R possible realiza-
tions of the future state using the kinematic prior. The R pro-
posed futures are then given weights according to the current
measurements and a single representative is selected. This
process is repeated for each particle until the tth partition for
all particles has been formed. This can interpreted as an aux-
iliary particle filter [31] where the multiplicity R plays the
role of the auxiliary variable. As in the IP method, the final
particle weights must be adjusted for this biased sampling.
This is summarized in table 4.

This algorithm is a modified version of the traditional SIR
technique that operates on partitions individually. It improves
tracking performance over SIR at the expense of additional
computations.

Adaptive Particle Proposal Method—In order to mitigate the
problem of additional computational cost of the CP method,
and the problems with the IP method when targets are close
together, we propose a hybrid solution, called the Adaptive-
Partition (AP) method. The adaptive-partition method again
considers each partition separately. Those partitions that are
sufficiently well separated according to a given metric (see
below) from all other partitions are treated as independent
and proposed using the IP method. When targets are not suf-
ficiently distant, the CP method is used.
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Table 4. Coupled Partition Particle Filter

1. For each partition, t = 1 · · ·Tmax

(a) Propose partition t via Coupled Partition Subroutine
2. Remove or add partitions as in Section 3 resulting in bias

term mp

3. Compute wk
p = wk−1

p ∗ p(z|Xp)

mp

QTp
t=1 bp,t

Coupled Partition Subroutine for Target t
1. For each particle p = 1, ..., Npart,
(a) For each proposal r = 1, ..., R
i. Sample X∗p,t(r) ∼ p(Xk

p,t|Xk−1
p,t )

ii. Compute wr = p(z|X∗p,t(r))
(b) Normalize wr to sum to 1, wr ← wr/

∑R
i=1 wi.

(c) Sample an index j from the distribution defined by w
(d) Set Xp,t = X∗p,t(j)
(e) Retain bias of sample, bp,t = wj

To determine when targets are sufficiently separated, we
threshold based on distance in sensor space between the es-
timated state of the ith partition and the jth partition. De-
note by x′i the estimated x and y positions of the ith partition
(40). Notice only the spatial states are used (i.e. velocities
are neglected), as these are the states that measure distance in
sensor space for our model. We have computed the distance
between two partitions using a Euclidian metric between the
estimated centers, and the Mahalanobis metric (30), where
Σ̂j is the covariance associated with the estimate of the jth

partition (41).

r2 = (x′i − x′j)
′Σ̂−1

j (x′i − x′j) (30)

We have additionally used a nearest neighbor type criteria,
where partitions are considered coupled if any sample from
partition i is closer to the center of partition j then any sample
from partition j. In practice, it is found that simply using
the Euclidian distance between estimated states is sufficient
and less computationally burdensome. The adaptive proposal
method is summarized in Table 5.

Table 5. Adaptive Proposal Method

1. For each partition t = 1 : Tmax

(a) d(t) = minj 6=t ||x′t − x′j ||
(b) if d(t) > τ

Propose partition t using IP method
(c) else

Propose partition t using CP method
2. Remove or add partitions as in Section 3 resulting in bias

term mp

3. For each particle p = 1, ..., Npart

wk
p = wk−1

p ∗ p(z|Xp)

mp

QTp
t=1 bp,t

A further refinement to the CP method improves perfor-
mance. In this method, those partitions that are deemed to
be coupled are clustered according to the method of section

3. This results in “partitions” that contain multiple targets
– some with 2 targets, some with 3 targets, etc. Then in-
stead of proposing each target individually, the clustered pairs
(triplets, etc.) of targets are proposed all at once. This method
is summarized in Table 6. Note that the idea of a partition
containing multiple targets is also present in the work of Or-
ton [30], although adaptively deciding partition boundaries
and partition clustering is new to this work.

Table 6. Modified Adaptive Proposal Method

1. Cluster targets into C groups
2. For each group c = 1 : C
(a) if group C has one entry,

Propose group c using IP method
(b) else

Propose group c using CP method
3. Remove or add partitions from selected particles as in

Section 3
4. For each particle p = 1, ..., Npart

wk
p = wk−1

p ∗ p(z|Xp)

mp
QC

c=1 bp,c

Permutation Symmetry and Partition Sorting

As discussed throughout the preceding sections, the permu-
tation symmetry associated with the JMPD discussed in Sec-
tion 2 is directly inherited by the particle filter representa-
tion of the JMPD. Each particle contains many partitions (as
many as the number of targets it estimates exist in the surveil-
lance region) and the permutation symmetry of JMPD is vis-
ible through the fact that the relative ordering of targets may
change from particle to particle. We refer to the permutation
symmetry in this context as partition swapping.

The fact that partitions are in different orders from particle
to particle is of no consequence when the object of interest
is an estimate of the joint multitarget density. Each particle
contributes the correct amount of mass in the correct location
to the multitarget density irrespective of the ordering of its
partitions.

However, the IP scheme requires that particles be identically
ordered. Furthermore, estimating the multitarget states from
the particle filter representation of JMPD must also be done in
a way that is invariant to permutations of the particles. There-
fore, before estimating target states, we permute the particles
so that each particle has the targets in the same order. We
use the K-means algorithm [10] to cluster the partitions of
each particle, where the optimization is done across permu-
tations of the particles. This is a very light computational
burden in practice for two reasons. First, those partitions that
are not coupled are already consistently ordered and need not
be involved in the clustering procedure. Second, since this
re-ordering occurs at each time step, those partitions that are
coupled are nearly ordered already, and so one iteration of
the K-means algorithm is typically enough to find the best
permutation.
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The details of the K-means algorithm are as follows. First, we
state the notion of permutation symmetry precisely. Suppose
a particle has Tp partitions labeled t = 1 · · ·Tp. A permuta-
tion πp is a reshuffling of the labels, πp : i → πp(i). So a
particle defined

Xp = [xp,1, xp,2, · · · , xp,Tp ] (31)

Under the permutation πp is reordered to

Xp = [xp,πp(1), xp,πp(2), · · · , xp,πp(Tp)] (32)

Denote by π a set of permutations for each particle, πp, p =
1 · · ·Npart. We define the mean of the tth partition under the
permutation π as

X̄t(π) =
Nparts∑

p=1

wpXp,πp(t) (33)

where it is understood that the summation is taken over only
those particles that have partition t, and the weights are ap-
propriately normalized to this subset. Further, define the χ2

statistic as

χ2(π) =
Nparts∑

p=1

Tp∑
t=1

wp(Xp,πp(t) − X̄t(πp))2 (34)

To reorder the particles, the goal is to find the set of permuta-
tions π that minimize χ2, i.e.

π̂ = min
π

χ2(π) (35)

The K-means algorithm is a well known method of approxi-
mately solving problems of this type. An initial permutation
π is assumed and perturbations about that value are made to
descend and find the locally optimal π. As mentioned ear-
lier, re-ordering is done at each iteration of the algorithm, so
the initial ordering is typically very close to the globally op-
timal ordering. Therefore, the K-means algorithm typically
converges to the global optimum after a very small number of
iterations (often 1). The algorithm is given in Table 7.

Table 7. K-means Algorithm Optimizing Over Partition
Orderings

1. Initialize with π = current ordering of partitions
2. Compute X̄t(π) for t = 1 · · ·Tp using (33)
3. For each particle p, permute the particle (update πp) to

yield

πp ← arg min
πp

Tp∑
t=1

(Xp,πp(t) − X̄t(πp))2

4. If no particles have changed permutation from π, quit.
Otherwise set π = (π1, · · · , πp, · · · , πNpart) and go to 2

Notice that if the K-means algorithm fails to return the glob-
ally best reshuffling, this is not a serious problem. The main
effect is that the CP algorithm will be used more than is mini-
mally necessary. This results in increased computation but no

performance degradation. A secondary effect is that target es-
timates will be slightly incorrect. There will be only a minor
error relative to the sensor resolution because a local mini-
mum will at worst mix partitions that are very close together
in sensor space.

Estimation

Estimates of various quantities may be easily made using the
particles.

Equation (3) gives the expression for computing the prob-
ability there are exactly T targets in the surveillance vol-
ume from the JMPD. To extract this from the particle filter
approximation, first define the indicator variable Ip(T ) for
p = 1...Nparts,

Ip(T ) =
{

1 if Tp = T
0 otherwise

(36)

Then the probability of T targets in the surveillance volume,
p(T |Z), is approximated by

p(T |Z) ≈
Npart∑
p=1

Ip(T )wp (37)

Hence, the estimate of the probability that there are T targets
in the surveillance volume is merely the sum of the weights
of the particles that have T partitions. Note that the particle
weights, wp, are normalized to sum to unity for all equations
given in this section.

To compute the estimated state and covariance of target i, we
first define a second indicator variable Ĩp(i) that indicates if
particle p has a partition corresponding to target i. This is
necessary as each particle is a sample drawn from the JMPD
and hence may have a different number of partitions (targets):

Ĩp(i) =
{

1 if partition i exists in particle p
0 otherwise

(38)

Note that the sorting procedure of Section 3 has identified an
ordering of particles to allow Ĩp(i) to be determined. Further-
more, we define the normalized weights to be

ŵp =
wpĨp(i)∑Npart

l=1 Ĩl(i)wl

(39)

So ŵp is the relative weight of particle p, with respect to
all particles containing a partition corresponding to target i.
Then the estimate of the state of target i is given by

X̂(i) = E[X(i)] =
Npart∑
p=1

ŵpXp,i (40)

which is simply the weighted summation of the position es-
timates from those particles that are tracking target i. The
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covariance is given similarly as

Λ̂(i) =
Npart∑
p=1

ŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ (41)

The indicator function Ĩp(i) ensures that the summations in
eq. (40) and eq. (41) are taken over only those particles that
are tracking target i. The permutation symmetry issue men-
tioned earlier comes to the forefront here. Notice that without
a clustering on the partitions, it is not necessarily true that par-
tition i of particle j is tracking the same target that partition
i of particle j + 1 is tracking. Therefore, before evaluation
of eq. (40) or eq. (41), the clustering procedure discussed in
Section 3 is performed.

Resampling

In the traditional method of resampling, after each measure-
ment update Npart particles are selected with replacement
from Xp based upon particle weights wp. The result is a set
of Npart particles with uniform weight that approximate the
density p(X|Z). Particles that do not correspond to measure-
ments are eliminated – in particular, particles whose Tp value
is not supported by measurements (too many or too few tar-
gets) are selected with low probability.

The particular resampling that was used in this work is sys-
tematic resampling [1]. This resampling strategy is easily im-
plemented, runs in order Nparts, is unbiased, and minimizes
the Monte Carlo variance. Many other resampling schemes
and modifications are presented in the literature [7]. Of these
methods, we have found that adaptively choosing at which
time steps to resample [21] based on the number of effec-
tive particles leads to improved performance while reducing
compute time. All results presented herein use the method
of [21] to determine which times to resample and use sys-
tematic resampling [1] to perform resampling. We have also
found that Markov Chain Monte Carlo (MCMC) moves us-
ing a Metropolis-Hastings scheturneme [7] leads to slightly
improved performance in our application.

4. SIMULATION RESULTS

We illustrate the performance of our multitarget tracking
scheme by considering the following model scenario involv-
ing ten moving ground targets and an airborne sensor.

The ten ground targets used in this simulation move in a
5000m×5000m surveillance area. Targets are modeled using
the four-dimensional state vector x = [x, ẋ, y, ẏ]. The target
motion in the simulation is taken from a set of recorded data
based on GPS measurements of vehicle positions collected as
part of a battle training exercise at the Army’s National Train-
ing Center. This battle simulation provides a large number of
real vehicles, including army HMMWVs, armored personnel
carriers, tanks, and the like. The vehicles follow a prescribed
trajectory over natural terrain. Based on an empirical fit to
the data, we found that a nearly constant velocity model (see

eq. (4)) was adequate to model the behavior of the vehicles
for these simulation studies and is therefore used in all exper-
imental results presented herein.

We utilize the idealized sensor described in Section 2. The
sensor scans a fixed rectangular region of 50 × 50 pixels,
where each pixel represents a 100m × 100m area on the
ground plane. The sensor returns Rayleigh-distributed mea-
surements in each pixel, depending on the number of targets
that occupy the pixel. We use thresholded measurements with
Pd = .5 in all cases.

The filter was initialized with no knowledge, i.e. 0 targets
and a uniform density over the surveillance region of target
existence. As measurements come in, targets are added ac-
cording to the measurement directed scheme outlined earlier.
Targets that persist from time to time are tracked according to
the nearly constant velocity model given earlier.

We measure the performance of the algorithm in two ways.
First, we compare the estimated number of targets to the true
number of targets, where the estimated number of targets at
time k is defined as

r̂k =
∞∑

r=0

r

∫

X
dXp(X, r|Z) ≈

n∑
p=1

wprp (42)

Second, we use the ground truth to calculate the number of
actual targets that are successfully tracked by the filter. For
each of the hypothesized target t, we have an estimate of the
target state as

x̂k
t =

∫
xtdx1 · · · xtp(x1 · · · xT |Z) ≈

n∑
p=1

ŵpXp,t (43)

where ŵp is normalized to sum to one over all particles that
contain partition t. The target estimates are then matched
up with the ground truth to give a measure of how many
true targets are being successfully tracked, which we denote
rtracked. Note this measure captures both targets that should
have been detected but weren’t as well as targets that were
successfully detected but then poorly tracked.

These two measures allow for determination of the number of
false targets initiated as well as the number of true targets not
under track. Figures 2 through 4 show the performance of the
algorithm as different parameters are varied.

5. CONCLUSIONS

This paper has presented a method for simultaneous detection
and tracking of multiple moving targets based on recursive
estimation of the joint multitarget probability density using
particle filtering methods. The importance density used by
the particle filter is adaptive and measurement directed. We
have shown the efficacy of the method using a collection of
ten real moving ground targets and simulated Rayleigh dis-
tributed thresholded measurements.
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Figure 2. Performance of the tracker as the death rate (DR)
parameter β is varied. Death rate of .005 performs best. The
drop seen in the curve at time 150-200 is a location where

targets cross, and often times one is removed when the death
rate is too high.
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Nationale Supérieure des Télécommunications, Paris (1999),
Scientific Research Labs of the Ford Motor Company, Dear-
born, Michigan (1993), Ecole Nationale Superieure des Tech-
niques Avancees (ENSTA), Ecole Superieure d’Electricite,
Paris (1990), and M.I.T. Lincoln Laboratory (1987 - 1989).

15



His research interests are in areas including: estimation and
detection, statistical communications, bioinformatics, signal
processing and image processing. He is a Fellow of the
Institute of Electrical and Electronics Engineers (IEEE), a
member of Tau Beta Pi, the American Statistical Association
(ASA) , the Society for Industrial and Applied Mathematics
(SIAM), and the US National Commission (Commission C)
of the International Union of Radio Science (URSI). He has
received the 1998 IEEE Signal Processing Society Meritori-
ous Service Award, the 1998 IEEE Signal Processing Society
Best Paper Award, and the IEEE Third Millenium Medal. In
2002 he was appointed IEEE Signal Processing Society Dis-
tinguished Lecturer.

16


