
Multitarget Tracking using the
Joint Multitarget Probability
Density

CHRIS KREUCHER

KEITH KASTELLA
General Dynamics Advanced Information Systems

ALFRED O. HERO, III, Fellow, IEEE
University of Michigan

This work addresses the problem of tracking multiple moving

targets by recursively estimating the joint multitarget probability

density (JMPD). Estimation of the JMPD is done in a Bayesian

framework and provides a method for tracking multiple targets

which allows nonlinear target motion and measurement to state

coupling as well as non-Gaussian target state densities. The JMPD

technique simultaneously estimates both the target states and the

number of targets in the surveillance region based on the set of

measurements made. We give an implementation of the JMPD

method based on particle filtering techniques and provide an

adaptive sampling scheme which explicitly models the multitarget

nature of the problem. We show that this implementation of the

JMPD technique provides a natural way to track a collection of

targets, is computationally tractable, and performs well under

difficult conditions such as target crossing, convoy movement, and

low measurement signal-to-noise ratio (SNR).
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I. INTRODUCTION

The problem of tracking a single maneuvering
target in a cluttered environment is a very well-studied
area [4]. Normally, the objective is to predict the state
of an object based on a set of noisy and ambiguous
measurements. There are wide range of applications in
which the target tracking problem arises, including
vehicle collision warning and avoidance [39, 17],
mobile robotics [50], human-computer interaction
[24], speaker localization [66], animal tracking [65],
tracking a person [11], and tracking a military target
such as a ship, aircraft, or tank [8].
The single target tracking problem can be

formulated and solved in a Bayesian setting by
representing the target state probabilistically and
incorporating statistical models for the sensing action
and the target state transition. Implementationally, the
standard tool is the ubiquitous Kalman filter [46],
applicable and optimal when the measurement and
state dynamics are Gaussian and linear.
In a more general setting where nonlinear target

motions, non-Gaussian densities, or nonlinear
measurement-to-target couplings are involved, more
sophisticated nonlinear filtering techniques are
necessary [3]. Standard nonlinear filtering techniques
involve modifications to the Kalman filter such as the
extended Kalman filter [26], the unscented Kalman
filter [27], and Gaussian sum approximations [1],
all of which relax some of the linearity assumptions
present in the Kalman filter. However, these
techniques do not accurately model all of the salient
features of the density, which limits their applicability
to scenarios where the target state posterior density
is well approximated by a multivariate Gaussian
density. To address this deficiency, others have
studied grid-based approaches [35, 37], which utilize
a discrete representation of the entire single target
density. In this setup, no assumptions on the form of
the density are required, so arbitrarily complicated
densities may be accommodated. However, fixed grid
approaches are computationally intractable except in
the case of very low state space dimensionality [7].
Recently, the interest of the tracking community

has turned to the set of Monte Carlo techniques
known as particle filtering [19, 59]. A particle filter
approximates a probability density on a set of discrete
points, where the points are chosen dynamically via
importance sampling. Particle filtering techniques
have the advantage that they provide computational
tractability [51], have provable convergence properties
[12], and are applicable under the most general of
circumstances, as there is no assumption made on
the form of the density [15]. Indeed, particle filter
based approaches have been used successfully in
areas where grid-based [13] or extended or unscented
Kalman filter-based [2, 44] filters have previously
been employed.
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The multitarget tracking problem has been
traditionally addressed with techniques such as
multiple hypothesis tracking (MHT) and joint
probabilistic data association (JPDA) [8, 5, 6]. Both
techniques work by translating a measurement of
the surveillance area into a set of detections by
thresholding. The detections are then either associated
with existing tracks, used to create new tracks, or
deemed false alarms. Typically, Kalman-filter type
algorithms are used to update the existing tracks
with the new measurements after association. The
challenge, of course, is to determine the correct
association between measurements and targets.
Others have approached the problem from a

fully Bayesian perspective. Stone [61] develops a
mathematical theory of multiple target tracking from
a Bayesian point of view. Srivistava, Miller [48], and
Kastella [32] did early work in this area. For the same
reasons as the single target case, fixed grid approaches
to multitarget tracking are very computationally
challenging.
Recently, some researchers have applied

particle filter based strategies to the problem of
multitarget tracking. In [22], Hue and Le Cadre use
a particle filter based on the probabilistic multiple
hypothesis tracker (PMHT) introduced by Streit [62].
Considerable attention is given to dealing with the
measurement-to-target association issue. Others have
done work which amounts to a blend between JPDA
and particle filtering [29, 10].
The BraMBLe [25] system, the independent

partition particle filter (IPPF) of Orton and Fitzgerald
[52] and the work of Maskell [45] consider multitarget
tracking via particle filtering from a purely Bayesian
perspective. Measurement-to-target association is not
done explicitly; it is implicit within the Bayesian
framework. This work has focused on a tractable
implementation of ideas in [61].
Mahler [41, 18, 49, 42] has developed an approach

to multitarget tracking based on random sets called
“finite-set statistics” (FISST). Recently, FISST
has been combined with particle filtering methods
for multitarget tracking [67, 57]. To date, these
implementations have been limited to small scale
problems for computational reasons. While developed
independently [31]—[33], the JMPD method can
be derived using the mathematics of random sets
and expressed in the FISST framework (see [49]).
As discussed there, JMPD can be traced back to
the event-averaged maximum likelihood estimation
(EAMLE) work of Kastella [31, 32] and many earlier
works, e.g. [28, 47, 56]. Although this paper is more
simply viewed as an application of the JMPD method
developed in [31]—[33], it can also be viewed as an
application of the FISST method in the setting of [49].
The main contribution of this paper is the

development of a multiple target tracker that
recursively estimates the entire joint multitarget

probability density (JMPD) using particle filtering
methods with adaptive sampling schemes. This is
an expansion of our preliminary work which was
published in [36]. In our formulation, we use one
particle per scenario. That is, a particle encodes a
hypothesis about the entire multitarget state–which
includes the number of targets and the state (position,
velocity, etc.) of each target. We demonstrate that
the particle filter implementation of JMPD provides
a natural way to track a collection of targets, is
computationally tractable, and performs well under
difficult conditions such as target crossing and
convoy movement. The method avoids the need to
create detections via thresholding and avoids directly
performing measurement-to-track association. The
measurement enters into the Bayesian formulation
through its likelihood, which allows raw sensor
measurements to be utilized. This feature allows the
tracker to perform well in the low signal-to-noise ratio
(SNR) regime.
These features distinguish the particle filter based

JMPD approach from traditional approaches of MHT
and JPDA as well as the approaches of Hue [22, 23]
and others [29, 55, 16], which require thresholded
measurements (detections) and a measurement-to-track
association procedure. Further, by estimating the
joint multitarget density rather than many single
target densities, our method explicitly models target
correlations. By utilizing an adaptive sampling scheme
that exploits independence when present, our method
benefits from computational advantages as in [52].
The rest of this paper is organized in the following

manner. In Section II, we introduce the notion of the
JMPD and show how the rules of Bayesian filtering
are applied to produce a recursive filtering procedure.
We give the particle filter based estimation of the
JMPD in Section III. We detail therein the adaptive
sampling strategy applied to automatically factor the
JMPD when targets are behaving independently, while
appropriately handling targets that are coupled. This
automatic factorization is key to the computational
tractability of this implementation. We furthermore
detail the permutation symmetry issue (present in all
multitarget tracking algoritms) and its manifestation
in our particle filter estimation of the JMPD. In
Section IV, we give simulation results detailing the
performance of the particle filter based multitarget
tracker proposed here. Finally, we conclude in
Section V with a brief summary and discussion.

II. JOINT MULTITARGET PROBABILITY DENSITY

In this section, we introduce the details of
using the JMPD for target tracking. The concept
of JMPD was discussed by Kastella [30] where
a method of tracking multiple targets that move
between fixed discrete cells on a line was presented.
We generalize the discussion to deal with targets
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that have N-dimensional continuous valued state
vectors and arbitrary kinematics. In the tracking
problems considered here, we are interested in
tracking the position (x,y) and velocity ( _x, _y) of
multiple targets. Each target is therefore described by
the four-dimensional state vector x= [x, _x,y, _y]. By
straightforward extension, the individual state vectors
of the targets may be augmented to include things like
target identification.
Recursive estimation of the JMPD provides a

means for tracking an unknown number of targets in a
Bayesian setting. The statistical model employed uses
the joint multitarget conditional probability density
p(xk1,x

k
2, : : : ,x

k
T¡1,x

k
T,T

k j Zk) as the probability density
for exactly T targets with states xk1,x

k
2, : : : ,x

k
T¡1,x

k
T

at time k based on a set of past observations Zk. In
general, the number of targets T is a variable to be
estimated simultaneously with the states of the T
targets. The observation set Zk refers to the collection
of measurements up to and including time k, i.e.,
Zk = fz1,z2, : : : ,zkg, where each of the zi may be a
single measurement or a vector of measurements made
at time i.
Each of the state vectors xt in the density

p(xk1,x
k
2, : : : ,x

k
T¡1,x

k
T,T

k j Zk) is a vector quantity
and may (for example) be of the form [x, _x,y, _y].
We refer to each of the T target state vectors
x1,x2, : : : ,xT¡1,xT as a partition of the multitarget
state X. For convenience, the density is written more
compactly in the traditional manner as p(Xk,Tk j Zk),
which implies that the state-vector X represents a
variable number of targets each possessing their own
state vector. As an illustration, some examples of the
sample space of p are

p(Ø, T = 0 j Z), the posterior probability density for
no targets in the surveillance volume,
p(x1, T = 1 j Z), the posterior probability density for
one target with state x1,
p(x1,x2, T = 2 j Z), the posterior probability density
for two targets with respective states x1 and x2,
p(x1,x2,x3, T = 3 j Z), the posterior probability density
for three targets with respective states x1,x2 and x3.

An important factor that is often overlooked in
multitarget tracking algorithms is that the JMPD
is symmetric under permutation of the target
indices. This symmetry is a fundamental property
of the JMPD which exists because of the physics
of the problem and not because of mathematical
construction. Specifically, the multitarget state X=
[x1,x2] and X= [x2,x1] refer to the same event,
namely that there are two targets in the surveillance
area–one with state x1 and one with state x2. This
is true regardless of the makeup of the single target
state vector. For example, the single target state vector
may include target ID or even a target serial number
and the permutation symmetry remains. Therefore,

all algorithms designed to implement the JMPD are
permutation invariant.
We adopt the view that likelihoods such as

p(z jX,T) and the JMPD p(X,T j Z) are conventional
Bayesian objects to be manipulated by the usual
rules of probability and statistics. Thus, a multitarget
system has state X= (x1, : : : ,xT) with probability
distribution p(x1, : : : ,xT,T j Z) where T is variable.
This can be viewed as a hybrid stochastic system
where the discrete random variable T governs the
dimensionality of X. The probability that there are
exactly T targets present in the system is given by the
marginal distribution

p(T j Z) =
Z
dx1 ¢ ¢ ¢dxTp(x1, : : : ,xT,T j Z): (1)

As a marginal distribution, this is normalized such
that 1X

T=0

p(T j Z) = 1: (2)

If targets are widely separated in the sensor’s
measurement space, each target’s measurements
can be uniquely associated with it, and the joint
multitarget posterior density approximately factors. In
this case, the problem may be treated as a collection
of single target problems. The characterizing feature
of multitarget tracking is that in general some of
the measurements have ambiguous associations, and
therefore the conditional density does not factor.
The temporal update of the posterior likelihood

proceeds according to the usual rules of Bayesian
filtering. The model of how the JMPD evolves over
time is given by p(Xk,Tk jXk¡1,Tk¡1) and is referred
to as the kinematic prior (KP). The KP describes
probabilistically how the state of the system evolves
over time. It includes models of target motion, target
birth and death, and any additional prior information
that may exist such as terrain and roadway maps. The
time-updated prediction density is computed via the
model update equation:

p(Xk,Tk j Zk¡1)

=
1X

Tk¡1=0

Z
dXk¡1p(Xk,Tk jXk¡1,Tk¡1)p(Xk¡1,Tk¡1 j Zk¡1):

(3)
This is a direct application of the Chapman-

Kolmogorov equation for a hybrid stochastic system.
This is equivalent to the set integral used in the FISST
formulation [18]. The time evolution of the JMPD
may simply be a collection of target kinematic models
or may involve target birth and death. In the case
where target identification is part of the state being
estimated, different kinematic models may be used for
different target types.
The measurement update equation uses Bayes’

rule to update the posterior density with a new
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measurement zk:

p(Xk,Tk j Zk) = p(z
k jXk,Tk)p(Xk,Tk j Zk¡1)

p(zk j Zk¡1) : (4)

This formulation allows JMPD to avoid altogether
the problem of measurement-to-track association.
There is no need to identify which target is associated
with which measurement because the Bayesian
framework keeps track of the entire joint multitarget
density. In fact, there is no need for thresholded
measurements (detections) to be used at all. A
tractable sensor model merely requires the ability
to compute the likelihood p(z jX,T) for each
measurement z received.

A. Motion Modeling

In the simulation studies of Section IV, we assume
that the number of targets is fixed but unknown and
model the target motion as linear and independent
for each target. The target motion of the simulation
was taken from recorded vehicle data. We found that a
nearly constant velocity model was adequate for these
simulation studies, with the state for target t denoted
xt = (xt, _xt,yt, _yt) with discrete time transitions with
period ¿ and indexed by k as

xkt = Fx
k¡1
t +wkt (5)

where

F=

0BBB@
1 ¿ 0 0

0 1 0 0

0 0 1 ¿

0 0 0 1

1CCCA (6)

wkt is 0-mean Gaussian noise with covariance Q=
diag(20, 0:2,20, 0:2), which was selected based on
an empirical fit to the data.

B. Sensor Modeling

In order to implement Bayes’ formula (4), we must
compute the measurement likelihood p(z jX,T) (the
time index is suppressed here to lighten notation).
There are two approaches to modeling the likelihood,
which we refer to as the “associated measurement”
model and the “association-free” model. In both
models, the sensor produces a sequence of scans
at discrete instants in time. Each scan is a set of
measurements produced at the same instant. The
difference between the models lies in the structure of
the scans.
In the associated measurement model, an

observation vector consists of M measurements,
denoted z= (z1, : : : ,zM). z is composed of threshold
exceedances, i.e., valid detections and false alarms.
Each valid measurement is generated by a single
target and is related (possibly nonlinearly) to the
target state. False alarms have a known distribution

independent of the targets (usually taken as uniform
over the observation space) and the targets have
known detection probability Pd (usually constant
for all targets). The origin of each measurement is
unknown. If measurement m is generated by target
t, then it is a realization of the random process zm »
Ht(xt,wt).
In its usual formulation, the associated

measurement model precludes the possibility of two
different targets contributing to a single measurement.
This model predominates most current tracking,
data fusion, and sensor management work. The
practical advantage of this model is that it breaks
the tracking problem into two disjoint subproblems:
data association and filtering. The filtering problem
is usually treated using some kind of Kalman filter.
The disadvantages are a restricted sensor model and
the difficult combinatorial problem of associating
observations to filters. The associated measurement
model was initially conceived in order to cast the
problem into a form in which the Kalman filter can
be applied, which is understandable in light of the
enormous success the Kalman filter has enjoyed.
In contrast, nonlinear filtering methods allow much

greater flexibility regarding the way measurements
are modeled. As a result, we are free to employ
an association-free sensor model in the work
presented here. This type of model has been used
in track-before-detect algorithms, in the “Unified
Data Fusion” work of Stone, et al. [61] and in
the grid-based sensor management work of [30].
There are several advantages to the association-free
method. First, it requires less idealization of the
sensor physics and can readily accommodate
issues such as merged measurements, sidelobe
interference amongst targets and velocity aliasing.
Second, it eliminates the combinatorial bottleneck
of the associated-measurement approach. Finally,
it simplifies the processing of unthresholded
measurements to enable improved tracking at lower
target SNR.
As motivation, we consider a few of the sensor

types encountered in tracking and surveillance
applications. First, an imaging sensor may observe
a collection of unresolved point objects. The imager
returns a collection of 1- or 2-dimensional pixel
intensities. The output of each pixel is related to
the integrated photon count in that pixel which is
in turn determined by the background rate and how
many targets are present within the pixel during
the integration interval, and their locations within
the pixel. This is represented numerically as either
a positive integer or real number. Depending on
the nature of the optics and their impulse response
function, one or more pixels may respond to a target.
Furthermore, multiple targets can contribute to the
output of a single pixel, violating the assumptions of
the associated measurement model.
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Another commonly used sensor type is radar.
In a ground moving target indicator (GMTI) radar,
a collection of pulses is emitted, their returns
are collected and integrated over some coherent
processing interval (CPI) [60]. The output of
successive CPIs may also be averaged noncoherently.
During the integration interval, the radar antenna is
directed at some fixed or slowly-varying bearing.
The integrated pulse data is processed to obtain the
reflectivity as a function of range and range-rate at
that average bearing. Depending on the nature of
the integration process, the return amplitude may be
envelope detected or it may be available in complex
form. Given the ubiquity of modern digital signal
processing, radar data is usually available somewhere
within the radar system as an array indexed by
discrete range, range-rate, and bearing values.
With this as background motivation, we present the

association-free model. We compute the measurement
likelihood p(z jX,T), which describes how sensor
output depends on the state of all of the targets
in the surveillance region. A sensor scan consists
of M pixels, and a measurement z consists of the
pixel output vector z= [z1, : : : ,zM], where zi is the
output of pixel i. In general, zi can be an integer,
real, or complex valued scalar, a vector or even
a matrix, depending on the sensor. If the data are
thresholded, then each zi will be either a 0 or 1. Note
that for thresholded data, z consists of both threshold
exceedances and nonexceedances. The failure to
detect a target at a given location can have as great
an impact on the posterior distribution as a detection.
We model pixel measurements as conditionally

independent so

p(z jX,T) =
Y
i

p(zi jX,T): (7)

Independence between the measurements given the
state is often approximately true, and modeling as
such often provides a nice simplification. However,
conditional independence amongst the measurements
is not a necessary part of this framework. Occasions
where the physics of the situation imply sensor returns
are dependent warrant a more general sensor model.
This will not change the framework given here, only
the implementation of the likelihood p(z jX,T).
Let X= [x1, : : : ,xT] and let Âi(xt) denote the

indicator function for pixel i, defined as Âi(xt) = 1
when a target in state xt projects into sensor pixel i
(i.e., couples to pixel i) and Âi(xt) = 0 when it does
not. Observe a pixel can couple to multiple targets and
single target can contribute to the output of multiple
pixels, say, by coupling through sidelobe responses.
The indicator function for the joint multitarget state is
constructed as the logical disjunction

Âi(X) =
T_
t=1

Âi(xt): (8)

The set of pixels that couple to X is

iX = fi j Âi(X) = 1g: (9)

For the pixels that do not couple to X, the
measurements are characterized by the background
distribution, denoted p0(zi). With this, (7) becomes

p(z jX,T) =
Y
i2iX
p(zi jX,T)

Y
i =2iX
p0(zi)/

Y
i2iX

p(zi jX,T)
p0(zi)

:

(10)

Equation (10) allows for fairly general modeling
of a pixelized sensor response to a collection of
targets including nonlinear effects due to multiple
targets contributing to a single pixel. One limitation
is that aggregations of targets only couple to the
union of pixels that the individual targets couple
to. If a pair of targets have some type of nonlinear
coupling that results in a contribution to a pixel
that they do not couple to individually, this is not
captured in the model. This is likely to be a very
small effect in most situations, so we choose to ignore
it here.
We further idealize the sensor as having a box-car

resolution cell in position coordinates. We assume
that the sensor scans a fixed rectangular region
consisting of Nx£Ny contiguous pixels. The x- and
y- ground-plane projection of each pixel is ¢x and
¢y. The sensor response within pixel i is uniform for
targets in i and vanishes for targets outside pixel i. It
is convenient to define the occupation number ni(X)
for pixel i as the number of targets in X that lie in i.
The single target SNR, assumed constant across all
targets, is denoted ¸. We assume that when multiple
targets lie within the same pixel their amplitudes
add noncoherently (this will be an accurate model
for unresolved optical targets and radar targets not
moving as a rigid body). Then the effective SNR
when there are n targets in a pixel is ¸n = n¸ and
we may use pn(zi) to denote the pixel measurement
distribution (note that the background distribution is
obtained by setting n= 0).
With these modeling assumptions, the

measurement distribution in pixel i depends only on
its occupation number and (10) becomes

p(z jX,T)/
Y
i2iX

pni(X)(zi)

p0(zi)
: (11)

To complete the specification of the sensor model,
we must give its dependence on SNR. Many models
are plausible, depending on the detailed nature of the
sensor. We have elected to use Rayleigh-distributed
measurements. This distribution corresponds to
envelope-detected signals under a Gaussian model,
and has been used for example to model interfering
targets in a monopulse radar system [9, 64] and
to model clutter and target returns in turbulent
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environments [20]. Rayleigh models are also often
used for diffuse fading channels. In the unthresholded
case, this is

pn(z) =
z

1+ n¸
exp

µ
¡ z2

2(1+ n¸)

¶
: (12)

When the tracker only has access only to
thresholded measurements, we use a constant
false-alarm rate (CFAR) model for the sensor. If the
background false alarm rate is set at Pf , then the
detection probability when there are n targets in a
pixel is

Pd,n = P
1=(1+n¸)
f : (13)

This extends the usual relation Pd = P
1=(1+¸)
f for

thresholded Rayleigh random variables at SNR ¸ [5].

III. PARTICLE FILTER IMPLEMENTATION OF JMPD

We now turn to the development of a particle
filter approximation to the JMPD. Even for modest
problems, the sample space of Xk is large since it
contains all possible configurations of state vectors xi
for all possible values of T. Earlier implementations
of JMPD given by Kastella [30] approximated the
density by discretizing on a grid. The computational
burden in this scenario makes evaluating realistic
problems intractable, even when using the simple
model of targets moving between discrete locations
in one-dimension. In fact, for a fixed approximation
error, the number of grid cells needed grows as LT,
where L is the number of discrete locations the targets
may occupy and T is the number of targets.
Thus, to estimate the JMPD in a computationally

tractable manner, a more sophisticated approximation
method is required. We find that a particle filter based
implementation of JMPD breaks the computational
logjam and allows us to investigate more realistic
problems.

A. Single Target Particle Filter

Before detailing the particle filter implementation
of JMPD, we first briefly review standard single
target particle filtering. Particle filtering is a method
of approximately solving the prediction and update
equations by simulation [3, 19], where samples from
the target density are used to represent the density and
are propagated through time.
To implement a single target particle filter,

the single target density of interest, p(x j Z), is
approximated by a set of Npart weighted samples
(particles):

p(x j Z)¼
NpartX
p=1

wp±D(x¡ xp) (14)

where ±D represents the usual Dirac delta function.

TABLE I
SIR Single Target Particle Filter

1) For each particle p, p= 1, : : : ,Npart,

a) Sample xkp » q(xk j xk¡1,zk) = p(xk j xk¡1p )

2) Compute wkp = w
k¡1
p ¤p(z j xkp) for each p

3) Normalize wp to sum to 1, wpÃ wp=
PNparts

i=1 wi.

4) Resample Npart particles with replacement from xp based
on the distribution defined by wp

The model update (3) and the measurement
update (4) are simulated by the following three-step
recursion, summarized in Table I. First, the
particle locations at time k are generated using the
particle locations xp at time k¡ 1 and the current
measurements zk by sampling from an importance
density, denoted q(xk j xk¡1,zk). The design of the
importance density is a well-studied area [15], as the
choice of the importance density can have a dramatic
effect of the efficiency of the particle filter algorithm.
It is known that the optimal importance density (OID)
is given by p(xk j xk¡1,zk), but this density is typically
prohibitively difficult to sample from. In practice,
oftentimes the importance density is chosen just to
be the KP p(xk j xk¡1). However, more sophisticated
choices of importance density lead to better results
for a fixed number of particles. As we will see in the
multitarget case, approximating the OID (rather than
simply using the KP) becomes crucial as problem
dimension increases.
Second, particle weights are updated according to

the weight equation, which involves the likelihood, the
kinematic model, and the importance density [3]

wkp = w
k¡1
p

p(zk j xkp)p(xkp j xk¡1p )

q(xkp j xk¡1p ,zk)
: (15)

When using the KP as the importance density, the
weight equation reduces to wkp = w

k¡1
p ¤p(zk j xkp).

Finally, a resampling step is used to prevent
particle degeneracy. Without resampling, the variance
of the particle weights increases with time, yielding a
single particle with all the weight after a small number
of iterations [14]. Resampling may be done on a fixed
schedule or based on the weight variance.
The particle filter algorithm that uses the KP as the

importance density and resamples at each time step is
called sampling importance resampling (SIR) in the
literature.

B. Multitarget Particle Filtering

To implement the JMPD recursions via a particle
filter, we similarly approximate the joint multitarget
probability density p(X,T j Z) by a set of Npart
weighted samples. The multitarget state vector for T
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TABLE II
SIR Multitarget Particle Filter

1) For each particle p, p= 1, : : : ,Npart,

a) For each partition t, t = 1, : : : ,Tp,

i) Sample Xkp,t » q(Xk ,Tk jXk¡1,Tk¡1,zk) =
p(Xkp,t jXk¡1p,t )

2) Compute wkp = w
k¡1
p ¤p(z j Xp) for each p

3) Normalize wp to sum to 1, wpÃ wp=
PNparts

i=1 wi.

4) Resample Npart particles with replacement from Xp
based on wp

targets is written as

X= [x1,x2, : : : ,xT¡1,xT]: (16)

The particle state vector for Tp targets is

Xp = [xp,1,xp,2, : : :xp,Tp] (17)

where Tp can be any nonnegative integer. We refer to
xp,j as partition j of particle p. With ±D denoting the
Dirac delta, we define

±(X¡Xp) =
½
0 T 6= Tp
±D(X¡Xp) otherwise

: (18)

Then the particle filter approximation to the JMPD
is given by a set of particles Xp and corresponding
weights wp as

p(X,T j Z)¼
NpartX
p=1

wp±(X¡Xp) (19)

where
P
wp = 1.

Different particles in the approximation may
correspond to different estimates of the number Tp
of targets in the surveillance region. In practice, the
maximum number of targets a particle may track is
truncated at some large finite number Tmax.
The JMPD p(X,T j Z) is defined for all possible

numbers of targets, T = 0,1,2, : : :. As each of the
particles Xp, p= 1 : : :Npart is a sample drawn from the
JMPD p(X,T j Z), a particle Xp may have 0,1,2, : : :
partitions, each partition corresponding to a different
target. Note that it is possible to have two or more
targets in the same state. We have denoted the number
of partitions in the pth particle Xp by Tp, where Tp
may be different for different Xp. Since a partition
corresponds to a target, the number of partitions that a
particle has is that particle’s estimate of the number of
targets in the surveillance area.
With these definitions the SIR particle filter

extends directly to JMPD filtering, as shown in
Table II. This simply proposes new particles at time
k using the particles at time k¡ 1 and the target
kinematics model (5) while (11) is used in the weight
update.
Again, since the model of target kinematics

p(Xk jXk¡1) is used to propose particles, the weight

equation (15) simplifies to become the measurement
likelihood p(z jXp).
Targets entering or leaving the surveillance region

can be accounted for by modifying the proposal
density to incorporate a probability that the proposed
particle Xkp has either fewer targets or more targets
then Xk¡1p . For example, assume a per target death
rate of ®, which may be spatially varying to account
for the fact that targets exit along the boundaries of
the surveillance region. Then when proposing new
particles, with probability ®, partitions are removed
from proposed particle p and the updated number of
targets in this particle Tkp is correspondingly reduced
from Tk¡1p . In Table II, step 1a is modified so that
each partition is proposed forward with probability
1¡®, rather than with probability 1.
Further, assume a birth rate ¯. Then when

proposing new particles, with probability ¯, a new
target is added to particle p. The location of the new
target may be random, or more realistically chosen
along the perimeter of the surveillance area. In this
case, the number of targets represented by this particle
is updated to Tkp = T

k¡1
p +1. Again, this modifies step

1a in Table II, in that one extra partition is proposed
to exist in particle p at time k with probability ¯. This
target birth/death model is similar to other models,
e.g. see [43] and [58], that have been proposed for
multiple target tracking.
More complicated models of target birth and

death (e.g. multiple targets arriving simultaneously,
or targets arriving when existing targets are in certain
strategically important places, etc.) are permissible
under this framework but are not considered here.

C. Multitarget Particle Proposal

Using the KP as the importance density has
the benefit that it is simple to implement and is
computationally inexpensive on a per particle basis.
As we will see later, this computational efficiency is
erased by the fact that a very large number of particles
are required using this importance density. One
obvious drawback is that the KP does not explicitly
take advantage of the fact that the state vector in fact
represents many targets. Targets that are far apart in
measurement space behave independently and should
be treated as such. A second drawback, common to
many particle filtering applications, is that the current
measurements are not used when proposing new
particles. These two considerations taken together
result in an inefficient use of particles and therefore
require large numbers of particles to successfully
track.
To overcome these deficiencies, we have employed

alternative particle proposal techniques which bias
the proposal process towards the measurements
and allow for factorization of the target state when
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permissible. These strategies propose each partition
(target) in a particle separately, and form new particles
as the combination of the proposed partitions. We
describe two methods here, the independent partitions
(IP) method of [52] and the coupled partitions (CP)
method. The basic idea of both CP and IP is to
construct particle proposals at the partition level,
incorporating the measurements so as to bias the
proposal towards the optimal importance density.
We show that each has benefits and drawbacks
and propose an adaptive partition (AP) method
which automatically switches between the two as
appropriate.
The permutation symmetry of the JMPD must be

carefully accounted for when using these advanced
sampling schemes. The CP method proposes particles
in a permutation invariant manner, however it has
the drawback of being computationally demanding.
When used on all partitions individually, the IP
method is not permutation invariant. Our solution is
to perform an analysis of the particle set to determine
which partitions require the CP algorithm, and which
partitions may be proposed via the IP method. This
analysis leads to the AP method of proposal which is
permutation invariant.
1) IP Method: The IP method given by Orton

[52] is a convenient way to propose particles when
part or all of the joint multitarget density factors. The
IP method proposes a new partition independently as
follows. For a partition t, each particle at time k¡ 1
has it’s tth partition proposed via the KP and weighted
by the measurements. From this set of Npart weighted
estimates of the state of the tth target, we select Npart
samples with replacement to form the tth partition of
the particles at time k.
Note that the importance density q is no longer

simply the model of target kinematics p(Xk,Tk jXk¡1,
Tk¡1) as in the SIR multitarget particle filter.
Therefore, the weight given by the weight (15) does
not simply become the likelihood p(zk jXk,Tk). There
is a bias added which prefers to select partitions
in accordance with the likelihood of the partition.
To account for this sampling scheme, the biases
corresponding to each particle for each target bp,t
are retained to use in conjunction with the likelihood
p(zk jXk,Tk) when computing particle weights. This is
summarized in Table III.
It is important to carefully account for the

permutation symmetry issue discussed in Section III
here. The IP method makes the critical assumption
that partition t in each particle corresponds to the
same target. Therefore, the partitions in each particle
must be identically positioned before this method
is applied. If IP is applied to particles that have
different orderings of partitions, multiple targets
will be grouped together within the same partition
and erroneously used to propose the location of a
single target. However, when this assumption of

TABLE III
Independent Partition Particle Filter

1) For each partition, t = 1 ¢ ¢ ¢Tmax,
a) Propose partition t via Independent Partition
Subroutine

2) Compute wkp = w
k¡1
p ¤ p(zjXp)QTp

t=1
bp,t

Independent Partition Subroutine for Target t:

1) For each particle p= 1, : : : ,Npart,

a) Sample X¤p,t » p(Xkp,t j Xk¡1p,t )

b) Compute wp = p(z j X¤p,t)
2) Normalize wp to sum to 1, wpÃ wp=

PNparts
i=1 wi.

3) For each particle p= 1, : : : ,Npart,

a) Sample an index j from the distribution defined by w

b) Set Xp,t =X
¤
j,t

c) Retain bias of sample, bp,t = wj

target/partition correspondence is valid, IP is an
effective sampling strategy because it combines
results for each partition across particles, resulting in
improved numerical efficiency.
In the case of well-separated targets, this

method allows many targets to be tracked with the
same number of particles needed to track a single
target. Indeed, as mentioned earlier, in the case
of well-separated targets, the multitarget tracking
problem breaks down into many single-target
problems. The IP method is useful for just this case,
as it allows the targets to be treated independently
when their relative spacing deems that appropriate.
Note, however, that this method is not applicable
when there is any measurement-to-target association
ambiguity. Therefore, when targets are close together
in sensor space, an alternative method must be used.
2) CP Proposal Method: When the posterior

distributions on target position begin to overlap, we
say that the corresponding partitions are coupled. In
these instances, the IP method is no longer applicable,
and another method of particle proposal such as CP
must be used. An alternative method would be to use
the IP strategy on groups of partitions as is suggested
in [52].
We apply the coupled partitions method as follows.

To propose partition t of particle p, CP proposes
R possible realizations of the future state using the
KP. The R proposed futures are then given weights
according to the current measurements and a single
representative is selected. This process is repeated
for each particle until the tth partition for all particles
has been formed. This can interpreted as an auxiliary
particle filter [53] where the multiplicity R plays the
role of the auxiliary variable. As in the IP method, the
final particle weights must be adjusted for this biased
sampling. This is summarized in Table IV.
This algorithm is a modified version of the

traditional SIR technique that operates on partitions
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TABLE IV
Coupled Partition Particle Filter

1) For each partition, t= 1 ¢ ¢ ¢Tmax
a) Propose partition t via Coupled Partition Subroutine

2) Compute wkp = w
k¡1
p ¤ p(zjXp)QTp

t=1
bp,t

Coupled Partition Subroutine for Target t

1) For each particle p= 1, : : : ,Npart,

a) For each proposal r = 1, : : : ,R

i) Sample X¤p,t(r)» p(Xkp,t j Xk¡1p,t )

ii) Compute wr = p(z j X¤p,t(r))
b) Normalize wr to sum to 1, wrÃ wr=

PR

i=1wi.

c) Sample an index j from the distribution defined by w
d) Set Xp,t =X

¤
p,t(j)

e) Retain bias of sample, bp,t = wj

individually. It improves tracking performance over
SIR at the expense of additional computations.
Again, target birth and death may be accounted for

in the CP/IP algorithms by choosing some particles
to have less or more partitions when proposing. As
discussed after Table II, a model of how targets arrive
and depart in the particular setting would be used to
choose birth and death rates.
3) Adaptive Particle Proposal Method: In order

to mitigate the problem of additional computational
cost of the CP method, and the problems with the IP
method when targets are close together, we propose
a hybrid solution, called the AP method. The AP
method again considers each partition separately.
Those partitions that are sufficiently well separated
according to a given metric (see below) from all other
partitions are treated as independent and proposed
using the IP method. When targets are not sufficiently
distant, the CP method is used.
To determine when targets are sufficiently

separated, we threshold based on distance in sensor
space between the estimated state of the ith partition
and the jth partition. Denote by x̂i the estimated
x and y positions of the ith partition (30). Notice
that only the spatial states are used (i.e., velocities
are neglected), as these are the states that measure
distance in sensor space for our model. We have
computed the distance between two partitions using
a Euclidian metric between the estimated centers,
and the Mahalanobis metric (20), where §̂j is the
covariance associated with the estimate of the jth
partition (31)

r2 = (x̂i¡ x̂j)0§̂¡1j (x̂i¡ x̂j): (20)

We have additionally used a nearest neighbor type
criteria, where partitions are considered coupled if
any sample from partition i is closer to the center
of partition j than any sample from partition j. In
practice, it is found that simply using the Euclidian
distance between estimated states is sufficient and less

TABLE V
Adaptive Proposal Method

1) For each partition t= 1 : Tmax
a) d(t) = minj 6=t kx̂t ¡ x̂jk
b) if d(t)> ¿

Propose partition t using IP method
c) else

Propose partition t using CP method

2) For each particle p= 1, : : : ,Npart, w
k
p = w

k¡1
p ¤ p(zjXp)QTp

t=1
bp,t

computationally burdensome. The adaptive proposal
method is summarized in Table V.

D. Permutation Symmetry and Partition Sorting

As discussed throughout the preceding sections,
the permutation symmetry associated with the JMPD
noted in Section II is directly inherited by the particle
filter representation of the JMPD. Each particle
contains many partitions (as many as the number of
targets it estimates exist in the surveillance region)
and the permutation symmetry of JMPD is visible
through the fact that the relative ordering of targets
may change from particle to particle. We refer to the
permutation symmetry in this context as partition
swapping.
The fact that partitions are in different orders from

particle to particle is of no consequence when the
object of interest is an estimate of the joint multitarget
density. Each particle contributes the correct amount
of mass in the correct location to the multitarget
density irrespective of the ordering of its partitions.
However, the IP scheme requires that particles

be identically ordered. Furthermore, estimating the
multitarget states from the particle filter representation
of JMPD must also be done in a way that is invariant
to permutations of the particles. Therefore, before
estimating target states, we permute the particles so
that each particle has the targets in the same order.
We use the K-means [21] algorithm to cluster the
partitions of each particle, where the optimization is
done across permutations of the particles. In practice,
this is a very light computational burden. First, those
partitions that are not coupled are already consistently
ordered and need not be involved in the clustering
procedure. Second, since this ordering occurs at each
time step, those partitions that are coupled are nearly
ordered already, and so one iteration of the K-means
algorithm is enough to find the best permutation.
The details of the K-means algorithm are as

follows. First, we state the notion of permutation
symmetry precisely. Suppose a particle has Tp
partitions labeled t= 1 ¢ ¢ ¢Tp. A permutation ¼p is a
reshuffling of the labels, ¼p : i! ¼p(i). So a particle
defined

Xp = [xp,1,xp,2, : : : ,xp,Tp]: (21)
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TABLE VI
K-Means Algorithm Optimizing Over Partition Orderings

1) Initialize with ¼ = current ordering of partitions
2) Compute X̄t(¼) for t= 1 ¢ ¢ ¢Tp using (23)
3) For each particle p, permute the particle (update ¼p) to

yield

¼pÃ argmin¼p

TpX
t=1

(Xp,¼p(t) ¡ X̄t(¼p))
2

4) If no particles have changed permutation from ¼, quit.
Otherwise set ¼ = (¼1, : : : ,¼p, : : : ,¼Npart ) and go to 2

Under the permutation ¼p is reordered to

Xp = [xp,¼p(1),xp,¼p(2), : : : ,xp,¼p(Tp)]: (22)

Denote by ¼ a set of permutations for each
particle, ¼p,p= 1 ¢ ¢ ¢Npart. We define the mean of the
tth partition under the permutation ¼ as

X̄t(¼) =
NpartsX
p=1

wpXp,¼p(t) (23)

where it is understood that the summation is taken
over only those particles that have partition t. Further,
define the Â2 statistic

Â2(¼) =
NpartsX
p=1

TpX
t=1

wp(Xp,¼p(t)¡ X̄t(¼p))2: (24)

To reorder the particles, the goal is to find the set
of permutations ¼ that minimize Â2, i.e.,

¼̂ =min
¼
Â2(¼): (25)

The K-means algorithm is a well-known method
of approximately solving problems of this type. An
initial permutation ¼ is assumed and perturbations
about that value are made to descend and find the
locally optimal ¼. The algorithm is given in Table VI.

E. Estimation

Estimates of various interesting quantities may be
easily made using the particles.
Equation (1) gives the expression for computing

the probability that there are exactly T targets in the
surveillance volume from the JMPD. To extract this
from the particle filter approximation, first define the
indicator variable Ip(T) for p= 1 ¢ ¢ ¢Nparts,

Ip(T) =
½
1 if Tp = T

0 otherwise
: (26)

Then the probability of T targets in the surveillance
volume p(T j Z) is approximated by

p(T j Z)¼
NpartX
p=1

Ip(T)wp: (27)

The estimate of the probability that there are T
targets in the surveillance volume is the sum of the
weights of the particles that have T partitions. Note
that the particle weights wp are normalized to sum to
unity for all equations given in this section.
To compute the estimated state and covariance of

target i, we first define a second indicator variable
Ĩp(i) that indicates if particle p has a partition
corresponding to target i. This is necessary as each
particle is a sample drawn from the JMPD and hence
may have a different number of partitions (targets):

Ĩp(i) =
½
1 if partition i exists in particle p

0 otherwise
:

(28)

Note that the sorting procedure of Section IIID has
identified an ordering of particles to allow Ĩp(i) to be
determined. Furthermore, we define the normalized
weights to be

ŵp =
wpĨp(i)PNpart
l=1 Ĩl(i)wl

: (29)

So ŵp is the relative weight of particle p,
with respect to all particles containing a partition
corresponding to target i. Then the estimate of the
state of target i is given by

X̂(i) = E[X(i)] =
NpartX
p=1

ŵpXp,i (30)

which is simply the weighted summation of the
position estimates from those particles that are
tracking target i. The covariance is given similarly as

¤̂(i) =
NpartX
p=1

ŵp(Xp,i¡ X̂(i))(Xp,i¡ X̂(i))0: (31)

The indicator function Ĩp(i) ensures that the
summations in (30) and (31) are taken over only those
particles that are tracking target i. The permutation
symmetry issue mentioned earlier comes to the
forefront here. Notice that without a clustering on the
partitions, it is not necessarily true that partition i of
particle j is tracking the same target that partition i of
particle j+1 is tracking. Therefore, before evaluation
of (30) or (31), the clustering procedure discussed in
Section IIID is performed.

F. Resampling

In the traditional method of resampling, after each
measurement update, Npart particles are selected with
replacement from Xp based upon the particle weights
wp. The result is a set of Npart particles that have
uniform weight which approximate the multitarget
density p(X,T j Z). Particles that do not correspond to
measurements are eliminated; in particular, particles
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whose Tp value is not supported by measurements
(too many or too few targets) are selected with low
probability.
The particular resampling that was used in this

work is systematic resampling [3]. This resampling
strategy is easily implemented, runs in order Nparts, is
unbiased, and minimizes the Monte Carlo variance.
Many other resampling schemes and modifications
are presented in the literature [15]. Of these methods,
we have found that adaptively choosing at which
time steps to resample [40] based on the number of
effective particles leads to improved performance
while reducing compute time. All results presented
herein use the method of [40] to determine which
times to resample and use systematic resampling
[3] to perform resampling. We have also found that
Markov chain Monte Carlo (McMC) moves using
a Metropolis-Hastings scheme [15] leads to slightly
improved performance in our application.

IV. SIMULATION RESULTS

A. Introduction

We illustrate the performance of our multitarget
tracking scheme by considering the following model
scenario. An example 3-target episode is given in
Fig. 1.
The ground targets used in this simulation move

in a 5000 m£5000 m surveillance area. Targets
are modeled using the four-dimensional state vector
x= [x, _x,y, _y]. The target motion in the simulation
is taken from a set of recorded data based on GPS
measurements of vehicle positions collected as part
of a battle training exercise at the Army’s National
Training Center. This battle simulation provides
a large number of real vehicles, including army
HMMWVs, armored personnel carriers, tanks, and
the like. The vehicles follow a prescribed trajectory
over natural terrain. Based on an empirical fit to the
data, we found that a nearly constant velocity model
(see (5)) was adequate to model the behavior of the
vehicles for these simulation studies and is therefore
used in all experimental results presented herein. In
another study [38], we have found that a multiple
model particle filter with modes corresponding to
nearly constant velocity, rapid acceleration, and
stationarity provides more efficient filtering.
We utilize the idealized sensor described in

Section IIB. The sensor scans a fixed rectangular
region of 50£ 50 pixels, where each pixel represents a
100 m£ 100 m area on the ground plane. The sensor
returns Rayleigh-distributed measurements in each
pixel, depending on the number of targets that occupy
the pixel. Unthresholded measurements return energy
according to (12) while thresholded measurements
behave according to (13).
We present the results of 5 simulation studies here.

First, in Section IVB, we illustrate the benefit of the

Fig. 1. Schematic showing motion of three of the ten targets in
the simulation scenario. Target paths are indicated by lines,

direction of travel by arrows. There are two instances where target
paths cross (i.e., are at same position at same time).

adaptive proposal scheme detailed in Section IIIC.
We contrast the performance of the CP, IP, and
AP methods in two scenarios, one where targets
are always well separated and one more realistic
scenario where targets frequently interact. Second,
in Section IVC, we quantitatively evaluate the
performance difference when using unthresholded
measurements versus thresholded measurements.
Third, in Section IVD, we evaluate the ability of the
tracker to determine the number of targets when the
number is initially unknown. Fourth, in Section IVE,
we investigate the computational burden of the
algorithm and how it scales with target number. Fifth,
in Section IVF, we illustrate partition swapping when
two targets cross. The scenario is contrasted with and
without partition sorting as described in Section IIID.

B. Adaptive Proposal Results

In Fig. 2, we compare the performance of the
IP (Table III), CP (Table IV), and AP (Table V)
proposal schemes presented here with that of the
traditional scheme of sampling from the KP (Table II),
in terms of RMS tracking error. In this example we
use 3 targets with motion taken from real recorded
trajectories. The targets remain close in sensor space
for about 50% of the time. As this simulation is
designed to exhibit tracking performance, the filter
is initialized with the correct number of targets and
the states distributed in a Gaussian manner about the
true state. Thresholded measurements with Pd = 0:5
are used and the SNR parameter ¸ is varied from 1
to 21.
Due to partition swapping, the IP method is

inappropriate during target crossings and hence the
tracker-only IP has poor performance. The CP method
makes no assumption about the independence of the
targets and therefore performs very well, although
at significantly higher computational cost. Most
importantly, the adaptive method, which uses IP on
partitions that are independent and CP otherwise,
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Fig. 2. Performance of CP, IP, and AP schemes in comparison to
simply using KP. Performance is measured in terms of RMS
position error in meters. For this simulation, we have extracted
three targets from our large database of real recorded target

trajectories. Targets were chosen so that they spent approximately
one-half of the simulation in close proximity. IP algorithm used
alone is inappropriate during target crossings and so performs

poorly here. CP algorithm is always appropriate, but
computationally demanding. AP algorithm adaptively switches
between IP and CP resulting in good performance at reduced

computation.

TABLE VII
FLOPS for KP, CP, IP, AP Methods

Method Flops

Coupled Partition 1:25e+8
Independent Partition 6:74e+6
Adaptive Partition 5:48e+7
Kinematic Prior 6:32e+6

performs nearly as well as the CP method itself.
AP achieves approximately a 50% reduction in
computational burden (measured by floating point
operations (FLOPS)) as compared with the CP method
alone (see Table VII). For this simulation, we have
extracted 3 targets from our large database of real
recorded target trajectories. The targets were chosen
so that they spent approximately one-half of the
simulation in close proximity. The AP algorithm
correctly chooses to use IP during the half of the
simulation where targets are well separated and CP
during the other half, which results in the stated
reduction in computation.
As a means of directly comparing the IP and

CP methods with the KP, we construct an alternate
model problem. We consider five well-separated
targets, and look at the performance in Fig. 3. For
the purposes of this model problem, we restrict target
motion to be linear, measurement-to-state coupling
to be linear, and the noise processes to be Gaussian.
We use the motion model given by (5) both for the
simulation of target motion and in the filter. In this
case we can use the Kalman filter as a bound. It is of
course not necessary to make these assumptions for
the particle filter. In fact, the strength of the particle

Fig. 3. Performance of CP and IP proposal schemes, in
comparison to sampling from the KP. For purposes of this
example, we consider five well-separated targets with linear

motion and linear state-to-measurement coupling. Therefore, for
the purposes of this simple example, the Kalman filter is optimal

and is shown as a performance bound.

filter (and nonlinear filtering in general) approach is
that no linearity/Gaussianity assumptions are needed.
However, we have restricted the problem in this
manner here so that we can compute an asymptotic
performance bound and show that the particle filter
implementation indeed reaches the bound.
More general performance bounds, which apply to

the discrete time nonlinear filtering problems such as
that of Fig. 2 are available in the literature [63, 54].
However, bounds require knowledge of the true target
kinematics p(Xk,Tk jXk¡1,Tk¡1) which we do not
have. As stated earlier, the simulations in this paper
involve real recorded target motion and hence we do
not have the kinematic model precisely.
The CP method is shown with a particular choice

of R, R = 10. We see that the CP method reduces
the number of particles required (as compared with
KP) by a factor of approximately 100. It was seen
earlier in Table VII that the computational increase
is approximately a factor of 20. This tradeoff makes
CP a more efficient strategy than simply increasing
the number of particles. It can be seen that the IP
technique reduces the number of particles needed
by between two and three orders of magnitude as
compared with the traditional technique (KP). Since
the work per particle to perform IP is nearly identical
to that of sampling from the KP, IP actually reduces
computational burden by two to three orders of
magnitude when targets are well separated.
These simulations are the result of particular

choices of the plant noise and measurement noise
parameters. The number of particles required to reach
the Kalman filter bound is sensitive to these choices.
Specifically, as the ratio of plant noise to measurement
noise increases, the number of particles to reach the
bound increases. However, the relative performance of
the IP, CP, and KP algorithms remains consistent as
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Fig. 4. Contour plot showing number of targets successfully
tracked in this three-target experiment versus Pd and SNR when

using thresholded measurements.

the plant and measurement noise parameters
change.

C. The Value of Not Thresholding

We investigate here the gain from using
nonthresholded measurements in the multitarget
tracking scenario. One of the strengths of our
association-free method is the ability to use
nonthresholded measurements.
In this simulation, we study three real targets and

benchmark the performance of the tracker versus
SNR (¸) for thresholded measurements with Pd =
0:1 ¢ ¢ ¢0:9. Again, the filter is initialized with the
true target count and initial states distributed about
the true initial target states with a small Gaussian
perturbation. At a constant SNR, as the Pd is reduced,
so is the Pf according to the relation given in (13).
The performance of the algorithm versus SNR and Pd
is given in Fig. 4.
We contrast the performance of the algorithm

using thresholded measurements with the performance
when using nonthresholded measurements at the
same set of SNR values. Fig. 5 is a plot showing
the performance of the algorithm using thresholded
measurements at Pd = 0:4 (the best performance
from Fig. 4) and the algorithm using nonthresholded
measurements in terms of the number of targets
successfully tracked. We see that nonthresholded
measurements provide similar tracking performance at
an SNR of 1 as the thresholded measurements provide
at an SNR of 5, for a gain of about 7 dB from not
thresholding the measurements.

D. Unknown Number of Targets

The ability of the algorithm to determine the
number of targets is illustrated in Figs. 6 and 7, which

Fig. 5. Plot of the number of targets successfully tracked in the
three-target experiment for thresholded measurements and

unthresholded measurements as function of SNR.

Fig. 6. Estimate of number of targets in surveillance region
versus time with SNR= 4. Filter is initialized with probability

uniform for 0,1, : : : ,5 targets. Measurements taken over time allow
filter to properly estimate number of targets in surveillance area.

show p(T j Z) as a function of time for SNR= 4 and
SNR= 12, respectively. There are three real targets
in this simulation. We initialized the filter uniformly
in target number space, allocating one-sixth the
probability to 0,1, : : : ,5 targets. In target state space,
the filter is initialized by selecting randomly from a
set of candidate positions that include the true target
states and adding in a small Gaussian perturbation.
Over time, the filter is able to accurately estimate the
number of targets in the surveillance region. As the
SNR improves, the time until correctly determining
the number of targets decreases.

E. Computational Considerations

Using MatLab on an off-the-shelf 3 GHz Linux
box, we find that the AP method is able to track
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Fig. 7. Estimate of number of targets in surveillance region
versus time with SNR= 12. Filter is initialized with probability
uniform for 0,1, : : : ,5 targets. Measurements taken over time allow
filter to properly estimate number of targets in surveillance area.

Fig. 8. Performance of particle filter implementation of JMPD
when tracking ten real targets. This set of targets contains two
convoys (targets following each other closely throughout the

simulation), one of four targets and one of three targets. For each
simulation, at each time step tracking error is measured as mean
track error for the ten targets. Plot shows median tracking error
across all 50 simulations. Filter is initialized with true target
locations and so initial tracking error is 0. Steady state tracking
error is on the order of 40 m. As mentioned earlier, the sensor
measures 100 m£ 100 m resolution cells on the ground. Particle
filter implementation of JMPD uses 250 particles which allows

near real time tracking.

10 real targets with scans of the surveillance area
coming in once per second in near real time (for
typical situations, the algorithm takes approximately
1.5 s to process each 1 s of data). A more low-level
implementation is anticipated to easily allow real
time tracking. Fig. 8 shows the tracking performance
when using the particle filter implementation of JMPD
on ten real targets. The plot is averaged of 50 trials,
where in each trial a random set of 10 targets is
chosen from our large database of real targets.

Fig. 9. FLOPS (as measured by MatLab) versus number of
targets. One factor that effects computations required is number of
closely spaced targets, as coupling must be modeled explicitly and
CP algorithm becomes necessary. We include for reference here
the average number of coupled targets over all simulations.

One factor that effects computation is the number
of coupled targets. This effect can have a greater
impact on computational complexity then the number
of targets. When targets move close together, their
coupling must be explicitly modeled and the CP
algorithm becomes necessary. This algorithm is
significantly more computationally demanding then
the IP method.
In Fig. 9, we show the timing results of

simulations where 1 ¢ ¢ ¢10 targets are tracked. We
include for reference the average number of coupled
targets during the simulations. For each trial, we
select t targets at random from our collection of
real recorded data. Depending on which targets are
selected, they may or may not be coupled, resulting in
a different level computational complexity. The plot in
Fig. 9 is averaged over 50 trials.

F. Partition Swapping

We illustrate in this section the issue of partition
swapping as discussed in Section IIID. When targets
are close together, measurement-to-target ambiguity
may result in partitions of individual particles being
reordered. In Fig. 10, we give a 9 time-step vignette
which includes a target crossing. Initially, the targets
are well separated and identically ordered (e.g.
Time = 44) and the IP method is used for particle
proposal. When the targets cross (Time = 60),
partition swapping occurs and the CP method must
be used. Without partition sorting using the K-means
algorithm of Section IIID, this swapping persists even
after the targets separated and the CP method must be
used even at Time = 84. This results in an inefficient
algorithm, as the CP method is more computationally
demanding.
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Fig. 10. This figure illustrates the phenomenon of partition swapping that occurs in direct particle filter implementation of SIR filter
for JMPD. True target locations are indicated by a solid circle. At time 30 only one target is visible in plot window. At 44 s, both

targets can be seen and the two partitions for each particle, plotted with x and o, are well separated. From time 60 to 66, they occupy
the same detection cell. At time 84, some partition swapping has occurred, indicated by the fact that there are mixtures of x and o

corresponding to each target location.

Fig. 11. This figure illustrates the same multitarget tracking scenario as in Fig. 10, except here we perform partition sorting at each
time step. True target locations are indicated by a solid circle. At time 30 only one target is visible in plot window. At 44 s, both

targets can be seen and the two partitions for each particle, plotted with x and o, are well separated. From time 60 to 66, they occupy
the same detection cell. Targets move apart starting at time 72. Notice that the partition swapping visible in Fig. 10 at times 72—84 is

avoided here because of partition sorting.

In Fig. 11 we show the same vignette as in
Fig. 10, but this time we use the partition sorting
algorithm outlined in Section IIID at each time step.
While the CP method must still be used when the
targets are occupying the same detection cell, when
they move out (Time= 72) the IP method may be
used again. The partition sorting allows for the more

computationally efficient IP method to be used for
proposal by reordering the particles appropriately.

V. CONCLUSION

This paper has presented a new grid-free
implementation of a Bayesian method for tracking
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multiple targets based on recursively estimating
the JMPD. We have detailed an adaptive particle
proposal scheme that explicitly takes into account the
multitarget nature of the problem and automatically
factors it into a series of smaller independent
problems when appropriate, while properly treating
the permutation symmetry and correlations that arise
when targets are close together. This implementation
reduces the computational burden to a reasonable level
and allows implementation for realistic problems. In
simulations with real target motion, we have shown
the ability to track ten targets with complicated
kinematic behavior, using pixelated measurements on
a grid. This technique has the benefit that raw sensor
measurements may be directly incorporated through
the use of a likelihood function. This algorithm can
process unthresholded data, obtaining a 3—6 dB
effective gain compared with thresholded data.
Furthermore, no measurement-to-target association
is explicitly required.
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