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The design and implementation of a multiple model nonlinear

filter (MMNLF) for ground target tracking using ground moving

target indicator (GMTI) radar measurements is described.

Like the well-known Interacting multiple model Kalman filter

(IMMKF), the MMNLF is based on the theory of hybrid

stochastic systems. However, since it models the probability

distribution for the target in a region, rather than just the

distribution’s first and second moments, a nonlinear filter is

able to capture more fine-grained detail of the target motion and

requires fewer models than typical IMMKF implementations.

This is illustrated here with a two-model MMNLF in which one

motion model incorporates terrain constraints while the second

is a nearly constant velocity (CV) model. Another feature of

the MMNLF is that it enables incorporation of prethresholded

measurements. To implement the filter, the target state conditional

probability density is discretized on a set of moving grids and

recursively updated with sensor measurements via Bayes’

formula. The conditional density is time updated between sensor

measurements using alternating direction implicit (ADI) finite

difference methods, generalized for this hybrid application. In

simulation testing against low signal-to-interference-plus-noise

ratio (SINR) targets, the MMNLF is able to maintain track

in situations where single model filters based on either of the

component models or filters that use thresholded data fail.

Potential applications of this work include detection and tracking

of foliage-obscured moving targets.
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I. INTRODUCTION

There is growing interest in ground target tracking,
stimulated in large part by the success of the joint
surveillance target attack radar system (JSTARS) [1]
and similar ground moving target indicator (GMTI)
radar systems [2]. Ground target tracking differs from
airborne and maritime tracking in several important
respects. First, since ground targets often have small
scattering cross section, radar returns tend to have
lower signal-to-interference-plus-noise ratio (SINR).
Ground targets can be slow moving so that they are
difficult to separate from the clutter background,
especially when the GMTI sensor is airborne or
space based. These problems are exacerbated by the
long standoff range required for operations in hostile
territory. Often ground targets are obscured by foliage,
which requires radar systems that operate at low
frequency, further degrading both range and cross
range accuracy. Finally, the low SINR often requires
long dwell times so that the target revisit rate is low
(on the order of tens of seconds to minutes), which
also makes tracking more difficult.
While the signal environment for ground targets is

challenging, roads and terrain often provide motion
constraints that are more rigid than those found in
airborne and maritime tracking applications. These
constraints constitute an additional information source
that can be exploited to improve tracking performance
if the effects on the target motion can be included in
the motion models. For off-road targets, significant
information can be gleaned, for instance, from the
restriction of wheeled vehicles to certain types of soils
or restrictions of vehicles from extreme slope values.
There has been significant work on incorporating

terrain and road information into tracking filters that
use variable structure interacting multiple model
Kalman filters (VS-IMMKF) [7] and road constraints
implemented as Gaussian sums [18]. In [7], a road
network is modeled as a collection of one dimensional
segments and vehicles are modeled with both on-road
and off-road behaviors. The on-road vehicle motion is
modeled using nearly constant velocity (CV) model
spatially-varying nonisotropic plant noise. In this
approach, when a vehicle’s estimated position is
close to a road segment, its on-road is constructed
with more plant noise parallel to the road segment
than perpendicular to it. However, in this approach
there is no direct incorporation of dynamic vehicle
inputs for preferred heading or speed and there is no
“restoring force” in the model to constrain the vehicle
to remain on the road segment. In [18], the influence
of roads is incorporated as a pseudomeasurement
each time the filter is measurement updated. This
approach, similar to that employed by [19] to model
land avoidance in maritime targets, is an effective
practical solution but is somewhat unsatisfactory from
a theoretical standpoint since the road information is
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only incorporated at measurement update. This results
in an unrealistic coupling between purely kinematic
constraints and the measurement process.
Part of our motivation in exploring multiple model

nonlinear filtering (MMNLF) is to include terrain
information directly into the kinematics of the model.
Our approach addresses this issue by incorporating
the effect of terrain in a fine-grained kinematics
model with explicit restoring terms. For example,
when driving on a road, drivers provide steering and
acceleration inputs to align the vehicle axis with the
road and maintain a preferred speed. The use of a
nonlinear filter allows us to incorporate this behavior
directly into the filter model.
A number of US Army programs have worked

extensively to characterize vehicle motion preferences
in terms of a quantity referred to as “hospitability for
maneuver” (HM) [10—12]. These preferences vary
with position, weather, vehicle type (e.g. tracked
versus nontracked), and mission. HM characterizes
the ease with which a vehicle can traverse a particular
area, and can be used to generate the preferred
heading and velocity with which a vehicle will
operate in an area. HM data is quite fine grained
and can vary by an order of magnitude over spatial
scales on the order of tens of meters, say the width
of a road. This makes it difficult to capture using
linearized techniques such as the extended Kalman
filter, motivating, in part, our investigation here into
nonlinear methods.
While HM is a potentially useful source of

information to incorporate into an MMNLF structure,
it has primarily been developed as a qualitative tool
to aid human analysts. Another possible source of
information is historic data collected by sensors
observing an area prior to an engagement. We emulate
that here by using recorded National Training Center
(NTC) vehicle motion data. Another useful feature
of NLF that we explore here is that it can be used to
process nonthresholded data (i.e., envelope detected
sensor pixel amplitudes) in a track-before-detect
approach [5, 6, 19, 27, 28] that does not suffer from
any SINR loss due to thresholding. This is likely to
yield the most gain when tracking vehicles that are
moving slowly or beneath a forest canopy where
the SINR is particularly small. In such applications,
nonlinear filter (NLF) methods [3, 14, 15, 16] may
be particularly useful since the potential gain from
improved target motion modeling increases as the
SINR decreases.
With this motivating introduction, the primary

focus of the work reported here is the development
of an MMNLF combined with thresholded or
nonthresholded data. We use an alternating direction
implicit (ADI) finite difference method here to solve
the nonlinear filtering equations. The details of the
numerics are presented as an appendix, as the main
thrust of this paper is the development of an MMNLF

that incorporates HM and comparison with single
model filters in the ground target tracking scenario.
Particle filtering is an alternative approach to realizing
the NLF which has been successfully applied in
similar circumstances [24, 25, 26, 28]. See [23] for
a nice survey of particle filtering methods, approaches,
and results. Several researchers have compared the
performance between NLFs (e.g. grid-based and
particle-based) to standard Kalman filter approaches
[32, 33, 34].
The paper is organized as follows. The

mathematical formulation for the MMNLF is given in
Section II. It includes a derivation of the two models
combined in the MMNLF and the measurement
models used for thresholded and nonthresholded
data. Section III outlines how HM data are derived
and how we use it to estimate vehicle motion
parameters for the MMNLF. Vehicle motion model
parameters can also be extracted directly from
observed vehicle motion data. Section IV presents
tracking results obtained using collected vehicle
motion and simulated measurements. Summary and
conclusions are presented in Section V. Appendix
A presents numerical details of the method that
we use to solve the multiple model Fokker-Planck
equation (MMFPE) using an ADI schemes [8, 9, 13]
that has been modified to accommodate multiple
motion models. One nice feature of this ADI approach
pointed out by [29] and [30] is that resulting finite
difference scheme is equivalent to a Markov chain on
a discrete state space. The resulting matrix operators
are stochastic, conserving the total probability for the
discrete system and improving its numerical stability.

II. MULTIPLE MODEL NONLINEAR FILTERING
MATHEMATICAL FRAMEWORK

The objective of filtering is to estimate some
kinematic state xt (say position and velocity) of the
target at time t, given a sequence of measurements
yk made at discrete times tk (vectors and matrices
are indicated by bold characters, scalars are italic).
Like the IMMKF [20], MMNLF is based on a hybrid
estimation approach. At each time t the target is
in one of a finite number of kinematic models (or
“modes”) mt 2 f1, : : : ,rg. The target dynamics for each
of the r models are described by the Ito stochastic
differential equation

dxt = fmt(xt)dt+Gmt (xt)d¯t, t¸ t0 (1)

where xt and fmt are column n-vectors, Gmt is an n£p
matrix function and f¯t, t ¸ t0g is a p-vector Brownian
motion process with Efd¯td¯Tt g=Q(t)dt. Although
not strictly necessary, we assume for simplicity that
all models have the same n-dimensional state vector
xt. The functions fmt and Gmt can also contain explicit
time dependence, but here we assume that they only
depend on the kinematic state and the mode.
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The mode evolves in time as a homogenous
continuous-time Markov chain [21]. This means that
we may define the probability

Pfmt =mg (2)

and transition probabilities

¼ij(¿) = Pfmi+¿ = i jmt = jg: (3)

(The fact that we restrict ourselves to homogenous
chains makes this a function of ¿ only.) Transition
rates are

¤ij =
@

@¿

¯̄̄̄
t#0
¼ij(¿): (4)

The collection of measurements up to and including
time tk is denoted

Ytk = fyt : t· tkg: (5)

The known measurement density p(y j x) is both time
and mode independent.
To estimate the kinematic state of the target, the

MMNLF recursively computes the hybrid conditional
density that the target is in mode m and state x at time
t, given some set of measurements Yt0 , t

0 · t, which we
denote pm(xt j Yt0). Each of the conditional probability
density functions pm(xt j Yt) is constructed recursively
according to Bayes’ formula:

pm(xtk j Ytk ) =
p(ytk j xtk )pm(xtk j Ytk¡1 )R

dx0tk
P
m0 p(ytk j x0tk )pm0(x0tk j Ytk¡1 )

:

(6)

Equation (6) requires that we be able to evaluate the
density for the state at time k given measurements
only up to time k¡ 1. Therefore, we must characterize
the time evolution of the density during the time
interval tk · t· tk+1, which is given by the MMFPE.
Defining p= (p1, : : : ,pr)

T, the MMFPE is

@p
@t
(xt j Ytk ) = Lp(xt j Ytk ) +¤p(xt j Ytk ) (7)

with initial condition p(xtk j Ytk ) where

Lmpm ´¡
nX
i=1

@(fm,ipm)
@xi

+
1
2

nX
i,j=1

@2(pm(GmQG
T
m)ij)

@xi@xj

(8)

L=

0BB@
L1 0 0

0
. . . 0

0 0 Lr

1CCA (9)

¤= (¤ij): (10)

(Equation (7) is solved numerically in the appendix.)
Given pm(xt j Ytk ), the marginal density for the

target state is

p(xt j Ytk ) =
X
m

pm(xt j Ytk ) (11)

while the marginal for model m at time t is

p(mt j Ytk ) =
Z
pm(xt j Ytk )dxt (12)

The minimum mean square error state estimate x̂tk is

x̂tk =
Z
dxtkxtkp(xtk j Ytk ) (13)

with covariance

Pt =
Z
dxtk (x̂tk ¡ xtk )(x̂tk ¡ xtk )Tp(xtk j Ytk ): (14)

A. Target Motion Model with Vehicle Motion
Preferences

For tracking ground targets, we use the
4-dimensional target state

x= (x,y,µ,v)T (15)

where x and y are the target’s Cartesian location in
the topocentric plane (meters) centered on the region
of interest, µ is the target heading, and v is the target
speed (m/s).
The novel feature that we introduce here is the

incorporation of spatially varying preferred heading
and speed. This models the fact that a driver will
attempt to align the axis of his vehicle with that of the
road and, depending on the terrain and road quality,
there will be a preferred speed. When the vehicle
deviates from these preferred values, the driver applies
corrections and the vehicle responds. The time that it
takes for the drive/vehicle system is characterized by a
time constant, which may be spatially-varying.
Ito equations that couple the target dynamics

to the spatially-varying vehicle motion preferences
can be constructed using inhomogenous integrated
Ornstein-Uhlenbeck (IIOU) models as follows. Given
the position-dependant preferred velocity v0(x,y),
and a mean time to speed corrections ¿v(x,y), the Ito
equation for the target speed

dv =¡ 1
¿v(x,y)

(v¡ v0(x,y))dt+
p
qv(x,y)d¯v

(16)

where ¯v is a scalar white Brownian motion process
with power spectral density

E(d¯2v ) = dt (17)

and

qv(x,y) =
2

¿v(x,y)
¾2v (18)

with ¾2v is the variance of the speed deviation from
its preferred value. ¿v(x,y) is sometimes referred to as
the sojourn time. Similarly, given a spatially-varying
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preferred heading µ(x,y) and a mean time to heading
corrections ¿µ(x,y), the Ito equation is

dµ =¡ 1
¿µ(x,y)

(µ¡ µ0(x,y,µ))dt+
p
qµ(x,y)d¯µ:

(19)
We construct the model so that targets align
themselves parallel or antiparallel to the preferred
heading. This is accomplished by evaluating the
heading modulo 180 deg. The preferred heading
µ0(x,y,µ) is defined as

µ0(x,y,µ) =
½
'(x,y) jµ¡'(x,y)j< ¼=2
'(x,y) +¼ otherwise

(20)

where '(x,y) is the data- or hospitability-derived
preferred axis of motion. The spatially-varying
function '(x,y) defines the preferred axis of travel
at each point on the terrain. The heading process is

E(d¯2µ ) = dt (21)

and

qµ(x,y) =
2

¿µ(x,y)
¾2µ : (22)

Defining dx= vcos(µ)dt and dy = v sin(µ)dt, the Ito
equations for all of the components are

dx= v cos(µ)dt

dy = v sin(µ)dt

dµ =¡ 1
¿µ(x,y)

(µ¡ µ0(x,y,µ))dt+ d¯µ

dv =¡ 1
¿v(x,y)

(v¡ v0(x,y))dt+ d¯v:

(23)

Defining _x= vcos(µ) and _y = v sin(µ), the operator
((8)) for this model (hereafter called the IIOU model)
is

LIIOU(p) =¡ _x
@p

@x
¡ _y @p

@y

+
1

¿µ(x,y)
@

@µ
((µ¡ µ0(x,y,µ))p)

+
1

¿v(x,y)
@

@v
((v¡ v0(x,y))p)

+
1
2
qµ(x,y)

@2p

@µ2
+
1
2
qv(x,y)

@2p

@v2
: (24)

This equation contains three separate contributors.
The velocity advection terms are the one-way wave
equations in x and y:

¡ _x@p
@x
¡ _y @p

@y
: (25)

The heading and speed advection term enforces the
constraint that the vehicle tends to move with velocity

v0(x,y) and heading µ0(x,y) (modulo ¼):

1
¿µ(x,y)

@

@µ
((µ¡ µ0(x,y,µ))p) +

1
¿v(x,y)

@

@v
((v¡ v0(x,y))p):

(26)

The heading and speed diffusion term enforces the
spatially-varying tendency to diffuse away from
preferred heading and velocity:

1
2
qµ(x,y)

@2p

@µ2
+
1
2
qv(x,y)

@2p

@v2
: (27)

The parameters of the model (µ0,v0,qv,qµ,¿µ,¿v) can
all vary with position and vehicle type. The method
of extracting them from HM data or recorded vehicle
motion data is presented in Section III.

B. Target Motion Model that does not use Vehicle
Motion Preferences

There are several instances in which using vehicle
motion preferences in the NLF is not desirable.
First, there are times/locations when HM or previous
observations are not available. More often, there are
locations where vehicle tracks conflict, indicating that
there are either no paths through an area or multiple
paths. In these instances, a constant velocity/constant
heading model is preferred. In this case, we use the
Ito equations

dx= vcos(µ)dt

dy = v sin(µ)dt

dµ = d¯µ

dv = d¯v:

(28)

Defining _x= vcos(µ) and _y = v sin(µ) as before, the
FPE for this model (which we refer to hereafter as the
CV model) is

LCV(p) =¡ _x
@p

@x
¡ _y @p

@y
+
1
2
qµ(x,y)

@2p

@µ2

+
1
2
qv(x,y)

@2p

@v2
: (29)

C. Measurement Models

We model the target measurements as square-law
detected return amplitude on a uniform grid of
size M =Nx£Ny (for simplicity, we ignore the
usual Doppler estimate obtained as part of the
GMTI measurement). The amplitude in pixel i for
scan k is yk,i and the entire scan is yk = fyk,i j i=
1, : : : ,Mg. We assume that measurements in the
different detection cells are independent, and that
the measurements are uncorrelated over time. Let ix
denote the target-containing pixel, and let ¸ denote
the SINR (here assumed known). For nonthresholded
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measurements, we assume the probability distribution
for the amplitude in pixel ix is

p1(yix) =
1

1+¸
exp(¡yix=(1+¸)): (30)

The distribution in the empty cells is

p0(yix) = exp(¡yix): (31)

Now assume that state xk maps into pixel ix, then

p(yk j xk) =
MY
i=1

p(yk,i j xk) = p(yk,ix j xk)
MY
i=1
i 6=ix

p(yk,i j xk)

(32)

which, via algebraic manipulation, can be further
simplified to

p(yk j xk) = p1(yk,ix)
MY
i=1
i 6=ix

p0(yk,i) =
p1(yk,ix)

p0(yk,ix)

MY
i=1

p0(yk,i)

= ·
p1(yk,ix)

p0(yk,ix)
(33)

where · is a target-state independent constant that can
be discarded in the Bayes’ formula update.
We have chosen to use a Gaussian clutter plus

noise model for simplicity and generality. The
nonlinear filtering paradigm is sufficiently general that
other models (e.g. Rayleigh clutter, or measurements
that are correlated in space and/or time) could by used
by adjusting the form of p(yk j x). In our experiments
of Section IV, sensor measurements are simulated
according to the model p(yk j x) given here. A primary
benefit of nonlinear filtering is that prethresholded
measurements such as those described by (30)—(33)
can be directly incorporated into the filter. Note,
however that the use of prethresholded data precludes
the use of filters that approximate measurements as
a nonlinear transformation of the target state with
Gaussian additive noise such as the extended Kalman
filter (EKF).
For thresholded measurements with a probability

of detection Pd (again assumed known), we use the
relationship

Pfa = P
1+¸
d (34)

to define the false alarm probability Pfa. The
probability distribution for the target containing cell
becomes discrete (either 0 for no measurement or 1
for a measurement) and is written

p1(yix) =
½
Pd yix = 1

1¡Pd yix = 0
: (35)

The distribution on the nontarget containing cells is
then

p0(yix) =
½
Pfa yix = 1

1¡Pfa yix = 0
: (36)

Fig. 1. Data flow in classic terrain analysis procedure.

Defining

±i =
½
1 i= ix
0 i 6= ix

(37)

we write the density for the entire scan using the same
algebraic manipulation as in the prethresholded case
as

p(yk j xk) = ±1p1(yk,ix)+ (1¡ ±i)p0(yk,ix): (38)

III. EXTRACTING MOTION MODEL PARAMETERS

The motion model parameters defining the
MMNLF can be based on HM data or extracted
directly from observed vehicle motion data. As part
of the preparation of battlefield intelligence, terrain
analysis is performed to predict a number of effects
that HM and similar quantities such as hospitability
for emplacement can have on battle outcomes. In
maneuver planning, existing lines of communication
may be inappropriate, requiring cross-country
movement.
Fig. 1 details the data flow for terrain analysis with

the addition of an activity product. Terrain analysis
begins with the raw terrain data extracted from
imagery, maps, literature, or data collected during
on-site inspections. These data are analyzed and
reduced to a set of terrain factor products capturing
important terrain features and classifications [10].
This portion of the analysis is usually automated
and is described in more detail in publicly available
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USGS and NIMA products. The next step in the
terrain analysis procedure is to combine terrain factor
products with empirical and doctrinal evidence to
generate complex products capturing activities of
military significance [11]. For example, cross-country
movement incorporates terrain factors such as slope,
landform, surface roughness, vegetation, and soils.
These factors are combined with analytical models
[12] which capture the capabilities of specific vehicles
(usually empirically derived), to produce a maximum
vehicle speed in a given area. The generation
of activity-specific products is an advance over
classical terrain analysis and intelligence preparation
procedures. These products capture interactions
between activity requirements such as a need for
long-term hide site and constraints or opportunities
provided by local terrain. For maneuver like activities,
hospitability provides a measure of the support
a given local area provides for a given activity.
Hospitability has been successfully utilized in both
DARPA and NIMA imagery exploitation systems,
and has had particular success when applied to the
identification of mobile missiles.
Tuning of the analytical models within this process

is accomplished primarily in two ways: application
of physical constraints, and the analysis of vehicle
tracks. For example, the physical limitations of
the M1A1 tank (e.g., maximum traversable slope,
surface roughness versus speed effects) are directly
incorporated into the analytical models. Vehicle track
analysis provides exactly the terrain over which
certain vehicles travel. While not excluding any terrain
combination, it can be analyzed to provide preferences
and as a test of the physical vehicle constraint derived
model parameters.
1) Deriving Vehicle Preferences from HM: HM

maps qualitatively represent the ease with which a
vehicle can traverse a particular area. HM can be
used as a spatially-varying measure of preferred target
speed v0(x,y). One such scaling is shown in Fig. 2.
In our experiments, we found that the best way to
generate velocity preferences from HM is to derive
a go/no-go map. All hospitability measures greater
than a certain threshold imply that the vehicle moves
quickly, and all velocities below the threshold imply
the vehicles move slowly.
To develop a model of heading dynamics, we

assume that targets prefer to follow regions of high
HM. This corresponds to following the hospitability
ridges seen in Fig. 3. The 180 deg ambiguity in µ
is incorporated by computing angles modulo 180.
Using HM, the time constants ¿v(x,y) and ¿µ(x,y)
and the diffusive components qv(x,y) and qµ(x,y) will
be chosen to be fixed values. Their specific values will
be chosen based on problem domain knowledge or
will be derived from a secondary source (such as
vehicle observations, as outlined in the following
section).

Fig. 2. Preferred velocities derived from HM map.

Fig. 3. Preferred headings derived from HM map.

2) Deriving Vehicle Preferences from Observed
Data: More detailed IIOU parameters can be
obtained by directly observing target motion in an
area. In real applications, this could be derived from
sensor observations of an area over time. Here, we
emulate this by using truth data from GPS vehicle
positions measurements that have been collected
of the over time as part of battle training at NTC.
This data can be used to directly estimate the IIOU
parameters for a region of interest. This has the
advantage that motion model parameters can be
quantitatively inferred. The disadvantage of this
approach is that, in wartime, vehicles will often need
to be tracked in areas where they have not previously
been observed. In such cases, the methods of HM
terrain analysis described above will likely be more
useful. To begin, the discrete time Ito equation for
vehicle speed corresponding to (16) is

vk+1 = vk ¡ ¢t

¿v(x, t)
[vk ¡ v0(x,y)] +

p
qv(x,y)¢tw

k+1

(39)

where vk is the speed at time k, v0(x,y) is the
preferred speed at x,y, ¿v(x,y) is the time constant and
qv(x,y) is the magnitude of the power spectral density
and wk+1 is unit variance zero mean Gaussian noise.
Note that we allow ¿v and qv to vary with position
here.
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We estimate parameters v0(x,y), ¿0(x,y), and
qv(x,y) using movement data consisting of vehicle
positions (xk,yk) at times tk for a collection of vehicles
on training maneuvers at NTC as follows. For each
vehicle, the speed at a point (xk,yk) is computed using
forward differencing

vk =

p
(xk+1¡ xk)2 + (yk+1¡ yk)2

(tk+1¡ tk) : (40)

The speed vk is associated with the point (xk,yk) and
the time tk. The preferred vehicle speed at a point
v0(x,y) can be estimated using a simple averaging
technique:

v̂0(xk,yk) =
vk¡1 + vk + vk+1

3
: (41)

To obtain the time constant ¿v(x,y) define the residual
difference between the true speed and the preferred
speed as ṽk = vk ¡ v0. Then the residual obeys the
Ito equation for a homogenous Ornstein-Uhlenbeck
process,

ṽk+1 = ṽk ¡ ¢t

¿v(x,y)
ṽk +

p
qv(x,y)¢tw

k+1: (42)

Evaluating expected values we find,

hṽk+1ṽki= hṽk ṽki¡
¿

¢t

¿v(x,y)
ṽkṽk

À
+
Dp

qv(x,y)¢tw
k+1ṽk

E
(43)

hṽk+1ṽki=
·
1¡ ¢t

¿v(x,y)

¸
hṽk ṽki (44)

where h¢i denotes expectation over the ensemble.
Since ṽk and wk+1 are uncorrelated and have mean
0, we may solve for ¿v(x,y) to obtain

¿v(x,y) = 2¢thṽkṽki=h(ṽk+1¡ ṽk)2i: (45)

This is approximated using a three-term sum

¿̂v(x,y)¼
2¢t
3

Pi=k+1
i=k¡1(ṽ

i)2Pi=k+1
i=k¡1(ṽi+1¡ ṽi)2

: (46)

Finally, to estimate qv(x,y) we note that (39) implies

qv(x,y)(w
k+1)2 =

1
¢t

½·
ṽk+1¡

µ
1¡ ¢t

¿v(x,y)

¶
ṽk
¸¾2

:

(47)
Then, since wk+1 has unit variance,

qv(x,y) =
1
¢t

*·
ṽk+1¡

µ
1¡ ¢t

¿v(x,y)

¶
ṽk
¸2+

(48)
and

q̂v(x,y) =
1
3¢t

i=k+1X
i=k¡1

·
ṽi+1¡

µ
1¡ 1

¿v(x,y)

¶
ṽi
¸2
:

(49)

Fig. 4. Time to course corrections in velocity derived from
vehicle observations.

Fig. 5. Preferred velocities derived from vehicle observations.

Fig. 6. Preferred headings derived from vehicle observations.

Similar reasoning can be applied to estimate the
heading parameters µ0(x,y), ¿µ(x,y), and qµ(x,y).
Using this methodology and a set of 100 vehicles

observed in battlefield simulations, we can generate
preferred headings and velocities on a grid as shown
in Fig. 4—7.

IV. RESULTS

A set of data collected at the NTC was used to
test the trackers. The data consisted of 616 vehicles
performing battle simulations over a period of several
weeks. Each of these vehicles had its position and
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Fig. 7. Diffusive component in velocity derived from vehicle
observations.

velocity monitored by GPS. The position and velocity
estimates were interpolated to 1 s intervals.
Approximately 100 vehicles moving in a

25 kilometer£ 25 kilometer area were extracted
and used to create spatially-varying preferred
vehicle headings and velocities. Fixed (not
spatially-dependent) variances and time constants were
calculated as averages of the 100 training vehicles

¿µ = 1 s, ¿v = 1 s, qv = 1 m/s, qµ = 3
±:

(50)

Five vehicles, identified as vehicles “3,” “143,”
“355,” “416,” and “1432” were used to compare
three different filtering models: a single-model filter
using the CV model (the “CV filter”), a single-model
filter using the IIOU model (the “IIOU filter”), and a
multiple model filter that has both the CV and IIOU
models (the “MMNLF”). These five vehicles were
omitted from the training (generation of preferred
motion parameters). Each of the test vehicles were
chosen to illustrate a different scenario. Each vehicle
was tracked for 300 time steps using each of the
filters. A Monte Carlo test consisting of 100 different
random measurement sequences was used to measure
the relative performance of the filters. Further, the
SINR was varied from 1 dB to 16 dB.
Measurements were simulated according to

the model of Section IIC. The filters know the
measurement model and its parameters (e.g. SINR)
precisely. One interesting area for future study is the
effect of model mismatch, which may often be the
case in real world scenarios (i.e., where measurements
are generated according to one model but the filter
uses another model). In our application, we expect
that once entering a model m (either the IIOU or
the CV model), the target will continue to obey that
model with high probability. Furthermore, transition
probabilities, while small, will tend to favor the target
entering the IIOU model. We use

¤=
·¡0:1 0:2

0:1 ¡0:2

¸
: (51)

The numerical FPE solver of Appendix A was
implemented to solve (7). The grid size was Nx =Ny =
20 and Nv =Nµ = 6 so the total number of grid cells in
this implementation was N = 14400. The resolution
of the grid was ¢x=¢y = 15 m, ¢µ = 30±, and
¢v = 313 m/s. Note that more finely spaced grid cells
may lead to better numerical performance. However,
this requirement for more grid cells would adversely
effect the computation speed of the algorithm.
Nonthresholded measurements are generated on a
1 s interval, which is the (interpolated) rate of reports
given in the data. The spatial resolution of the sensor
(i.e., the pixel size) was 15 m£ 15 m (no Doppler
measurement was assumed). At every time step, the
grid is translated to remain centered on the estimated
target location, heading, and speed, as discussed in
the appendix. This translation results in some of the
probability mass being lost from the grid. This is
mitigated by the fact that the grid is large enough so
that the probability mass at the edges is very low. The
grid is renormalized to sum to 1 after each translation.
A more sophisticated treatment of the issue of domain
truncation is given in [22]. At initialization, the grid
is centered on the true state of the target (position,
velocity, and heading) and initialized to a uniform
density over the extent of the grid.
Performance of the filters was measured in four

ways: the position, velocity and heading RMS error,
and the ability of the filter to keep the target in track.
A target is deemed to be “lost” when the true position
is off of the grid; this corresponds to the estimated
target position being more than 150 m in error in both
x and y components. We detail here the Monte Carlo
testing results of each of the five test vehicles (see
Table I).
Vehicle 3 moves with nearly constant heading

and experiences 3 notable velocity changes, all of
which are in accordance with motion preferences
derived from the training vehicles (see Fig. 8, left).
The heading matches the motion preferences very
well. For these reasons, we expect the IIOU filter
to outperform the CV filter. As shown in Fig. 8,
all three filters are able to track the vehicle well at
SINR above 5 dB. The IIOU filter and MMNLF are
able to maintain good tracking at 4 dB and modest
performance even at 1 dB. The position error of the
IIOU filter and the MMNLF are nearly identical,
while the CV filter exhibits higher error, especially at
low SINR. The MMNLF and the IIOU filter are able
to take advantage of the vehicle motion preferences,
which aids in tracking when the measurements are
poor (i.e. when the SINR is low).
Vehicle 143 moves with nearly constant

heading and experiences velocity changes of small
magnitude, which are not generally in accordance
with the underlying motion preferences (see
Fig. 9, left). Furthermore, the underlying velocity
preference is a gradual acceleration and deceleration,
which is not observed in the data. The heading
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TABLE I
RMSE Results of Monte Carlo Testing on Five Test Vehicles
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Fig. 8. Vehicle 3. (a) Preferred (dotted) and actual (solid) trajectories. (b) Position RMSE versus SINR. Error is shown averaged over
only those trials where the target was successfully tracked. (c) Percentage of targets successfully tracked versus SINR.

Fig. 9. Vehicle 143. (a) Preferred (dotted) and actual (solid) trajectories. (b) Position RMSE versus SINR. Error is shown averaged
over only those trials where the target was successfully tracked. (c) Percentage of targets successfully tracked versus SINR.

Fig. 10. Vehicle 355. (a) Preferred (dotted) and actual (solid) trajectories. (b) Position RMSE versus SINR. Error is shown averaged
over only those trials where the target was successfully tracked. (c) Percentage of targets successfully tracked versus SINR.

matches the motion preferences very well. For
these reasons, we expect the IIOU filter to perform
worse than it did with vehicle 3. As shown in
Fig. 9, all three filters are able to track the
vehicle well at SNR above 5 dB SINR. The
IIOU filter and MMNLF have 90% tracking ability
at 4 dB SINR. Again the IIOU filter and MMNLF
outperform the CV filter at low SINR due to

their ability to rely on heading and velocity
preferences.
Vehicle 355 has a slowly changing velocity and

contains one very abrupt heading change (see Fig. 10,
left). The heading change happens at a location
at odds with the data derived preferred heading.
For these reasons, we expect the IIOU filter to
have difficulty. The CV filter, however, imposes no
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Fig. 11. Vehicle 416. (a) Preferred (dotted) and actual (solid) trajectories. (b) Position RMSE versus SINR. Error is shown averaged
over only those trials where the target was successfully tracked. (c) Percentage of targets successfully tracked versus SINR.

Fig. 12. Mode mixing for two of the trials. (a) Probability in IIOU model for one trial with vehicle 355. (b) Probability in IIOU
model for one trial with vehicle 416.

Fig. 13. Vehicle 1432. (a) Preferred (dotted) and actual (solid) trajectories. (b) Position RMSE versus SINR. Error is shown averaged
over only those trials where target was successfully tracked. (c) Percentage of targets successfully tracked versus SINR.

preferred heading and may be able to overcome the
very abrupt maneuver. The abrupt change in heading
that is unanticipated by the IIOU filter (time step 80)
causes it to consistently lose track. The IIOU filter, at
best, only maintains track 20% of the time. The CV
filter performs much better. The MMNLF, aided by
the ability to switch into CV mode at the time of the

unanticipated maneuver, performs much better than
the IIOU filter as well.
Fig. 12(a) shows how the MMNLF is able to

generally maintain the track in this case. At time
step 80, where the abrupt change in heading occurs,
probability rapidly flows out of the IIOU model and
into the CV model. Note that, unlike conventional
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multiple model filters, in this example both models
(IIOU and CV) typically have validity. Therefore,
under normal operating situations, the probability in
each filter is dictated by the mixing matrix ¤.
Vehicle 416 has a slowly changing heading

and contains 2 very abrupt velocity changes of
several meters/second. With limited exceptions, the
data-derived preferred motion accurately models the
heading and for the most part underestimates the
velocity (see Fig. 11, left). We expect the CV filter
to have difficulty with the sudden velocity changes.
We expect the IIOU filter to track acceptably, as
the largest velocity change brings the vehicle into
agreement with the preferred velocity. Fig. 11 shows
the error curves for the three filters. All three filters
perform reasonably well at SINR greater than 5 dB,
with the MMNLF being the best of the three.
Fig. 12(b) illustrates how the MMNLF is able

to succeed for this vehicle. It is able to quickly
move into the CV model at those points where the
preferred and actual trajectories differ (e.g. time step
50, and time step 120). It is also able to move into
the IIOU model at the time that gives the CV filter
significant trouble (time step 256, where the dramatic
acceleration is encountered).
Vehicle 1432 has a very slowly changing velocity

that is not in agreement with the data derived
preferred velocity (see Fig. 13). The preferred and
actual headings do not agree very well, particularly
during the first 150 time steps. For these reasons,
we expect the CV filter to perform as good or better
than the IIOU filter. Fig. 13 shows that the CV filter
and the MMNLF perform similarly. The IIOU filter
performs poorly as it incorrectly enforces a preferred
heading and velocity that the vehicle violates.
A study of the value of using nonthresholded

measurements (as was done in the preceding
experiments) is illustrated in Fig. 14. A comparison
to the MMNLF using thresholded measurements,
where the probability of detection was set at 0.5,
shows a dramatic difference particularly at low SINR.
Neither the MMNLF nor the thresholded MMNLF lost
track in any of the trials. The thresholded MMNLF
will give different results with different threshold
settings. A parametric test of the thresholded MMNLF
on vehicle 3 at 8 dB SINR (Fig. 15) shows that the
optimal Pd is between 0.4 and 0.7.
As described earlier, HM can be used to generate

the spatially-varying preferred headings and velocities.
To illustrate the utility of HM, we compared the
results of the multiple model filter using data-derived
preferences (denoted MM-DD), and the multiple
model filter using HM-derived preferences (denoted
MM-HM) on test vehicle 3. This comparison is
shown in Fig. 16. The HM was used to generate go
and no-go regions. In areas of low hospitability, the
preferred velocity was set to 1 m/s, and in areas of

Fig. 14. Value of using nonthresholded measurements in the
MMNLF.

Fig. 15. Position RMSE versus detection threshold.
Nonthresholded MMNLF results shown for reference.

Fig. 16. Comparison of multiple model filters using data derived
and HM-derived preferences.

high hospitability the velocity was set to 4 m/s. The
preferred heading was generated using the notion that
vehicles tend to follow areas of high hospitability.
The data-derived filter kept the vehicle in track

97% of the time (as compared to 93% for the CV
model and 100% for the HM-derived filter). Both
the data-derived and HM-derived multiple model
filters show an advantage over a simple CV model,
particularly at low SINR. The data-derived method,
however, tracks with significantly lower error than the
HM version.
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V. CONCLUSION

This paper has described the design and
implementation of MMNLF for ground target tracking
using GMTI radar measurements. The filter equations
are derived using general nonlinear filtering theory,
and the partial differential equations are solved on
a grid using an ADI scheme. An alternate approach
to solving the nonlinear filtering equations is the
particle filter approach [23]. In fact, as the state
dimensionality increases (for example with multiple
targets [24]) particle filter schemes may be the only
tractable approach, as grid-based approaches such
as those presented here have dimension that grows
exponentially in the dimension of the state vector.
Experiments on real data have shown that the

MMNLF implemented here performs better than either
of the constituent individual filters. The performance
was measured by the ability of the filter to keep the
target on the grid and localize it with minimum error.
Potential applications of this work include detection
and tracking of foliage-obscured moving targets. In
wartime or other realistic situations, this data may not
be reliable for all areas of interest. Some areas will
have incomplete or missing data, either due to lack
of vehicle histories or conflicting vehicle histories.
It is therefore necessary to allow the filter to operate
without these control inputs in these situations. Here
this is addressed by the second model, which is a
nearly constant speed/constant heading model. Based
on sensor measurements, the MMNLF adaptively
weights the models and uses the one most appropriate
for the current region.
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APPENDIX A. NUMERICAL SOLUTION OF MMFPE

The first step in solving the MMFPE, (7), is to
sample the time interval tk · t < tk+1 into L steps with
resolution ± = (tk+1¡ tk)=L. We denote the density at
step l, l = 1, : : : ,L as pl ´ p(xtk+l± j Ytk ) = p(x, tk + l±)
(recall that the probability vector p= (p1, : : : ,pr)

T is
composed of r model densities) . Taylor expanding in
time, we have pl = pl+1¡ ±(@=@t)pl+1 +O(±2) where
O(±2) indicates higher order terms in the series. Thus

pl+1¡pl
±

= (L+¤)pl+1 +O(±2): (52)

Rearranging, we have

(1¡ ±(L+¤))pl+1 = pl+O(±2) (53)

where 1 is the r£ r identity matrix. The matrix
operator on the left-hand side can be factorized to
O(±2) as

(1¡ ±(L+¢)) = (1¡ ±L)(1¡ ±¤) +O(±2): (54)

Defining (1¡ ±¤)pl+1 ´ p̃l+1, we see that the solution
to (53) can be obtained by first solving

(1¡ ±L)p̃l+1 = pl+O(±2) (55)

to obtain p̃l+1, then solving the matrix equation

(1¡ ±¤)pl+1 = p̃l+1 (56)

which simply requires a inversion of the r£ r matrix
1¡ ±¤.
To solve (55), note that it can be written as the set

of r uncoupled scalar differential equations

(1¡ ±L)p̃l+1m = plm+O(±
2), m= 1, : : : ,r (57)

(1 is the scalar identity here) each of which can be
solved using the conventional time-splitting method.
This proceeds as follows. Each of the Lm operators
can be decomposed as a sum,

Lm =
X
i

Lm,i (58)

so that

(1¡ ±Lm)pl+1m =
Y
i

(1¡ ±Lm,i)pl+1m +O(±2): (59)

At this point, we discretize the spatial domain with
resolution ¢x= [¢x,¢y,¢µ,¢v]. On this grid, let glm
denote an O(¢x) +O(±2) approximation to plm and
Lm,i¢x an O(¢x) approximation to Lm,i, i.e.,

Lm,i¢xg
l
m = Lm,ip

l
m+O(¢x)+O(±

2): (60)

Thus, if g̃l+1m satisfiesY
i

(1¡ ±Lm,i¢x)g̃l+1m = glm (61)

then
g̃l+1m = pl+1m +O(¢x) +O(±2): (62)

To complete the solution, we must have explicit
decompositions for the Lm,i¢x. For the CV model (29),
we choose 4 terms in the summation (58):

L1 =¡ _x
@

@x
(63)

L2 =¡ _y
@

@y
(64)

L3 =
1
2
qµ(x,y)

@2

@µ2
(65)

L4 =
1
2
qv(x,y)

@2

@v2
: (66)
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The IIOU model (24) adds to these 4:

L5 =
1

¿µ(x,y)
@

@µ
(µ¡ µ0(x,y,µ)) (67)

L6 =
1

¿v(x,y)
@

@v
(v¡ v0(x,y)): (68)

To discretize the Li, we use the abbreviation gx§1 ´
(l±,x§¢x,y,µ,v) (suppressing the mode index), with
similar definitions for gy§1, gµ§1, and gv§1. Using
upwind differencing for the advective terms in the CV
model, we have

L1¢xg =
¡ _x
2¢x

½
gx¡ gx¡1 _x¸ 0
gx+1¡ gx _x < 0

(69)

L2¢xg =
¡ _y
2¢y

½
gy ¡ gy¡1 _y ¸ 0
gy+1¡ gy _y < 0

: (70)

Central differencing for the diffusive terms gives

L3¢xg =
qµ(x,y)
2¢µ2

(gµ+1¡ 2gµ + gµ¡1) (71)

and
L4¢xg =

qv(x,y)
2¢v2

(gv+1¡ 2gv+ gv¡1) (72)

and when using the IIOU-based model, we have for
L5 and L6:

L5¢xg =
¡(µ¡ µ0)
2¢µ

½
gµ ¡ gµ¡1 µ¡ µ0 ¸ 0
gµ+1¡ gµ µ¡ µ0 < 0

(73)

L6¢xg =
¡(v¡ v0)
2¢v

½
gv ¡ gv¡1 v¡ v0 ¸ 0
gv+1¡ gv v¡ v0 < 0

:

(74)

We note that for each of the operators (69)—(74) is a
tridiagonal system, i.e., of the form

ajgj¡1 + bjgj + cjgj+1 = dj , j = 1, : : : ,m¡ 1
(75)

with boundary conditions g0 and gm specified, gj ,
j = 1, : : : ,m¡ 1 are unknowns and aj , bj , cj and dj
are known (the boundary conditions are discussed in
detail in the following subsection). This can be solved
efficiently using Thomas’s algorithm ([9]). The net
complexity of this algorithm is O(N). With this, the
total complexity of the time-splitting scheme with
Thomas’ algorithm for solving the tridiagonal systems
is O(N).
To obtain the complete solution, let Nm denote the

number of suboperators in the scalar system (Nm = 4
for CV and 6 for IIOU). Then for each scalar equation
we define

(1¡ ±Lm,i¢x)g̃k+i=Nmm = g̃k+(i¡1)=Nmm , i= 1, : : : ,Nm

(76)

gk+1 = (1¡ ±¤)¡1g̃k+1 (77)

with g̃km ´ gkm. The utility of this is that each of the
operators 1¡¢tLm,i¢x is a tridiagonal system so the
(76) can be solved easily while (77) entails inversion
of a low-dimensioned matrix. Thus, the overall
complexity of the algorithm is linear in the number
of grid nodes.
Boundary Conditions: To solve the discretized

MMFPE numerically it must be restricted to a finite
domain leading to an initial-boundary value problem.
For each of the r kinematic models, the finite grid
domain consists of the points ((i+ i0)¢x, (j+ j0)¢ _x,
(k+ k0)¢y, (l+ l0)¢ _y)

T, i= 0, : : : ,Nx, j = 0, : : : ,N_x,
k = 0, : : : ,Ny, l = 0, : : : ,N_y, where i0, : : : , l0 are offsets
used to translate the origin. For each model there
are (Nx+1)(N_x+1)(Ny +1)(N_y +1) grid nodes and
N = (Nx¡ 1)(N_x¡ 1)(Ny ¡ 1)(N_y ¡1) unknowns.
Boundary conditions must be specified on this
hyper-cube to determine the solution to the FPE
uniquely. We assume that the target signal-to-noise
ratio is sufficiently high that the target has been
localized. Then the density will be concentrated in
some small region and decay exponentially far from
this region. We further assume that the grid is large
enough that the density was small on its boundary.
With this motivation we used a homogenous Dirichlet
condition with the solution held at 0 on the boundary.
The FPE does not have second-order derivatives

in all of its variables which means that it is a
degenerate parabolic partial differential equation [31].
Qualitatively, since there are no x- and y-diffusion
terms in the CV and IIOU FPE, the behavior on the
x- and y-subspaces is characterized by the one-way
wave equation. (For example (@p=@t) =¡ _x(@p=@x)
generates a wave that propagates solutions along the
x-axis with velocity _x.) For a first-order operator of
this sort the boundary condition is only specified on
the incoming boundary as determined by the sign of
_x. In this case if independent boundary conditions
are specified on all of the faces then the solution is
over determined. We avoided this problem by only
specifying a physical boundary condition on the
incoming x- and y-faces.
Even though the physical boundary condition is

only defined for incoming x and y, the discretization
scheme ((78) and (79)) requires that the solution also
be specified on the out-going faces as well. This
requires so-called numerical boundary conditions.
A simple boundary condition to implement is to
extrapolate the solution at the out-going faces [34].
For example, in the region with _x > 0, the face
with i=Nx is an out-going face. On this face we
specified gk+1Nx

= gk+1Nx¡1. On the other hand, when _x < 0,
the out-going face has i = 0 so gk+10 = gk+11 . These
numerical boundary conditions are incorporated into
the Thomas tridiagonal solver without affecting its
complexity.
Grid Translation: To reduce the size of the

grid required to represent the target joint density,
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the grid was translated after each measurement to
approximately maintain the target’s location near
its center. After each measurement update the target
position estimate (x̂t, ŷt) was evaluated and the grid
was shifted to center the grid near this estimate. This
was achieved by placing the lower left corner of the
spatial grid at (i0,k0) where

i0 = [x̂=¢x¡Nx=2] (78)

k0 = [ŷ=¢y¡Ny=2] (79)

and [x] denotes rounding to the nearest integer. This
always translated the grid by an integral multiple of
(¢x,¢y). Grid nodes outside the intersection of the
original and translated grids were set to 0.
Timing: This scheme was implemented

in MatLab, running on an off-the-shelf 3 GHz
Linux machine. For the simulations reported here,
measurements arrived every 1 s. For the single model
filters, the CV filter requires about 1 s of CPU to time
and measurement update, and the IIOU filter requires
about 1.3 s of CPU time. The MMNLF requires
approximately 2 s of CPU time. It is anticipated that
a C-based implementation may speed this up by as
much as an order of magnitude. As mentioned earlier,
an alternative approach to solving the nonlinear
filtering equations is via particle methods [23]. In
fact, using appropriate sampling schemes, in one
study particle methods were shown to provide better
computational performance than finite difference
methods on a related problem [25].
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