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ABSTRACT

We present in this paper an information based method for sensor management that is based on tasking a sensor to
make the measurement that maximizes the expected gain in information. The method is applied to the problem
of tracking multiple targets. The underlying tracking methodology is a multiple target tracking scheme based
on recursive estimation of a Joint Multitarget Probability Density (JMPD), which is implemented using particle
filtering methods. This Bayesian method for tracking multiple targets allows nonlinear, non-Gaussian target
motion and measurement-to-state coupling. The sensor management scheme is predicated on maximizing the
expected Rényi Information Divergence between the current JMPD and the JMPD after a measurement has
been made. The Rényi Information Divergence, a generalization of the Kullback-Leibler Distance, provides a
way to measure the dissimilarity between two densities. We use the Rényi Information Divergence to evaluate
the expected information gain for each of the possible measurement decisions, and select the measurement that
maximizes the expected information gain for each sample.
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1. INTRODUCTION

The problem of sensor management (SM) is to determine the best way to task a sensor where the sensor may
have many modes and may be pointed in many directions. This problem has recently enjoyed a great deal of
interest.8 A typical application, and one that we focus on in our model problems, is to direct an electronically
scanned aperture (ESA) radar.1 An ESA provides great flexibility in pointing and mode selection. For example,
the beam can be redirected in a few microseconds, enabling targets to be illuminated at will.

We propose here a sensor tasking algorithm that is motivated by information theory. Our technique strives
to optimize information flow, which is analogous to designing a communications system to maximize the channel
capacity. Past work in this area has been based on maximizing Kullback-Leibler (KL) divergence. In this work,
we utilize a more general information measure called the Rényi Information Divergence7 (also known as the
α-divergence), which reduces to the KL divergence under a certain limit. The Rényi divergence has additional
flexibility in that in allows for emphasis to be placed on specific portions of the information.

We apply our sensor management scheme to the problem of tracking a collection of targets moving in a
surveillance region. First, we utilize a target tracking algorithm to recursively estimate the joint multitarget
probability density for the set of targets under surveillance. We then strive to task the sensor in such a way
that the sensing action it makes results in the maximum amount of information gain. To that end, we employ
the Rényi information divergence as a measure of distance between two densities. The decision as to how to
use a sensor then becomes one of determining which sensing action will maximize the expected information gain
between the current joint multitarget probability density and the joint multitarget probability density after a
measurement has been made. This methodology is similar in spirit to that of Geman2 although our application is
quite different. In addition, Zhao9 considers the sensor management as one of maximizing expected information
and examines a variety of information driven criteria, including the Kullback-Leibler distance.
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The paper is organized as follows. In Section 2, we review the target tracking algorithm that is central to our
sensor management scheme. Specifically, we give the details of the JMPD and examine the numerical difficulties
involved in directly implementing the joint multitarget probability density (JMPD) on a grid. In Section 3, we
present a particle filter (PF) based implementation of JMPD. We see that this provides for computationally
tractable implementation, allowing realistic scenarios to be considered. The particle filter implementation of
JMPD is the subject of the companion paper6 and thus only those details necessary for the sensor management
application are given here. Our sensor management scheme, which is based on calculating the expected Rényi
Information Divergence, is extensively detailed in Section 4. We furthermore include simulations and comments
with respect to the choice of the α parameter in the Rényi Divergence. A comparison of the performance of
the tracker using sensor management to the tracker using a non-managed scheme on two model problems of
increasing realism is given in Section 5. We conclude with some thoughts on future direction in Section 6.

2. JOINT MULTITARGET PROBABILITY DENSITIES (JMPD)

As described thoroughly in the companion paper,6 the joint multitarget probability density (JMPD) provides a
means for tracking an unknown number of targets in a Bayesian setting. In short, the joint multitarget conditional
probability density p(xk
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state X. For convenience, the density will be written more compactly in the traditional manner as

p(Xk|Zk) (1)

With the understanding that the state-vector X represents a variable number of targets each possessing their
own state vector.

The temporal update of the posterior likelihood on this density proceeds according to the usual rules of
Bayesian filtering. Given a model of state dynamics p(Xk|Xk−1), we may compute the time-updated or prediction
density via

p(Xk|Zk−1) =
∫
dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (2)

Bayes rule enables us to update the posterior density as new measurements zk arrive as

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(3)

In practice, the sample space of Xk is very large. It contains all possible configurations of state vectors xi

for all possible values of T . The original formulation of JMPD given by Kastella5 approximated the density by
discretizing on a grid. It was immediately found that the computational burden in this scenario makes evaluating
realistic problems intractable, even when using the simple model of targets moving between discrete locations in
one-dimension. In fact, the number grid cells needed grows as LocationsTargets, where Locations is the number
of discrete locations the targets may occupy and Targets is the number of targets.

Thus, we need a method for approximating the JMPD that leads to more tractable computational burden.
In the next section, we show that the Monte Carlo methods collectively known as particle filtering break this
logjam.
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3. THE PARTICLE FILTER IMPLEMENTATION OF JMPD

To implement JMPD via a particle filter (PF), we first approximate the joint multitarget probability density
p(X|Z) by a set of Npart weighted samples, Xp, (p = 1...Npart):

p(X|Z) ≈
Npart∑
p=1

wpδ(X − Xp) (4)

Here we have suppressed the time superscript k everywhere for notational simplicity. We will do this whenever
time is not relevant to the discussion at hand.

Recall from Section 2 that our multitarget state vector X has T partitions, each corresponding to a target:

X = [x1, x2, ..., xT−1, xT ] (5)

Furthermore, the joint multitarget probability p(X|Z) is defined for T = 0...∞. Each of the particles Xp,
p = 1...Npart is a sample drawn from p(X|Z). Therefore, a particle Xp may have any number of partitions from 0
to ∞, each partition corresponding to a different target. In practice, of course, the maximum number of targets
under surveillance is truncated at some finite number T . We will denote the number of partitions in particle
Xp by np, where np may be different for different Xp. Since a partition corresponds to a target, the number of
partitions that a particle has is that particle’s estimate of the number of targets in the surveillance area.

It is important to emphasize here that the set of particles Xp, p = 1...Npart constitutes an approximation to
the density p(X|Z). Since p(X|Z) is defined for all possible number of targets, a particle Xp may have 0, 1, ...
T partitions and the number of partitions may vary from particle to particle.

To make our notation more concrete, assume that each target is modeled using the state vector x = [x, ẋ, y, ẏ]′.
Then a particular Xp, which is tracking np targets, will be given as

Xp = [xp,1, xp,2, . . . xp,np
] =



xp,1 xp,2 . . . xp,np

ẋp,1 ẋp,2 . . . ẋp,np

yp,1 yp,2 . . . yp,np

ẏp,1 ẏp,2 . . . ẏp,np


 (6)

Where here we expand the notation a bit and use xp,1 to denote the x position estimate that particle p has
of target 1.

Notice that this method differs from traditional particle filter tracking algorithms where a single particle
corresponds to a single target. We find that when each particle is attached to a single target, some targets become
particle starved over time. All of the particles tend to attach to the target receiving the best measurements.
Our method explicitly enforces the multitarget nature of the problem by encoding in each particle the estimate
of the number of targets and the states of those targets. This technique helps to alleviate the particle starvation
issue, ensuring that all targets are represented by the particles.

4. RÉNYI INFORMATION DIVERGENCE FOR SENSOR MANAGEMENT

Our information based method for tasking the sensor is to choose the sensing action that maximizes the expected
information gain. To that end, our algorithm proceeds by first enumerating all possible sensing actions. A sensing
action may consist of choosing a particular mode (i.e. SAR mode versus GMTI mode), a particular dwell point,
or a combination of the two. We next calculate the expected information gain in making each of the possible
sensing actions, and select to take the action that yields the maximum expected information gain.

The calculation of information gain between two densities f1 and f0 is done using the Rényi information
divergence (7), also known as the α-divergence:

482     Proc. of SPIE Vol. 5204



Dα(f1||f0) =
1

α− 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (7)

The particle filter based multitarget tracker yields a particularly convenient form for calculation of equation
(7). This is detailed in Section 4.1.

The α parameter in equation (7) may be used to adjust how heavily one emphasizes the tails of the two
distributions f1 and f0. In the limiting case of α→ 1 the Rényi divergence becomes the more commonly utilized
Kullback-Leibler (KL) discrimination (8).

lim
α→1

Dα(f1||f0) =
∫
f0(x)ln

f0(x)
f1(x)

dx (8)

In the case that for α = 0.5, the Rényi information divergence becomes the log Hellinger distance squared,
where the Hellinger distance is defined by

dH(f1, f0) =
1
2

∫ (√
f1(x) −

√
f0(x)

)2

dx (9)

We find that the flexibility introduced by the α parameter allows the algorithm to be tuned to perform well in
challenging situations, such as filter-target model mismatch. We detail our analysis of the choice of α in Section
(4.2).

4.1. Derivation of Expected Rényi Information Divergence for the PF Implementation of
JMPD
The function Dα given in equation (7) is a measure of the divergence between the two densities f0 and f1. In
our application, we are interested in computing the divergence between the predicted density p(X|Zk−1) and the
updated density after a measurement is made, p(X|Zk). Therefore, we write

Dα

(
p(X|Zk)||p(X|Zk−1)

)
=

1
α− 1

ln
∑
X

p(X|Zk)αp(X|Zk−1)1−α (10)

The integral in equation (7) reduces to a summation since any discrete approximation of p(X|Zk−1) only has
nonzero probability at a finite number of target states. After some algebra and the incorporation of Bayes rule
(eq. 3), one finds that this quantity can be simplified to

Dα

(
p(X|Zk)||p(X|Zk−1)

)
=

1
α− 1

ln
1

p(z|Zk−1)α
∑
X

p(X|Zk−1)p(z|X)α (11)

Our particle filter approximation of the density (eq. 4) reduces equation (11) to

Dα

(
p(X|Zk)||p(X|Zk−1)

)
=

1
α− 1

ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (12)

where

p(z) =
Npart∑
p=1

wpp(z|Xp) (13)

We note in passing here that the sensor model p(z|Xp) is used to incorporate everything known about the
sensor, including SNR, detection probabilities, and even whether the locations represented by Xp are visible to
the sensor.
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We would like to choose to perform the measurement that makes the divergence between the current density
and the density after a new measurement has been made as large as possible. This indicates that the sensing
action has maximally increased the information content of the measurement updated density, p(X|Zk) , with
respect to the density before a measurement was made, p(X|Zk−1).

We propose, then, as a method of sensor management calculating the expected value of equation (12) for
each of the m(m = 1...M) possible sensing actions and choosing the action that maximizes the expectation. In
this notation m refers to any possible sensing action under consideration, including but not limited to sensor
mode selection and sensor beam positioning. In this manner, we say that we are making the measurement that
maximizes expected information gain.

The expected value of equation (12) may be written as an integral over all possible outcomes zm when
performing sensing action m:

< Dα >m=
∫
dzmp(zm|Zk−1)Dα

(
p(X|Zk)||p(X|Zk−1)

)
(14)

In the special case where measurements are thresholded and are therefore either detections or no-detections
(i.e. z = 0 or z = 1), this integral reduces to

< Dα >m= p(z = 0|Zk−1)Dα|m,z=0 + p(z = 1|Zk−1)Dα|m,z=1 (15)

Which, using equation (12) results in

< Dα >m=
1

α− 1

1∑
z=0

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (16)

Implementationally, the value of equation (16) can be calculated for a host of possible actions using only a
single loop through the particles. This results in a computationally efficient method for making sensor tasking
decisions.

In summary, our sensor management algorithm is a recursive algorithm that proceeds as follows. At each
occasion where a sensing action is to be made, we evaluate the expected information gain as given by equation
(16) for each possible sensing action m. We then select and make the sensing action that gives maximal expected
information gain. Notice that this is a greedy scheme, which chooses to make the measurement that optimizes
information gain only for the next time step.

4.2. On the Value of α in the Rényi Divergence

The Rényi divergence has been used in the past in many diverse applications, including content-based image
retreival, georegistration of imagery, and target detection3,4 . These studies have provided some guidance as to
the optimal choice of the parameters α.

In the geogregistration problem3 it was empirically determined that the value of α leading to highest resolution
clusters around either α = 1 or α = 0.5 corresponding to the KL divergence (eq. 8) and the Hellinger affinity
(eq. 9) respectively. The determining factor appears to be the degree of differentiation between the two densities
under consideration. If the densities are very similar, i.e. difficult to discriminate, then the indexing performance
of the Hellinger affinity distance (α = 0.5) was observed to be better that the KL divergence (α = 1). In fact, an
asymptotic analysis4 has shown that α = .5 results in the maximum distance between two densities that are very
similar. We say, then, that this value of α stresses the tails, i.e. the minor differences, between two densities.

Therefore, we have reason to believe that either α = 0.5 or α = 1 are good choices. We investigate the
performance of our sensor management scheme under both choices in Section (5).
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5. SIMULATION RESULTS

In this section, we provide some simulation results that show the benefit of sensor management in the multitarget
tracking scenario.

5.1. An Extensive Evaluation of SM Performance Using Three Simulated Targets

We first test the performance of the sensor management scheme by considering the following model problem.
There are three targets moving on a 12x12 sensor grid. Each target is modeled using the four-dimensional state
vector [x, ẋ, y, ẏ]′ . Target motion is simulated using a constant-velocity (CV) model with a (relatively) large
diffusive component. The trajectories have been shifted and time delayed so that there are two times during the
simulation where targets cross paths (i.e. come within sensor resolution of each other), to make the problem
challenging.

The target kinematics assumed by the filter (equation 2) are CV as in the simulation. At each time step, a
set of L (not necessarily distinct) cells are measured. The sensor is at a fixed location above the targets and all
cells are always visible to the sensor. When measuring a cell, the imager returns either a 0 (no detection) or a
1 (detection) governed by Pd, Pf , and SNR. This model is known by the filter and used to evaluate (3). In
this illustration, we take Pd = 0.5, and Pf = P (1+SNR)

d , which is a standard model for thresholded detection of
Rayleigh returns. The filter is initialized with 10% of the particles in the correct state (both number of targets
and kinematic state). The rest of the particles are uniformly distributed in both the number of targets and
kinematic state.

We contrast in this section the performance of the tracker when the sensor uses a non-managed (periodic)
scheme versus the performance when the sensor uses the management scheme presented in Section 4. The
periodic scheme measures each cell in sequence. At time 1, cells 1...L are measured. At time 2, cells L+ 1...2L
are measured. This sequence continues until all cells have been measured, at which time the scheme resets. The
managed scheme uses the expected information divergence to calculate the best L cells to measure at each time.
This often results in the same cell being measured several times at one time step.

In Fig. 1, we present a single-time snapshot from the tracker, which graphically illustrates the difference
between the two schemes.
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Figure 1. A Comparison of Non-Managed and Managed Tracking. (L) Using Sensor Management, and (R) Using a
Periodic Scheme. With Sensor Management, Dwells are Only Used in Areas that Contain Targets and the Covariance
Ellipses are Much Tighter.

On the left, we show the managed scheme and on the right the periodic scheme. In both panes, the three
targets are marked with an asterisk, the covariance ellipses of the estimated target position are shown, and we
use gray scale to indicate the number of times each cell has been measured at this time step. Qualitatively, in
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the managed scenario the measurements are focused in or near the cells that the targets are in. Furthermore,
the covariance ellipses, which reflect the current state of knowledge of the tracker conditioned on all previous
measurements, are much tighter. In fact, the non-managed scenario has confusion about which tracks correspond
to which target as the covariance ellipses overlap.

A more detailed examination is provided in the Monte Carlo simulation results of Figure 2. The sensor
management algorithm was run with L = 24 (i.e. was able to scan 24 cells at each time step) and is compared
to the non-managed scheme with 24 to 312 looks. Here we take α ≈ 1 (KL) in equation (8). The unmanaged
scenario needs approximately 312 looks to equal the performance of the managed algorithm in terms of RMSE
error. We say that the sensor manager is approximately 13 times as efficient as allocating the sensors without
management. This efficiency implies that in an operational scenario target tracking could be done with an order
of magnitude fewer sensor dwells. Alternatively put, more targets could be tracked with the same number of
total resources when this sensor management strategy is employed.
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Figure 2. Median and Mean Error vs. Signal To Noise Ratio (SNR). Managed Performance With 24 Looks is Similar to
Unmanaged Performance With 312 Looks.

To determine the sensitivity of the sensor management algorithm to the choice of α, we test the performance
with α = .1, α = .5, and α ≈ 1.
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Figure 3. The Performance of the Sensor Management Algorithm with Different Values of α. We Find that in the Case
Where the Filter Dynamics Match the Actual Target Dynamics, the Algorithm is Insensitive to the Choice of α.
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Figure 3 shows that in this case, where the actual target motion is very well modeled by the filter dynamics,
that the performance of the sensor management algorithm is insensitive to the choice of α. We generally find
this to be the case when the filter model is closely matched to the actual target kinematics.

5.2. A Comparison Using Ten Real Targets

We test the sensor management algorithm again using a modified version of the above simulation, which is
intended to demonstrate the technique in a scenario of increased realism. Here we have ten targets moving in
a 5000m x 5000m surveillance area. Each target is modeled using the four-dimensional state vector [x, ẋ, y, ẏ]′

. Target trajectories for the simulation come directly from a set of recorded data based on GPS measurements
of vehicle positions over time collected as part of a battle training exercise at NTC. Targets routinely come
with in sensor cell resolution (i.e. cross). Therefore, there is often a measurement to track ambiguity, which
is handled automatically by JMPD because there is no measurement to track assignment that must be done.
Target positions are recorded at 1 second intervals, and the simulation duration is 1000 time steps.

The filter assumes constant velocity motion with a large diffusive component as the model of target kinematics.
This model is severely at odds with the actual target behavior which contains sudden accelerations and move-
stop-move behavior. This model mismatch adds another level of difficulty to this scenario that was not present
in the previous case. We use 500 particles, each of is tracking the states of all ten targets, and therefore each
particle has 40 dimensions.

At each time step, an imager is able to measure cells in the surveillance area by making measurements on a
grid with 100m x 100m detection cell resolution. The sensor simulates a moving target indicator (MTI) system
in that it may lay a beam down on the ground that is one resolution cell wide and many resolution cells deep.
Each time a beam is formed, a set of measurements is returned, corresponding to the depth of the beam. We
refer to each beam that is laid down as a “Look”. We judge the performance of a tracker in terms of the number
of looks needed to perform the task (e.g. keep targets in track, or track with a certain mean squared error).

The sensor is at a fixed location above the targets and all cells are always visible to the sensor. When making
a measurement, the imager returns either a 0 (no detection) or a 1 (detection) governed by Pd, Pf , and SNR.
This model is known by the filter and used to evaluate equation (3). In this illustration, we take Pd = 0.5,
SNR = 10dB, and Pf = P (1+SNR)

d , which is a standard model for thresholded detection of Rayleigh returns.

We compare the performance of the managed and unmanaged scenarios in Figure 4. Our method of com-
parison here is to determine empirically the number of Looks needed in the unmanaged scenario to achieve the
same performance as the managed algorithm with L = 50 looks.
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Figure 4. Median and Mean Error vs. Number of Looks. Managed Performance With 50 Looks Performs Similarly to
Unmanaged with 600− 700 Looks.
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Figure 4 shows that the unmanaged scenario needs approximately 600 to 700 looks to equal the performance
of the managed algorithm in terms of RMSE error. We say that the sensor manager is approximately 12 to 14
times as efficient as allocating the sensors without management.

We compare next the performance of the sensor management algorithm under different values of α in equation
(7). This problem is more challenging then the simulation of Section 5 for several reasons. Of particular interest
is the fact that the filter motion model and actual target kinematics do not match very well. The asymptotic
analysis performed previously leads us to believe that α = 0.5 is the right choice in this scenario.

In Figure 5, we show the results of 50 Monte Carlo trials using our sensor management technique with α = 0.1,
α = 0.5, and α = 0.99999. The statistics are summarized in Table 1. We find that indeed the sensor management
algorithm with α = 0.5 performs best here as it does not loose track on any of the 10 targets during any of the
50 simulation runs. Both the α = 1 and α = 0.1 case lose track of targets on several occasions.
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Figure 5. A Comparison of SM Performance Under Different Values of the Rényi Divergence Parameter, α.

Table 1. Sensor Management Performance With Different Values of α.

Mean Position
Position Error

α Error(m) Variance (m)
0.1 49.57 614.01
0.5 47.28 140.25

0.99999 57.44 1955.54

6. DISCUSSION
The information-based sensor management scheme presented in this paper is based on computing the expected
information gain for each sensor tasking under consideration. The sensor management algorithm is integrated
with the target tracking algorithm in that it uses the posterior density p(X|Z) approximated by the multitarget
tracker. In this case, the posterior is used in conjunction with target kinematic models and sensor models to
predict which measurements will provide the most information gain. In simulated scenarios, we find that the
tracker with sensor management gives similar performance to the tracker without sensor management with more
than a ten-fold improvement in sensor efficiency.

There are two interesting directions in which we see this work evolving. First, this method is amenable
to incorporating auxiliary information such as ground elevation maps and sensor trajectories. For example,
if the appropriate auxiliary information were incorporated, this method would clearly never choose to make a
measurement in a region that was not visible to the sensor due to hill regions between the sensor and the desired
look location. Second, the current algorithm is a greedy algorithm, choosing to make the measurement that is
best at the current time step. It would be beneficial to extend the methodology to plan several time instances
in the future.
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