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Abstract - This paper presents a n  integrated method 
for target tracking and sensor management, applied to 
the problem of tracking multiple ground targets. W e  
use a multiple target tracking methodology based on re- 
cursive estimation of a Joint Multitarget Probability 
Density (JMPD) which i s  implemented using particle 
filtering methods. This Bayesian method for tracking 
multiple targets allows nonlinear, non- Gaussian target 
motion and measurement-to-state coupling. The sen- 
sor management scheme i s  predicated on maximizing 
the expected R i n y i  Information Divergence between the 
current JMPD and the JMPD after a measurement has 
been made. The R iny i  Information Divergence, a gen- 
eralization of the Kullback-Leibler Distance, provides 
a way to measure the dissimilarity between two den- 
sities. Sensor management then proceeds by evaluat- 
ing the expected information gain for each of the pos- 
sible measurement decisions, and selecting to make the 
measurement that maximizes the expected information 
gain. 

Keywords: Tracking, Nonlinear Filtering, Sensor 
Management, Bayesian Methods. 

1 Introduction 
The problem of sensor management is to determine 

the best way to task a sensor where the sensor may 
have many modes and may be pointed in many direc- 
tions. This problem has recently enjoyed a great deal 
of interest [l]. A typical application, and one that we 
focus on in our model problem, is to direct an elec- 
tronically scanned aperture (ESA) radar 121. An ESA 
provides great flexibility in pointing and mode selec- 
tion. For example, the beam can be redirected in a 
few microseconds, enabling targets to be illuminated 
at will. 

One way of designing a sensor management system 
is by optimizing information flow. This is analogous 
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to designing a communications system to maximize the 
channel capacity. Past work in this area has been based 
on maximizing Kullback-Leibler (KL) divergence. The 
KL divergence between two densities measures their 
dissimilarity, and in our application gives an indica- 
tion of the difference in information between the two. 
In this work, we employ a more general information 
measure called the Knyi  Information Divergence (also 
known as the a-divergence), which reduces to  the KL 
divergence under a certain limit. The a parameter in 
the Rknyi divergence provides an additional flexibility 
that allows for emphasis to be placed on specific por- 
tions of the densities. 

The algorithm that we propose for sensor tasking is 
thus motivated by information theory. First, we utilize 
a target tracking algorithm that recursively estimates 
the joint multitarget probability density (JMPD) for 
the set of targets under surveillance. We then strive to 
task the sensor in such a way that the sensing action it 
makes results in the maximum amount of information 
gain. To that end,.we employ the R h y i  information 
divergence [3] as a measure of distance between two 
densities. The decision as to how to use a sensor then 
becomes one of determining which sensing action will 
maximize the expected information gain between the 
current joint multitarget probability density and the 
joint multitarget probability density after a measure- 
ment has been made. 

The paper is organized as follows. In Section 2, we 
present the target tracking algorithm that is central to 
our sensor management scheme. Specifically, we give 
the details of the JMPD and examine the numerical 
difficulties involved in directly implementing JMPD on 
a grid. In Section 3, we present a particle filter (PF) 
based implementation of JMPD. We see that this im- 
plementation provides for computational tractability, 
allowing realistic simulations to be made with modern 
computing power. Particle filtering techniques have 
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been used in multi-target tracking applications in the 
past [Ill, although our method differs from traditional 
methods in several important aspects. First, there is 
no measurement to target association involved. Fur- 
thermore, each particle is a sample from the joint mul- 
titarget density and therefore is an estimate of both 
the number of targets present and their states. Our 
sensor management scheme, based on maximizing the 
expected E n y i  Information Divergence is given in Sec- 
tion 4. A comparison of the performance of the tracker 
using sensor management to  the tracker using a non- 
managed scheme on a model problem is given in Sec- 
tion 5. We conclude with some thoughts on future 
direction in Section 6.  

2 The Joint Multitarget 
Probability Density (JMPD) 

In this section, we introduce the details of using the 
Joint Multitarget Probability Density (JMPD) for tar- 
get tracking. The concept of JMPD was first discussed 
by Kastella in [4], where a method of tracking multi- 
ple targets that moved between discrete cells on a line 
based on a set of sensor measurements was presented. 
We generalize the discussion here to deal with targets 
that have N-dimensional continuous valued state vec- 
tors. In the model problem, we are interested in track- 
ing the position (5, y) and velocity (?, y) of multiple 
targets and so we describe targets by the four dimen- 
sional state vector [z, P, y, y]'. 

JMPD provides a means for tracking an unknown 
number of targets in a Bayesian setting. The sta- 
tistical model uses the joint multitarget conditional 
probability density p(xt, xk, ...x$-~, x$lZk) as the 
probability density for exactly T targets with states 
xf ,xk ,  ...x$-~, x& at time k based on a set of obser- 
vations Zk . The number of targets T is a variable to 
be estimated simultaneously with the states of the T 
targets. The observation set Zk refers to the collec- 
tion of measurements up to and including time I ; ,  i.e. 

gle measurement or a vector of measurements made at 
time i. 

Each of the state vectors xi in the density 
p(xt,xi, x&lZk) is a vector quantity and may 
(for example) be of the form [x,P,y,y]'. We refer to 
each of the T target state vectors xf , xi, .. .x&- 1, xk as 
a partition of the state X. For convenience, the den- 
sity will be written more compactly in the traditional 
manner as 

Z"{z ,z ', ... z'}, where each of the zz may be a sin- 

P ( X k I Z k )  (1) 

With the understanding that the state-vector X r e p  
resents a variable number of targets each possessing 

their own state vector. As an illustration, some exam- 
ples illustrating the sample space of p are 

p(0lZ), the posterior probability density for no 
targets in the surveillance volume 

p(x1 IZ), the posterior probability density for one 
target in state XI 

p(x1, x2 I Z), the posterior probability density for two 
targets in states XI and x2 

p(x1, x2, x3 IZ), the posterior probability density for 
three targets in states x1,xz and x g  

The temporal update of the posterior likelihood on 
this density proceeds according to the usual rules of 
Bayesian filtering. Using a model of target kinematics 

we may compute the time-updated or prediction 
density via 

J 
(3) 

Bayes' rule enables us to update the posterior den- 
sity as new measurements zk arrive as 

(4) 
p ( z k  IX"p(Xk IZk-1) 

p (  Zk I Z"1) 
p(Xk1Zk) = 

Notice that there is no measurement to  target asso- 

The probabilistic sensor model is denoted by 
ciation necessary to update the JMPD. 

As illustrated above, the sample space of Xk is very 
large - it consists of all possible configurations of state 
vectors xi for all possible values of T .  The origi- 
nal formulation of JMPD given in [4] approximated 
the posterior density by discretizing on a grid. It 
was immediately found that the computational bur- 
den in this scenario makes evaluating realistic prob- 
lems intractable, even when using the simple model 
of targets moving between discrete locations in one- 
dimension. In fact, the number grid cells needed grows 
as LocationsTargets, where Locations is the number of 
discrete locations the targets may occupy and Targets 
is the number of targets. 

Thus, we need a method for approximating the 
JMPD that leads to more tractable computational bur- 
den. In the next section, we show that the Monte Carlo 
methods collectively known as particle filtering break 
this computational barrier. 
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3 Particle Filter 
Implementation of JMPD 

We anticipate that a particle filter based implemen- 
tation of JMPD will break the computational logjam 
and allow us to investigate more realistic problems. 
To implement JMPD using particle filter techniques, 
we first approximate the joint multitarget probability 
density p(X(Z) by a set of Npart weighted samples, 
x p ,  (P = l . . .Npart):  

Npart 

p= 1 
P(XIZ) x W P G  - XP) ( 6 )  

Here we have suppressed the time superscript k ev- 
erywhere for notational simplicity. We will continue to 
do this whenever time is not relevant to the discussion 
at hand. 

Recall from Section 2 that our multitarget state vec- 
tor X constains T partitions, each corresponding to a 
target: 

x = [Xl ,  x 2 ,  ' * e ,  XT-1, XTI (7) 
Furthermore, the joint multitarget probability den- 

sity p(XIZ) is defined for T = O...m. Each of the parti- 
cles Xp , p = l . . .Npart  is a sample drawn from p ( X 1 Z ) .  

Therefore, a particle Xp may have 0,1, ...m partitions, 
each partition corresponding to a different target. We 
will denote the number of partitions in particle Xp by 
np,  where np may be different €or different X p ,  repre- 
senting an uncertainty in the estimate of the number 
of targets in the surveillance region. Since a partition 
corresponds to a target, the number of partitions that 
a particle has is that particle's estimate of the number 
of targets in the surveillance area. 

To make our notation more concrete, assume that 
each target is modeled using the state vector x = 
[x ,  2 ,  y, 4'. Then a particular Xp, which is traclung 
np targets, will be given as 

x p  = [Xp,l, Xp,2r ' .  * Xp,n,l = 

X P 9 ,  X p , l  x p , 2  * .  . 
Xp,l Xp,2 * . . X P P ,  ' 

YPJ YP,2 ' . . YP+, i YpJ Yp,2 * * ' ?jp,np 

) (8 )  

Where here we expand the notation slightly and use 
zp,l to denote the x position estimate that particle p 
has of target 1. 

Notice that this method differs from traditional par- 
ticle filter tracking algorithms where a single particle 
corresponds to  a single target. We find that when each 
particle is attached to a single target, some targets be- 
come particle starved over time. All of the particles 

tend to attach to the target receiving the best measure- 
ments. Our method explicitly enforces the multitarget 
nature of the problem by encoding in each particle the 
estimate of the number of targets and the states of 
those targets. This helps to alleviate the particle star- 
vation issue. 

Note there is a permutation symmetry inherent in 
JMPD, i.e. p ( x 1 , x Z l Z )  = p ( x z , x l l Z ) .  This is partic- 
ularly relevant when targets are near each other and 
particle partitions begin to swap allegiances. We will 
have more to say about this issue in Section 3.5. 

In the following subsections, we give the specifics of 
our particle filter implementation of JMPD. 

3.1 Initialization 
An uninformed method of initialization would be to 

randomly choose particle locations in the surveillance 
area and use the measurements as weights. In the 
multitarget scenario where the number of targets is 
unknown, this would involve randomly choosing both 
the states and number of targets. This is very ineffi- 
cient, especially for large numbers of targets and large 
surveillance volumes. Instead, we incorporate the mea- 
surement likelihood directly into our initialization. 

The basic idea of our initialization technique is to 
propose particles that have targets which are biased 
preferentially towards high likelihood regions. The 
partitions of the multitarget particle are formed by se- 
lecting from these high likelihood regions and the bias 
is removed during resampling. 

The method proceeds as follows. First, each target 
(partition) in each particle is generated by sampling 
from the likelihood given by the first scan of the re- 
gion. Particles are given weights based on their likeli- 
hood and resampled to remove the bias. There is no 
guarantee that the initial particle set will have reason- 
able density near the true multitarget state after just a 
single scan. In fact, at low signal to noise ratio (SNR), 
this is unlikely to  occur on any given scan. Therefore, 
after the first scan a portion of the particles are time 
updated according to the tracking algorithm, and some 
new particles are generated according to the detection 
scheme. The particle population is then formed as a 
combination of newly detected particles and particles 
that are being tracked. As time goes on, fewer and 
fewer particles are generated via the detection scheme 
until finally all particles are being maintained by the 
tracking algorithm. 

3.2 Particle Proposal 
Several methods of particle proposal have been in- 

vestigated. The standard method used, which will 
be referred to as sampling from the kinematic prior, 
proposes new particles at time I C ,  Xk, according 

' 
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to the traditional Sampling-Importance Resampling 
(SIR) method. For each particle at time k - 1, Xf-' , a 
new particle X! is generated using the kinematic prior 

In the case where the targets are indistinguishable, 
each target in Xk-' behaves according to the same 
motion model and is proposed according to the Kine- 
matic model. In the more general case where targets 
are distinguishable (perhaps due to a sensor capable 
of target classification, as in [lo]) different kinematic 
models may be used for each of the partitions in a 
particle. This amounts to having a different form of 
equation (3) for different types of targets. 

In addition to this simple method, we have inves- 
tigated alternate particle proposal techniques, all of 
which are developed as a means of biasing the proposal 
process towards the measurements. 

The coupled-partition (CP) proposal method pro- 
poses M possible realizations (futures) for each par- 
tition of a particle. We use the notation Xf,j(m) to 
refer to the mth proposal for the j t h  partition of the 
pth particle at time I C .  See equation (8) for a concrete 
example of a particle and its partitions. The proposed 
partitions are then given weights according to the like- 
lihood, and a new particle Xk is chosen by selecting 
a representative from each of the proposed partition 
sets. 

Alternatively, we utilize the independent-partition 
(IP) method given in [9] proposes new partitions and 
weights each partition independently. Particles at time 
k, XE, are formed by selecting partitions from the set of 
weighted proposed partitions from the particles at time 
k - 1. This method assumes that the targets states are 
independent, which is not the case when targets cross. 

We have found that an adaptive method, which au- 
tomatically selects between the IP and CP methods 
gives the best tradeoff of performance versus efficiency. 
This method identifies which targets are acting inde- 
pendently and which are not based'on their proximity 
in measurement space. Those partitions (targets) of a 
particle that are well separated are treated as indepen- 
dent as proposed via the IP method. The remaining 
partitions that are not well separated are proposed us- 
ing the CP method. 

Finally in any of these methods, target birth and 
death may be accounted for by modifying the proposal 
density to incorporate a probability that the proposed 
particle Xi has either fewer or more targets then X:-'. 
This is useful in scenarios where targets may enter or 
leave the surveillance area. 

p(Xk IXk--1). 

3.3 Measurement Update 
Each proposed particle is given a weight according 

to  its agreement with the measurements, the kinematic 

model, and the importance density [6]. Since we are 
proposing particles based on p(X'lX"-'), it can be 
shown that the proper weighting is given by 

W P  cX P(zlX;) (9) 

The IP method detailed above requires a slight mod- 
ification to this weight to account for the bias intro- 
duced in proposal process - see [9]. 

Each particle Xf simultaneously postulates that a 
specific number of targets exist in the surveillance 
region (np) and that the target states are given by 
[XI, x2, ..., x,~-~, x,,]. In the case where the measure- 
ment set is made up of a scan i cells (say for example 
on a XY grid) where the measurement in each cell is 
independent of the measurements in the other cells, we 
compute the weight as 

WP 0: JJP(4XP) (10) 
2 

where in this notation zi refers to the measurement 
made in cell i. A particular particle Xp will postulate 
that there are targets in some cells i, (not necessarily 
distinct): 

(11) 
. . .  . 

2, = Z',22, ... a,, 
We denote the measurement density when there are 

0 targets present as pol and simplify the weight equa- 
tion as 

If we let Oi,p (the occupation number) denote the 
number of targets that a particle p postulates exist in 
cell i, then we write the weight as 

3.4 Resampling 
After each measurement update, Npart particles are 

selected with replacement from the existing set of par- 
ticles based on the weights wp. We then have a col- 
lection of Npart particles with uniform weight that ap- 
proximate the density p(X1Z) .  At this step, particles 
that do not correspond to measurements are eliminated 
- in particular, particles that have an np that is un- 
supported by measurements are not retained. 
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The particular resampling that we have implemented 
is called systematic resampling [6]. We like this scheme 
because it is easy to implement, runs in O ( N ) ,  is un- 
biased, and minimizes Monte Carlo variance. Many 
other resampling schemes and modifications are pre- 
sented in the literature [7]. Of the methods we have in- 
vestigated, we have found that adaptive resampling [8] 
and Markov Chain Monte Carlo (MCMC) moves using 
a Metropolis-Hasting scheme [7] lead to improved per- 
formance over straightforward resampling in our appli- 
cation. 

3.5 Estimation 
Estimates of various interesting quantities may be 

easily made using the particles. Estimation is best 
performed before resampling, as resampling has been 
shown to only increase the variance of the estimate. 

To compute the probability that there are exactly 
n targets in the surveillance volume, first define the 
indicator variable 

1 if n p  = n 
I p = {  0 otherwise 

Then the probability of n targets in the surveillance 
volume, p(nlZ) ,  is given by 

Npart 

p=l 
P(nlz> = IPWP (17) 

So to estimate the probability of n targets in the 
surveillance volume, we sum up the weights of the par- 
ticles that have n partitions. 

To compute the estimated state and covariance Of 
target i, we first define a second indicator variable I p  
that indicates if particle p has a partition correspond- 
ing to  target i: 

1 if np 2 n 
0 otherwise ip= { 

Furthermore, we define the normalized weights to be 
I 

So 6, is the relative weight of particle p ,  with respect 
to all particles tracking target i. Then the estimate of 
the state of target i is given by 

Nport 

p = l  
X ( i )  = E [ X ( i ) ]  = Ip2itpXp,i (20) 

Which is simply the weighted summation of the PO- 
sition estimates from those particles that are tracking 
target i. The covariance is given by 

Nport 

p= 1 
A(2) = 1 ~ p ~ p ( x p , z  - X,(i))(Xp,2 - X,(2))' (21) 

The summations in (20) and (21) are taken over only 
those particles that are tracking target i. The permu- 
tation symmetry issue mentioned in Section 3 comes to 
the forefront here. Notice that it is not necessarily true 
that partition a of particle j is tracking the same target 
that partition i of particle j + 1 is tracking. Therefore, 
before evaluation of or can be made, a sorting of the 
partitions in each particle must be accomplished. This 
is affected by storing information about the trajecto- 
ries of each of the partitions and clustering based on 
the current and past states. 

4 R6nyi Information Divergence 
For Sensor Management 

Our information based method for tasking the sen- 
sor is to choose the sensing action that maximizes the 
expected information gain. To that end, our algorithm 
proceeds by first enumerating all possible sensing ac- 
tions. A sensing action may consist of choosing a par- 
ticular mode (i.e. SAR mode versus GMTI mode), a 
particular dwell point, or a combination of the two. We 
next calculate the expected information gain in making 
each of the possible sensing actions, and select to take 
the action that yields the maximum expected informa- 
tion gain. 

In general, the calculation of information gain be- 
tween two densities f 1  and f o  is done using the R6nyi 
information divergence (22), also known as the a- 
divergence: 

I 

1 
a d f l l l f 0 )  = -&n/H.)/o'-"(z)d. (22) 

The function D, given in equation (22) is a measure 
of the divergence between the two densities fo and fl. 
In our application, we are interested in computing the 
divergence between the predicted density p(XIZk-')  
and the updated density after a measurement is made, 
p(XIZk) .  Therefore, we write 

Da (P~xIz"lIP(xIzk-')) = 

-h 1 p(XIZk)ap(XIZ"l) (23) 

X a - 1  

The integral in equation (22) reduces to a summa- 
tion since any discrete approximation of the density 
p(XIZk- l )  only has nonzero probability at a finite 
number of target states. After some algebra and the 
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incorporation of Bayes rule (eq. 4), this quantity can 
be simplified to  

Our particle filter approximation of the density given 
by equation (6) reduces equation (24) to 

D, (P(XIZk))IIP(XIZk-l)) = 

where 

Npart  

P(Z)  = ~PP(ZIXP) (26) 
p= 1 

We note in passing here that the sensor model 
p(elXp) is used to incorporate everything known about 
the sensor, including SNR, detection probabilities, and 
even whether the locations represented by X, are vis- 
ible to the sensor. 

We would like to choose to perform the measure- 
ment that makes the divergence between the current 
density and the density after a new measurement has 
been made as large as possible. This indicates that the 
sensing action has maximally increased the information 
content of the measurement updated density, p(XI Zk) , 
with respect to the density before a measurement was 
made, p(XIZk-l). 

We propose, then, as a method of sensor manage- 
ment calculating the expected value of equation (25) 
for each of the m (m = l...M) possible sensing actions 
and then choosing the action that maximizes the ex- 
pectation. In this notation m refers to any possible 
sensing action under consideration, including but not 
limited to sensor mode selection and sensor beam po- 
sitioning. In this manner, we say that we are making 
the measurement that maximizes expected information 
gain. 

The expected value of equation (25) may be writ- 
ten as an integral over all possible outcomes z, when 
performing sensing action m: 

< D, >m= 

In the special case that we consider here where the 
measurements are thresholded and are therefore either 

detections or no-detections (i.e. z = 0 or z = 1), this 
integral reduces to 

Which, using equation (25) results in 

< D, >n= 

Implementationally, the value of equation (29) can 
be calculated for a host of possible actions using only 
a single loop through the particles. This results in 
a computationally efficient method for making sensor 
tasking decisions. 

In summary, our sensor management algorithm is a 
recursive algorithm that proceeds as follows. At each 
occasion where a sensing action is to be made, we eval- 
uate the expected information gain as given by equa- 
tion (29) for each possible sensing action m. We then 
select and make the sensing action that gives maximal 
expected information gain. Notice that this is a myopic 
(greedy) scheme, which chooses to make the measure- 
ment that optimizes information gain only for the next 
time step. 

5 Simulation Results 
We test the performance of the sensor management 

scheme proposed here by considering the following 
model problem. We have three targets moving on a 
12212 sensor grid. Each target is modeled using the 
four-dimensional state vector [z, 5 ,  y,  g]' . Target mo- 
tion is simulated using a constant-velocity model with 
a (relatively) large diffusive component. The trajecto- 
ries have been shifted and time delayed so that there 
are two times during the simulation where targets cross 
paths. 

The target kinematics assumed by the filter (equa- 
tion 3) are a constant velocity model with a slightly 
larger diffusive constant then that of the simulation. 
At each time step, a set of L (not necessarily distinct) 
cells are measured by the imager. The sensor is at a 
fixed location above the targets and all cells are visi- 
ble to the sensor at all times in the simulation. When 
measuring a cell, the imager returns either a 0 (no de- 
tection) or a l (detection) governed by Pd, Pf, and 
SNR.  This model is known by the filter and used to  
evaluate equation (4). 

We contrast in this section the performance of the 
tracker when the sensor uses a non-managed (periodic) 
scheme versus the performance when the sensor uses 
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the management scheme presented in Section 4. The 
periodic scheme behaves as follows. At time 1, cells 
1...L are measured. At time 2, cells L + 1...2L are 
measured. This sequence repeats until all cells have 
been measured, at which time the scheme resets. The 
managed scheme uses the expected information diver- 
gence to calculate the best L cells to measure at each 
time. All simulations shown in this section are done 
with Q -+ 1 in equation (22), corresponding to the KL 
divergence. 

In Fig. 1, we give a single-time snapshot, which 
graphically illustrates the difference between the two 
schemes. On the left, we show the managed scheme 
and on the right the periodic scheme. In both panes, 
the three targets are marked with an asterisk, the co- 
variance ellipses of the estimated target position are 
shown, and we use grayscale to indicate the number of 
times each cell has been measured at this time step. In 
the managed case, sensor dwells are used in the areas 
that contain the targets which results in much tighter 
covariance ellipses. 

Figure 1: A Comparison of Non-Managed and Man- 
aged Tracking. (L) Using Sensor Management, (R) 

Using a Periodic Scheme. 

Qualitatively, we see that in the managed scenario 
the measurements are focused in or near the cells that 
the targets are in. Furthermore, the covariance el- 
lipses, which reflect the current state of knowledge of 
the tracker conditioned on all previous measurements, 
are much tighter in the managed scenario. In fact, 
the non-managed scenario has confusion about which 
tracks correspond to which target as the covariance el- 
lipses overlap. 

For a more detailed comparison, we provide the 
Monte Carlo simulation results shown in Figure 2 and 
Figure 3. The sensor management algorithm detailed 
earlier was run with L = 24 (i.e. was able to scan 
24 cells at each time step) and is compared to the 
non-managed scheme with 24 to 312 looks. Figures 
2-and 3 show that the unmanaged scenario needs ap- 
proximately 312 looks to equal the performance of the 
managed algorithm in terms of root mean square error 
(RMSE). We say that the sensor manager is approx- 

imately 13 times as efficient as allocating the sensors 
without management. 

Figure 2: Median Error versus Signal To Noise Ratio 
(SNR). Managed Performance with 24 Looks is Similar 

to Unmanaged Performance with 312 Looks. 

2.5 r 

"1 2 3 4 5 6 9 12 15 
SNR 

Figure 3: Mean Error versus Signal To Noise Ratio 
(SNR). Managed Performance with 24 Looks is Similar 

to Unmanaged Performance with 312 Looks. 

6 Conclusion 
We have presented in this paper a sensor manage- 

ment scheme based on computing the expected infor- 
mation gain for each sensor tasking under considera- 
tion. Simulation results show that the performance 
of our particle filter based multitarget tracker using 
sensor management with 24 looks is similar to a non- 
managed filter using 312 looks. This means that the 
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same tracking capability is achievable with sensor man- 
agement using (approximately) a factor of 13 fewer sen- 
sor dwells. 

There are two interesting directions in which we see 
this work evolving. First, this method is amenable 
to  incorporating auxiliary information such as terrain 
constraints, sensor trajectories, and sensor visibility 
maps. For example, if the appropriate auxiliary infor- 
mation were incorporated, this method would clearly 
never choose to  make a measurement in a region that 
was not visible to the sensor due to hill regions be- 
tween the sensor and the desired look location. Visi- 
bility information, a property of the sensor enters di- 
rectly into the filter through the sensor model, equa- 
tion (5). Second, the current algorithm is a myopic 
algorithm, choosing to make the measurement that is 
best at the current time step. We are currently in- 
vestigating Markov decision process strategies to allow 
non-myopic sensor management. 
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