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Overview

• We present a method of tracking multiple targets based on recursive 
estimation of the Joint Multitarget Probability Density (JMPD).
– This is different from traditional multitarget tracking algorithms such as MHT, 

JPDA, etc. in that we are interested in estimating the full joint multitarget 
density.

• We give a particle filter algorithm for recursively estimating the JMPD
– The particle filter algorithm uses an adaptive sampling scheme that exploits the 

multitarget nature of the problem.
– We show that the particle filter implementation provides computational 

tractability.

• We detail the inherent permutation symmetry associated with JMPD
– Permutation symmetry is inherent in any multitarget tracker
– This symmetry manifests itself in the particle filter implementation as partition 

swapping.
– We show that the partition swapping is automatically removed through repeated 

resampling



Single Target Bayesian Filtering
Paradigm & Notation

• The state of an individual target is modeled by x, e.g.

• We model the state at time k probabilistically using

the state to be estimated based on a sequence of noisy measurements 
taken over k time steps, 

• The target motion is modeled as Markov using a Kinematic prior

• The sensor output is modeled using

We allow for the target motion to be non-linear, the measurement to state 
coupling to be non-linear, and that posterior density to be non-Gaussian.
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Single Target Bayesian Filtering
Paradigm & Notation

• Bayes’ rule and the Chapman-Kolmogorov equation give the procedure 
for incorporating measurements and evolving the density through time:

• In the general setting of non-linear target kinematics, non-linear 
measurements and non-Gaussian densities, an analytic solution for these 
recursions does not exist and so approximate techniques are required
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Prediction (generating the Kinematic prior)

Update (Bayes’ rule to Incorporate Measurements)



Preliminaries : Tracking a Single 
Target Using a Particle Filter

• Approximate the density by a set of 
weighted samples (particles)

• At each time step, propose new particles 
from the existing particles based on the 
importance density

• Weight the particles based on the 
measurement likelihood

• Resample the particles
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The Wrong Way to do 
Multitarget Tracking

• A naïve approach to tracking multiple targets 
is to maintain the same single target state 
space (e.g.              ) and expect the density 
to be multimodal

– This does not model the density correctly – as 
a joint multitarget density. Coupling between 
the targets is ignored.

– Furthermore, in this paradigm a multimodal 
density may represent multiple targets or 
merely an uncertainty in a single target that 
has two peaks.

• A multitarget filter constructed in this manner 
is guaranteed to lose targets

– These consequences appear irrespective of 
the manner of implementation (i.e. particle 
filter, Gaussian sum, grid-based method).

One target or two?
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The Wrong Way to do 
Multitarget Tracking

• Specifically, in a particle filter implementation of the naïve approach,
– Measurements are made and the particles are weighted accordingly
– Resampling is performed, eliminating particles with low weight in favor of those 

with high weight
– Targets corresponding to low-likelihood measurements (e.g. missed detections) 

are resampled away.

• An artificial way to compensate for this is to introduce target birth and death
– Targets are continually reinitiated (born) to overcome the fact that the filter 

incorrectly kills off targets due to its flawed formulation.
– This birth/death has no relation to the actual physics behind what is going on. 

Time = 0 Time = 1 Time = 2 Time = 3



The Correct Formulation: The Joint Multitarget
Probability Density (JMPD)

• As before, the state of an individual target is modeled by x.

• To adequately model the joint multitarget density, the state vector of the 

system (where perhaps the number of targets T is unknown) is defined as

• The central element that summarizes our knowledge of the system at time 

k is the joint multitarget probability density (JMPD),

which is to be estimated based on a sequence of noisy measurements 

taken over k time steps, 
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The Joint Multitarget
Probability Density (JMPD)

• As examples, the sample space of p(Xk|Zk) contains

• State evolution is modeled as Markov using a Kinematic prior
– This includes target motion models which may be class dependent

– Constraints such as roadways, terrain maps, and hospitability enter into this prior.

– If there really is birth and death (such as targets entering/leaving the surveillance 
region along the boundaries), that probability enters in here.

• The sensor output is modeled using )|( kkp Xz

)|( 1kkp −XX

p(Ø | Zk), The posterior probability density for no targets in the surveillance region 

p(x1,x2 | Zk), The posterior probability density for two targets in states x1 and x2
Notice the permutation symmetry inherent in JMPD



The Joint Multitarget
Probability Density (JMPD), cont’d

• The JMPD obeys the usual rules of Bayesian filtering : the two- step 
recursion of prediction and update:
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Particle Filter 
Implementation of JMPD

• As in the single target case, there are several methods of solving the 
prediction and update equations : e.g. Gaussian sum and discretization
onto a fixed grid.

• The strategy we employ here is to avoid a fixed grid and Gaussian 
approximations of any sort with particle filtering. 

• Let the Joint Multitarget Probability Density (JMPD)

be approximated by N weighted samples (particles) as
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Particle Filter 
Implementation of JMPD

• Each of the particles Xp is a sample drawn from the JMPD p(Xk|Zk)

– Therefore, a particle will contain an estimate of both the number of targets in 
the surveillance region and the states of each.

• A particle Xp will be written as 

– Each xp,i in the particle Xp is the state vector of a particular target, and will be 
called a partition of the state vector.

– A particle may have 0, 1, … ∞ partitions, each partition corresponding to a 
different target.

– The number of partitions in a particle is the particles estimate of the number of 
targets in the surveillance region.

• We want to generate a set of samples (particles) that approximate the 
joint multitarget probability density p(Xk|Zk).
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Design of Importance Density

• The key to computational tractability in a particle filtering algorithm is 
designing a good importance (sampling) density

• It is important to ensure that proposed particles end up in the correct part 
of state space – consistent with both the kinematic prior and the likelihood
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Particles proposed 
in this region will be 

given low weight

Particles proposed 
in these regions will 
be given high weight



The Multitarget Proposal Density

• Recall that the posterior density is approximated by a set of N particles

and each particle Xp is partitioned as    

where each partition corresponds to a target xp,i =[xi ?i yi ?i]’

• We focus on designing a multitarget importance density that uses the fact that 
each particle contains multiple partitions corresponding to multiple targets.
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The Standard Importance Density: 
The Kinematic Prior

Proposing via the Kinematic Prior

• In this traditional method of proposing particles, each 
particle at time k-1 generates a new particle at time k via the 
repeated application of the single target kinematic (motion) 
model p(xk|xk-1)

• Distinguishing Feature : Measurements are not used when 
proposing particles

Particle 
at time k-1

Proposed 
Particle at time k Cells with target Detections

(ignored during proposal)



Importance Densities that Explicitly Model 
Multitarget Nature of the Problem

Coupled Partition (CP)
• Particles at time k built partition-by-partition. 

For each of the N samples in a partition, we 
propose R possible futures via the Kinematic
prior, weight each using the measurements, 
and select one.

• CP appropriate under the most general of 
conditions, but computationally costly. It is in 
fact an approximation to the OID.

Independent Partition (IP)*
• Particles at time k built partition-by-partition. 

For each of the N samples in a partition, 
propose one new sample via Kinematic
prior and weight via measurements. Select 
with replacement N samples from the group.

• IP only appropriate when targets (partitions) 
are independent; Significantly lightens 
computational burden when applicable.

Partition 1 
at time k-1

Possible Futures of 
partition 1 at Time k

Samples of partition 1
at time k-1

*See Orton & Fitzgerald, 2002

Possible Futures of 
partition 1 at time k

Partition 1 of a particular particle Partition 1 of all particles



Under What Circumstances is the IP 
Method Applicable?

• The JMPD is permutation symmetric : If x1 and x2 are states of two targets, then        
X = [x1,x2] and X = [x2,x1] refer to the same event.

• The particle filter manifestation of this permutation symmetry is partition swapping.
– A particle contains an estimate of both the number of targets and their states, e.g. when 

target state is modeled [xi ? i yi ? i]’, a 2-target particle may be

– This symmetry manifests itself directly in the particles used to approximate the density. The 
two particles X1 and X2 represent the same event:
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Partition Swapping

• Consider 4 particles (denoted by “o”,”x”,”+” and “*”) that are each 
tracking two targets (Target A and Target B)

• Each particle has two partitions – color coded black and red
• When proposing according to the Kinematic prior, partition swapping 

may occur when targets cross – this is completely acceptable.

Each particle has an estimate 
of both target A and target B.

The ordering of target partitions in 
particle “x” is opposite of the others.

When targets “cross” partition 
swapping is possible.

Time 1
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Time 3
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Partition Swapping

• Using the IP Method in scenarios where 
swapping has occurred is unacceptable
– IP assumes that a particular partition is 

associated with one target 
– e.g. IP assumes all of the red partitions 

are tracking the same target.

• Using IP at Time 3 may lead to some 
particles that have both partitions 
associated with the same target
– To build a new particle, IP proposes a 

new partition 1 by sampling from the set 
*, o, +, x and a new partition 2 by 
sampling from the set *, o, +, x

– This may lead to a particle which is 
constructed using x and o

This particle (x) now has both partitions 
tracking target B – i.e. it (incorrectly & 

artificially) contributes probability mass to 
the state “two targets at location B”

Time 3

Time 4
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Partition Swapping, cont’d

• The CP Method does not mix particles – lineage is 
maintained.
– New particles will be proposed with the same ordering as particles 

from the previous time step.
– Permutation symmetry is respected and probability mass is not 

artificially transferred to incorrect states.

• CP applicable in all scenarios.
– Significantly less efficient then IP method
– When IP appropriate, it should be used.

• IP applicable when targets are ‘well separated’ (acting 
independently) and the partitions are ordered identically.



Reordering Partitions

• Assume now that the actual targets are well separated, but different 
particles have different orderings of targets

• We call the [A B] particles “A-first” particles and the [B A] “B-first” 
particles.

• We find that the particles automatically order themselves identically 
and allow for the IP method to be applied
– In general, each resampling results in a new set of particles with different 

distribution of A first and B first particles.
– The only stable state is for 100% to be A-first of 100% to be B-first.
– In practice, resampling quickly moves the distribution to a stable state.
– It can be shown analytically that the automatic ordering will happen with a 

time constant on the order of N, the effective number of particles (in 
practice, the time steps until automatic ordering << number of particles)
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Reordering Partitions
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Multitarget Proposal Densities

• When targets are well separated (in the measurement space), each
sample is associated with a particular target. IP is appropriate here.

• When targets become “close” samples commingle and measurements of 
one target may effect samples associated with other targets. IP is not 
appropriate.

• The importance density should be Independent Partitions (IP) when 
targets are well separated and Coupled Partitions (CP) when they are not.



Adaptive Proposal Method Switching

When are partitions ‘well separated’?

D1

D2
D3

Sample from partition i
closest to mean of partition j

Sample from 
partition j

farthest from mean 
of partition j

Mahalanobis Distance
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Multitarget Proposal Densities

Method Flops
Kinematic Prior 6.32E+06

Independent Partition 6.74E+06
Adapative CP/IP 5.48E+07
Coupled Partition 1.25E+08

• Simulation: Three targets moving on a grid. 

• Targets spend approximately 50% of the time ‘near’ each other (when only CP is 
appropriate) and 50% of the time well separated (where IP is appropriate)

• Adaptive method achieves similar performance as CP at half the FLOPS.



How much Effort does the adaptive 
strategy save?

• We compare a PF using the Kinematic Prior with one using the adaptive strategy.

• Particle Filtering allows for
– Non-linear Measurement to State Coupling
– Non-linear State Evolution (Target Motion)
– Non-Gaussian Densities

• We ignore all these benefits for a moment

• How well does the multi-target PF perform in comparison to a Kalman Filter in the regime
where a Kalman Filter is applicable (and optimal)?

– Simulation: Linear motion, linear measurements, Gaussian pdf. 
– Five (well separated) targets with state vectors [x ? y ?]
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Is it Tractable? 10 Real Targets

• Vehicle Trajectories
– 10 Real targets culled from 

the NTC Sensor Strike Track 
Files

• #433, #552 Cross
• #392, #2078 travel together 

sometimes
• #264, #953, #1462 travel 

together a lot
• #102, #115, #125 added to 

bring the total to 10

– 1000 time steps, 1 second 
apart

– Vehicles are time & space 
shifted to be in the same 
region at the same time



Is it Tractable? 10 Real Targets

• Sensor Simulation
– A quasi-GMTI simulation 

where sensor measures 
10x1 grid cell and gets 10 
returns

– The sensor grid is 50 cells 
x 50 cells. Each cell is 
100m x 100m.

– SNR = 12

• JMPD - Particle Filter
– Nparts = 500
– Fully adaptive switching 

between CP and IP based 
on sample distance

Runtime ~ 1 Hour on Off the shelf Linux Box
3 times “real time”



Conclusion

• We’ve presented a method of tracking multiple targets based on 
recursive estimation of their Joint Multitarget Probability Density 
(JMPD).

• Computational tractability is provided by Particle Filter-based 
implementation.

– Adaptive sampling schemes exploit multitarget nature of the problem.

– Permutation symmetry manifests itself as partition swapping

• Natural framework to do sensor management where the JMPD is used to 
compute the area of maximal expected information gain.



• Backup slides: Information based sensor 
management using the particle filter 
implementation of JMPD.



Information Based 
Sensor Management

• The problem of Sensor Management is to determine the best way to task a 
sensor where the sensor may have many modes and be directed in many 
manners.

• We take an information-based sensor management route and rephrase the 
problem in terms of tasking the sensor to make the measurement that 
maximizes the expected amount of information gained.

• We require a measure of information gained by making a sensing action, 
where a sensing action may be a sensing modality (e.g. SAR or GMTI), a 
sensing direction (e.g. pointing angle) or a combination of the two.

And seek to make the sensing action, m, that maximizes the expected 
information gain.
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Information Based Senor Management: 
Measures of Gain in Information

• The Kullback-Leibler (KL) Divergence between two densities p and q is

• In the JMPD setting:

• More generally, the Rényi (α-) Divergence between p and q is

• In the JMPD setting:

• When α→1 the α-divergence converges to the KL divergence.
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Expected Gain 
Derivation and Calculation

• We wish to make the measurement m (dwell point / mode, etc.) that has 
the best expected information gain, i.e that m which maximizes

• Assume for the moment that we’ve chosen a particular dwell point m and 
made a measurement z

• Using Bayes’ rule

• The Rényi Divergence simplifies to 
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Expected Gain 
Derivation and Calculation

• The Particle Filter approximation represents the posterior as a sum 
of weighted delta functions

• Which yields

• Where
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Expected Gain 
Derivation and Calculation

• If the measurement z has not yet been made, we can calculate instead 
the expected Rényi Divergence for a sensing action m as

• Which in the thresholded case ( zg {0, 1} ) becomes simply

• The quantity <Dα> can be calculated for many different sensing actions 
simultaneously, with computational burden dominated by the number of 
particles
– e.g. Calculate <Dα> for measuring cell n, n=1…N, with modality m, m=1…M.
– Each different sensing action will of course have a different p(z), and p(z|Xp)
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Sensor Management 
Algorithm – A Summary

• In summary, our sensor management 
algorithm proceeds as follows. 
– At each occasion where a sensing 

action is to be made, we evaluate the 
expected information gain for each 
possible sensing action m using the 
Rényi Information Divergence 
measure.

– We then select and make the sensing 
action that gives maximal expected 
information gain.

• This is a greedy (myopic) approach 
that maximizes information gain on 
only the current scan



Tracker Comparison
Managed vs. Non-Managed

• We illustrate the benefit of this sensor management scheme given in this 
talk using a particle filter implementation of JMPD tracking 10 moving 
targets.

• Below, we contrast the performance when the sensor is directed using the 
sensor management algorithm with the performance when a periodic
(non-managed) scan of the surveillance region is employed.



Tracker Comparison
Managed vs. Non-Managed

• Monte Carlo tests (left) show performance with SM using 50 looks similar to 
periodic scan with 700 looks 

– SM makes the tracker 12 times as efficient in terms of sensor resources needed.

• More extensive runs in similar scenario (right) with 3 targets show performance with 
SM using 24 looks similar to periodic (non-managed) performance with 312 looks 

– SM makes the tracker approximately 13 times as efficient in this scenario.
– Performance of managed scenario with 24 looks at SNR = 2 (3dB) similar to performance of 

periodic management at SNR = 9 (9.5dB) – approximately a 6.5dB performance gain.

Utility of Sensor Management : Three Simulated Targets



The Information Based Method 
Automatically Optimizes Across Modes

• MTI Mode
– Measures cells that are 500m x 20m
– Measures strips 1x25 cells long
– Pd = 0.9, Pfa = .001
– Detects targets with velocity > MDV 

• FTI Mode
– Measures cells that are 100m x 100m
– Measures spots 5x5 cells on the ground
– Pd = 0.5, Pfa = 1e-12
– Detects stopped targets

• Particle Filter
– Multiple model (stopped and moving)
– Adaptive Proposal Method
– 500 Particles, 3 Targets

• Sensor Management
– Expected gain for each modality and 

pointing angle before each measurement.
– 12 Looks/time step each of 250km2 (total 

approximately 10% of surveillance area)



Optimizing Collection Strategy 
Across Modes

Up to Time 48, 
Target 2  is stopped.

The filter accurately has 
100% of particles in 

“stopped” mode for Target 2.

MTI Dwells are used 
periodically to detect if it has 

transitioned to “moving” 
mode.

At Time 49, Target 2 
Starts Moving.

All sensor dwells are 
given to Targets 1 and 
3 at this time, so the 
state change is not 

detected.

At Time 50, an MTI dwell is 
made on Target 2 to see if 

has started moving.

The target is detected, and 
so another MTI dwell is 

made, and then an FTI dwell 
to ensure that the target has 

actually started moving.

The filter is then certain that 
the target moving.



The Information Based Method 
Automatically Optimizes Across Modes

• A surevillance region of 20km x 
20km which contains 5 targets is 
considered.

• The sensor has two modes : 
Coarse mode and Fine mode.

– “Fine mode” uses 200 x 8 grid 
(resolution = 100m x 2500m)

– “Coarse mode” uses 40 x 8 grid 
(resolution = 500m x 2500m)

• Each scan contains 39 cells in the 
range direction.

• The sensor platform rotates counter 
clockwise around surveillance 
region 1 degree per second, always 
focusing on patch center.



Conclusions and Future Work

• We’ve presented a method of tracking multiple targets and sensor management based 
on recursive estimation of the Joint Multitarget Probability Density (JMPD).

– Computational tractability is provided by Particle Filter-based implementation with adaptive sampling 
schemes that exploit multitarget nature of the problem.

• We have demonstrated a method of sensor management (SM) which uses the JMPD and 
tasks the sensor to make measurements that yield the maximum expected information gain.

– In the application of tracking multiple moving ground targets, SM of this type is able to use the 
sensor more than 10 times as efficiently as a simple periodic scan. 

– The method automatically captures the tradeoff between sensor modalities (e.g. fine resolution mode 
vs. coarse resolution mode, GMTI mode vs. SAR mode) without any ad hoc adjustments.

• The SM algorithm presented is myopic (greedy). 

– Sensor platform motion (not modeled here) makes it important to plan ahead and choose optimal 
measurement sequences rather than just individual measurements

– Future work includes extending these principles to non-myopic sensor management, perhaps using 
a MDP formulation and Monte Carlo or rollout type solutions.


