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ABSTRACT

This paper describes the design and implementation of multiple model nonlinear filters (MMNLF) for ground target tracking
using Ground Moving Target Indicator (GMTI) radar measurements. The MMNLF is based on a general theory of hybrid
continuous-discrete dynamics. The motion model state is discrete and its stochastic dynamics are a continuous-time Markov
chain. For each motion model, the continuum dynamics are a continuous-state Markov process described here by
appropriate Fokker-Plank equations. This is illustrated here by a specific two-model MMNLF in which one motion model
incorporates terrain, road, and vehicle motion constraints derived from battlefield observations. The second model is slow
diffusion in speed and heading. The target state conditional probability density is discretized on a moving grid and
recursively updated with sensor measurements via Bayes’ formula. The conditional density is time updated between sensor
measurements using Alternating Direction Implicit (ADI) finite difference methods. In simulation testing against low signal
to clutter + noise Ratio (SNCR) targets, the MMNLF is able to maintain track in situations where single model filters based
on the either of the component models fail. Potential applications of this work include detection and tracking of foliage-
obscured moving targets.

Keywords: Nonlinear filtering, Fokker-Planck equation, target tracking, multiple models, alternating direction implicit
scheme, finite difference methods

1. INTRODUCTION

Ground target tracking often requires operation at low signal to clutter + noise ratios (SNCR), especially when target vehicles
are moving beneath a forest canopy or otherwise obscured. However, ground targets typically have constraints on their
motion that constitute an additional information source that can be included in target motion models. For example, terrain,
roads and other surface features may have been previously mapped. This additional information source, when properly taken
advantage of, can help to overcome the low SNCR problem. Past work [4,5] shows that tracking performance is improved by
incorporating this type information into filters based on variable structure interacting multiple model Kalman Filters
(IMMKEF). In [4,5] the IMMKF have spatially varying non-isotropic plant noise but do not directly incorporate dynamic
vehicle inputs such as preferred heading or speed. In [1], a single model nonlinear filter using an Inhomogenous Integrated
Ornstein-Uhlenbeck (IIOU) model with spatially varying coefficients is used. This nonlinear filter performs satisfactorily in
geographic regions that have been well surveyed. In these regions, the model coefficients are well characterized. However,
performance is poor in areas where preferred heading and speed are unknown.

The principal contribution of the work reported here is the development of an interacting multiple model nonlinear filter
(MMNLF), where one model incorporates vehicle motion preferences directly into the filter. In wartime or other realistic
situations, this data may not be reliable for all areas of interest. Some areas will have incomplete or missing data, either due
to lack of vehicle histories or conflicting vehicle histories. It is therefore necessary to allow the filter to operate without these
control inputs in these situations. In this work, this is addressed by the second model, which is a constant speed/constant
heading model. Based on sensor measurements, the MMNLF adaptively weights the models and uses the one most
appropriate for the current region.

This paper is organized as follows. Section 2 first synopsizes NLF and then extends the framework to multiple models.
Section 3 gives the details of our implementation of a two-model NLF. An IIOU model is used for target motion model that
incorporates preferred vehicle motion derived from terrain, road and vehicle dynamics constraints. The second model is a
simple constant velocity (CV) model. Together, these two models give the benefit of using a priori terrain information and a
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procedure for areas where that information is unavailable. Simulations comparing the multiple model filter with each of the
single model filters are presented in Section 4. The simulations show that the multiple model filter is able to perform well in
situations where each of the two filters acting alone has difficulty.

2. NONLINEAR FILTERING MATHEMATICAL FRAMEWORK

The structure of a nonlinear filter (NLF) is similar to that of a conventional Kalman filter in that it consists of time update (or
prediction) and measurement update. Unlike the Kalman Filter, which estimates just the first two moments of the conditional
density, nonlinear filters develop an estimate of the entire target state conditional density. This difference allows NLF based
trackers to operate robustly in many real-life situations where one or more of the linear/Gaussian assumptions of the Kalman
filter are violated.

2.1 Single Model NLF

The objective of a filter is to estimate the time-dependent target state X,, given a sequence of measurements y; made at
discrete times #; . We denote by Y, the collection of measurements y; up to and including time 2 : Y, ={y, :#; <t}. To
treat nonlinear effects, NLF methods maintain an estimate of the conditional density p(x,|Y,) for the target state x,
conditioned on the collection of measurements Y;. Quantities of interest such as the minimum mean square error state
estimate, the covariance, and the maximum likelihood state estimate can be constructed from this density.

The starting point for modeling time evolution (prediction) in the NLF is the same as it is in Kalman filtering: the Ito
stochastic differential equation. The Ito equation summarizes how target states and their probability densities evolve in time
due to both deterministic and random target motion effects. In the case of target tracking, this is often called the target motion
model or kinematic model, because it is often constrained by the physical properties of the target being tracked. For the time-
dependent target state X, , the Ito equation is given by

dx, =f(x,,0)dt + G(x;,0)df;, t2tg )
where x;and f are n-vectors, G is an nxr matrix function and {f;,t >y} is an r-vector Brownian motion process with

E{d,B,dﬂ,T }=Q(#)dt . In the Ito equation, f(x,,7)dt characterizes the deterministic portion of the state transition from time k
to time k+1, while G(x,,#)df; characterizes the random portion. Note that both f and g can be nonlinear.

Because NLF tracks the entire probability density function (PDF), an equation for the time evolution of the density must be
derived using the Ito equation. It can be shown that this is given by the Fokker-Planck equation (FPE)

2
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with initial condition given by p(x,#; |Y,k ) . This prediction equation is solved efficiently on a grid using a Dyakonov {3]

finite difference scheme (an alternating direction implicit scheme) to generate the predicted density p(x, X | Yoy )

Discrete-time measurements are incorporated into the NLF through the likelihood p(y | x), which is based on a physical
model for the probability to obtain measurement y given the target state is x. In the case of target tracking, this is often
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called the sensor model, because it models the way a sensor makes measurements of the entity being tracked. When the
measurements are conditionally independent and depend only on the instantaneous state of the target, a measurement y, is

used to generate p(x,k | Y ) from the predicted density p(x % | Y’k—l) using Bayes’ formula

p(X IY )= P(YIk | xtk )P(sz | Y’k—l ) (4)
T Taxy, pyg | X0 )Py, 1Yy )

In this expression, y, denotes the actual measurement vector obtained at time #; while x,, is a variable. This time and

measurement updated density can be used to generate the minimum mean square error target state estimate f(,k at time ¢,

itk = jdxtk xtk p(xtk |Ytk ) (5)

with covariance

A A T
P, = jdx,k (xtk — Xy thk ~ Xy ) p(Xy I Y) ©)

The specific implementation of the NLF, then, relies on the development of two entities: (a) The Ito equation (or Fokker-
Plank equation) to model the way that the state changes from time & to time k+/ (the target motion model), and (b) the
measurement model likelihood, which models the way observations are made (the sensor model).

2.2 Multiple Model NLF Development

The Interacting Multiple Model Nonlinear Filter (MMNLF) allows for adaptive model switching in systems whose behavior
changes over time. The multiple model system obeys one of r models, all of which are characterized by their own target state
conditional probability density function p,,(x,|Y,) where m=1...r. In the two-model example developed below, we will

have m ={IIOU,CV}. The target dynamics for each of the » models are described by their own (different) Ito stochastic
differential equation

dx, =f,, (x,,0)dt + G, (x,,0)dB,, t=t, (N
Although not strictly necessary, we assume for simplicity that all models have the same n-dimensional state vector X, .

Each of the conditional probability density functions p,, (X, |Y,) is constructed recursively according to Bayes’ formula as
before:

Pm (ytk I th )pm (xtk I Y’k—l ) (8)
Idx;k Z;Pm’(YIk | X;k )Pm’(x;k l Ytk_l )
m

Pm(xtk IYtk )=

Where the sensor model p,, (Y lx,k ) may be unique for different models. The MMNLF is implemented by keeping all

filters active at all times. At each time step, a mixing of the probabilities from each of the models to each of the others is
undertaken. This allows soft mode switching and for the eventual accrual of (measurement-based) evidence to dictate which
motion model is being used at a particular time.

Defining the probability of transition from model i to model j by A;, we rewrite the FPE to incorporate this mode mixing as

Pm ©)

o ¢ | Yy ) =L, (pm(xt | Yy ))+ ZAm mPm X | Yy ) by SE<tpyy
m
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The new FPE includes the usual Ito equation terms as well as a mixing of probabilities from the different models. Note that
the total probability must be conserved. Therefore, if probability enters model m from model m’, model m’ loses some of
its the probability when it is updated (i.e. A, <1).

From this, p,, (X, |Y,k ) gives the probability that the target is in state x, and model m. Furthermore, Y, p,, (X, |Y; ) gives the
m

probability that the target is in state x, and any model, and ¥ p,,(x, IY,k) gives the probability that the target is obeying
X

model m . The minimum mean square error target state estimate f(,k at time fj is modified to incorporate the distributions

in all models as

N 10
Xy =dethtk§pm(xtk IYtk) (10)

with covariance modified similarly
o o 11
F = Idxtk (xtk Xy thk Xy )TZ Pm (X’k I Ytk ) (D
m

The MMNLF implementation, then, requires prediction and measurement models for each of the r filters used. Furthermore,
a model mixing matrix A; which models how the target moves from one model to another must be developed.

3. NONLINEAR FILTERING IMPLEMENTATION

Here, we consider the case of tracking a ground target in a low signal application. The target state is modeled using the 4-
dimensional state

x=(x, y,9,v)T (12)

where x and y are the target’s Cartesian location in the topocentric plane (meters) centered on the region of interest, @ is the
target heading and v is the target speed (m/s). We use a 2-model MMNLF, where one model incorporates preferred vehicle
motion preferences and the second does not. The first model is useful in areas where the vehicle motion preferences are well
characterized. The second model is useful where the vehicle motion preferences are either missing or poorly characterized.

3.1 The ITOU Ground Target Motion Model

We assume first that the area has been previously surveyed and spatially varying vehicle motion preferences have been
developed (as in [1], for example). In the IIOU-based target motion model, we want to incorporate these vehicle motion
preferences into the filter. Ito equations that couple the target dynamics to the spatially varying vehicle motion preferences
can be constructed using Inhomogenous Integrated Ornstein-Uhlenbeck (IIOU) models. Given a spatially varying preferred
speed v (x,y) , and a mean time to speed corrections 7, (x, y) , the Ito equation is

(13)

e

where df3, is a white Brownian motion process with power spectral density with expected value E(dﬂv2 )= q,(x,y)dt where

2 (14)

v

2
()= 7y (% y)
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and 0'V2 is the variance of the speed deviation from its preferred value.

Similarly, given a spatially varying preferred heading 6(x,y) and a mean time to heading corrections 7g(x,y), the Ito
equation is

dé=- 1 (0 -6 (x, y,0))dt + dPe
Te(x,y)

(15)

The IIOU model includes a 180-degree ambiguity in @, as targets will typically align themselves parallel or anti-parallel to
the preferred heading 8 . Specifically, the adjusted preferred heading 6 (x, y,0) is given by

Bols,v,6)= 120 -ty <xl2 1o
0% @(x,y)+7x, otherwise,
where @(x,y) is the preferred direction. The power spectral density of the heading process is E(dﬂ92)= qg(x,y)dt

c3.

2
where gg(x,y) =
# 79(x,y)

Of course, we also write dx =vcos(@) and dy =vsin(8) . The full set of Ito equations for this model are then

dx =vcos(0) an
dy =vsin(8)
d6=——1 (6-6o(x,y.8))dt + dpg
T (X, y)
1
- —vo (x, dp,
v 7,(x,y) b=vox. )kt +dp

Defining x=vcos(#) and y =vsin(d), the FPE for this model (hereafter called the IIOU model) becomes

I (18)

Lyoy(p) =—x=—-y

Py L9 (9-gy(x,.0)p) ——2(-volxy)p)+

ox ~dy 74(x,y) 00 7, (x, y)g
1 %p 1 3%p
5‘10(%)’)8—07"'5%(%)’) av2

3.2 Constant Speed Motion Model

There are several instances in which using vehicle motion preferences in the NLF is not desirable. First, there are times or
locations when previous observations are not available. More often, there are locations where vehicle tracks conflict,
indicating that there are either no paths through an area or multiple paths. In these instances, a constant speed/constant
heading (CV) model is preferred.

In this case, we use the Ito equations
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dx=vcos(@) 19

dy =vsin(0)
dé=dpyg
dv=dp,

Defining x =vcos(6) and y =vsin(8) as before, the FPE for this model (which we refer to hereafter as the CV model) is

o .op 1 %p 1 92 (20)
lcv(p)=—x£—y$p+5qg(x,y)&75+5qv(x,y)av—f

3.3 Measurement Model
In both the CV and IIOU models, we model the target measurements as square-law detected return amplitude on a uniform
grid of size M =N, X N, (for simplicity, we ignore the usual Doppler estimate obtained as part of the GMTI measurement).

The amplitude in pixel i for scan k is y;; and the entire scan is y ={)’k,i li=1,...,.M } Let iy denote the target-

containing pixel. For a target with SNCR A (here assumed known), the probability distribution for the amplitude in pixel i,
is

1 @1
()= ™) CXP(‘ yi, 0+ '1))
The distribution in the empty cells is po(y;, )= exp(— YVig ) The density for the entire scan is
Pk [X) =K P1(Ykiy )] Po(Vhsiy) (22)

where k is a target-state independent constant that can be discarded in the Bayes’ formula update.
3.4 Model Mixing

In our application, we expect that once entering a model m (either the IIOU or the CV model), the target will continue to
obey that model with high probability. Furthermore, transition probabilities, while small, will tend to favor the target entering

the IIOU model. We use
-1 2 (23)
A=
1 =2

4. SIMULATION RESULTS

The MMNLF described above was implemented and a generalized form of ADI was used to solve for the multiple model
probability on a regular moving grid with Bayes’ formula (Eq. (8)) used for measurement update. To evaluate the MMNLF
performance, we used the hospitability for maneuver (HM) map shown in Figure 1. HM [6,7,8] is a spatially varying quantity
characterizing the ease with which a vehicle can traverse a particular area, with higher values being more hospitable for
travel. The spatial resolution of HM is quite fine, typically on the same order as the Digital Terrain Elevation Data (DTED).
Here we assume that targets prefer to follow regions of high HM. This corresponds to following the hospitability ridges, and
moving with a speed that is proportional to the hospitability. For a more detailed analysis, as well as alternative methods of
developing preferred heading and speed, see [1].
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Figure 1. An example HM map.

To illustrate the potential utility of MMNLF, we perform two sets of simulations and compare the MMNLF tracker
performance with two single model NLF’s: one using just the CV model, and one using just the IIOU model. In both sets

simulations, the parameters of the filters are fixed at o, =.1m/sand oy =.3° (recall that 0',-2 =7;q9; /2, Eq. (14)). The

simulated vehicle trajectories are generated using the Ito equations from the IIOU model. In the first set of simulations, there
is no model mismatch between the heading and speed standard deviations and the filter parameters, while in the second set of
simulations, the standard deviations are much larger than the IIQU parameters.

In the first simulation, the power spectral densities of the simulated trajectory are identical to those IIOU filter models and
the SNCR is set at a relatively low value of 6 dB. Since the same model is used in both the simulated trajectory and the filter,
we expect that the IIOU model will perform well in tracking this target. On the other hand, the CV model should perform
poorly, since the low SNCR makes the measurements unreliable. Indeed, as is shown in Figure 2 and Figure 3, the NLF with
the IIOU based model is best able to track the target. The CV model tracks well until the target makes a complicated
maneuver at t = 180, at which time it loses track. The MM based filter also tracks the target very well, and is able to handle
the maneuver that derailed the CV model.

Notice further that both the IIOU and MM, which are aided by the underlying vehicle motion preferences, provide more
accurate speed and heading estimates.
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Figure 2. (L) The target trajectory and the different trackers position estimates. Both the IIOU and MM trackers hold the
target, while the CV model loses it. (R) The position RMSE for each time step.
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Figure 3. (T) The speed estimates of the three trackers show that the CV model is unable to hold on to the target as it speeds
up. (B) The heading estimates show that the complicated maneuver at t=180 causes the CV to lose track.

Table 1 shows the root mean squared and root median squared errors for the three trackers. Since the CV model loses the
target, the position error becomes unbounded.

Pos. (m) | Heading (deg.) | Vel. (m/s)
1(0)8] 14.94 17.76 0.16
Ccv 453.53 39.84 7.29
MM 15.85 16.50 0.19

Pos. (m) | Heading (deg.) | Vel. (m/s)
110U 6.45 7.43 0.11
CvV 9.31 26.43 3.98
MM 6.74 9.98 0.13

Table 1. (L) The root-mean squared error for the three trackers. (R) The root-median squared error.
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Figure 4 show.. ... model probabilities in the MMNLF. Note that most of the time, the IIOU probability is near .7, with a
few brief excursions away from that value. The reason for this is that most of the time, both models have some validity.
Therefore, during typical operation the model probabilities will settle in at a spot dictated by the mixing matrix. However,
when one model clearly fits the target motion better than the other, that model will take over. Figure 4 shows that near t=175
(when the measurements become inconsistent with the CV model and the CV filter loses the target), most of the probability
of flows into the IIOU model of the MM filter. After that short-term event, both models become viable again and the
probability mix returns to what it was before.

MMNLF Model Probabilities

Lo T

—— liOU Model
0.9} | --- CV Model 4

Probability

0 50 100 150 200 250
Time Tick

Figure 4. MMNLF Model Probabilities for Simulation 1.

In the second set of simulations, the variances of the simulated trajectory are increased substantially from that of the filter to

o, =1m/sand 6y =1.5° . We furthermore increase the SNCR to 10dB, which means that the measurements are more reliable

than in the first simulation. In this case, we expect that the IIOU model will have difficulty tracking the target because the
preferred speed and heading it imposes on the target are severely violated. We furthermore expect the CV model, which does
not impose these values on the target, to perform well.

Figure 5 shows the position estimates of each of three trackers. The CV and MM filters track the target very well throughout.
The IIOU filter has trouble at around t=40 due to a maneuver that is contrary to the underlying vehicle motion preferences.
Notice in Figure 6 that the MM filter (which uses the IIOU most of the time) switches into the CV model between t=43 and
t=50 and thus avoids the high position errors incurred at that time. Figure 7 shows the speed and heading as tracked by the
three filters. Table 2 gives the root-mean and root-median squared errors.
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Figure 5. (L) The target trajectory and the different trackers position estimates. (R) The position RMSE for each time step.
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Figure 6. The model probabilities show that the filter mostly acts in the IIOU mode until the targets behavior warrants a
switch to the CV mode at around t=40.

10 Proc. SPIE Vol. 4380



IN

w

Velocity (nm's)
O

Velocity Estimates

50

100

150

Heading Estimates

T

I
100

{
150

!
200

0o 50 250
Time Tick
Figure 7. The speed and heading estimates of the three filters.
Pos. (m) | Heading (deg.) | Vel. (m/s) Pos. (m) | Heading (deg.) | Vel. (m/s)
I10U 18.13 20.52 0.49 110U 6.23 6.98 0.33
CV 6.48 15.39 0.94 Cv 5.84 6.96 0.78
MM 6.61 12.95 048 MM 5.92 5.49 0.33

Table 2. (L) The root-mean squared error for the three trackers. (R) The root-median squared error.

5. CONCLUSION

This paper has described the design and implementation of multiple model nonlinear filters for ground target tracking. In this
implementation, the target state conditional density is discretized on a moving grid, and the estimated target location is a
given by the minimum mean square state estimate. Target motion is described using Fokker-Plank equations, and
measurements are incorporated via Bayes’ formula. We have demonstrated one specific two-model filter, which includes a
purely diffusive motion model and a motion model based on previous observations. In the simulations presented here, the
multiple model method performs well in situations where either filter acting on it’s own has difficulty.
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