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ABSTRACT 
Performance can be enhanced in dim target tracking by 
using predetection methods that directly accrue pixelized, 
unthresholded data in a nonlinear filter (NLF). A signifi-
cant impediment to using NLF methods for real-time appli-
cations is finding numerical techniques that are fast and 
accurate enough to solve the associated NLF equations. 
Recent progress in NLF research has produced promising 
new numerical solution methods.  This effort implemented 
a particle filter (PF) and a finite difference filter (based on a 
partial differential equation solver known as alternating 
direction implicit, ADI), and compared them under varia-
tions in signal-to-noise ratio (SNR). When each method 
was given equal comp utational resources, we found that 
RMS errors were consistently lower for PF than ADI, the 
maximum difference being about 60%. More significantly, 
PF appears to be much more robust against track loss at 
low SNR levels.   

1. INTRODUCTION 

Development of effective numerical methods for nonlinear 
tracking applications is a significant hurdle for data fusion 
systems.  One of the most stressing applications of 
nonlinear filtering (NLF) is pre-detection tracking: tracking 
algorithms that use pixelized, unthresholded data as the 
filter input.  Pre-detection tracking avoids the information-
losing step of thresholding the data to produce partial tar-
get state measurements such as range, range-rate and 
bearing.  If these nonlinear problems can be solved with 
sufficient numerical accuracy and speed, it will allow tar-
gets to be tracked at lower signal-to-clutter+noise ratios 
(SCNR), enabling improved performance for detecting and 
tracking targets under foliage, surface vessels in the littoral 
zone and cruise missiles.   

While it is well known that the Kalman filter is the 
Bayes’ optimal estimator for the standard linear Gaussian 
problem, much less is known theoretically about predetec-
tion tracking – even when the target motion itself is linear. 

However, there has been much recent progress in the area 
of nonlinear filtering that is applicable to problems of this 
sort.  There are now a number of viable numerical methods 
to solve nonlinear filtering problems.  Candidates include 
(but are not limited to):  

1) particle methods [1, 3, 8],  
2) finite difference methods [4,5],  
3) spectral methods [6],  
4) probabilistic data association methods, and  
5) multiple hypothesis, multiple frame methods.  
 

While not fully mature, these methods have been de-
veloped to the point where they can now be considered for 
transition to deployable systems.  Their relative perform-
ance for realistic problems needs to be better understood.  
The actual gain in estimation performance obtained by 
processing predetected data has not been characterized.  
How this performance gain varies with SCNR and the im-
pact of target maneuvers remains to be investigated.  The 
nature of the numerical error incurred by each method and 
its impact on various parts of the target envelope remains 
to be systematically studied.   

To promote the development of engineering expertise 
in this area, the Air Force Research Lab (AFRL) is spon-
soring a study project to evaluate the effectiveness and 
relative numerical performance of nonlinear filtering algo-
rithms. To support this effort, which is being called a chal-
lenge problem, AFRL is developing a set of synthetic, 
ground-truthed data sets and associated metrics for test-
ing in the research community.  We propose two ap-
proaches to generating the target motion.  As a baseline, 
we propose to generate random target motions using a 
simple 2nd order model ),,,( yyxx && .  This has some advan-

tages from an analysis point of view in that it is simple and 
enables focused study on numerical NLF issues.  In a sub-
sequent approach, we propose scenarios involving mu lti-
ple targets maneuvering at unspecified times with variable 
normal accelerations.  



The primary measures of performance (MOPs) are tar-
get RMS error as a function of SNR.  As part of this effort, 
a separate MOPs module has been developed.  This code 
is available in the form of commented MATLAB code at 
https://www.tenet.vdl.afrl.af.mil.  

The remainder of this paper is organized as follows.  
Section 2 briefly summarizes the basics of nonlinear filter-
ing in a Bayesian formulation and defines the simple mo-
tion model we have used for estimation.  Section 2.1 pre-
sents the sensor model, and Section 2.2 presents the defi-
nition of effective signal-to-noise ratio that we use.  Sec-
tion 2.3 briefly presents the Sampling, Importance, Resam-
pling (SIR) particle method filter [1,3,5] developed for these 
tests and Section 2.4 presents the Alternating Direction 
Implicit (ADI) finite difference scheme [4,5,10,11] used 
here.  Section  2.5 presents the definitions of the perform-
ance metrics used in this evaluation.  Section 3 presents 
results and Section 4 presents conclusions and suggests a 
few directions for further work. 

2. BAYESIAN NONLINEAR FILTERING  

To track a target from a sequence of measurements ky  

made at discrete times kt , let the target dynamics be de-

scribed by an Ito stochastic differential equation [2] for the 
time-dependent target state tx   

 ttdtdttd tttt ≥+= ,),(),( βxGxfx  (1) 

 
where tx and f are n -vectors, G is an rn × matrix func-

tion, and },{ 0ttt ≥β  is an r -vector Brownian motion 

process with dttddE tt )(}{ T Q=ββ . The set of observa-

tions through time kt  is denoted 
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 Between observations the evolution of the conditional 
density is determined by the target dynamics as character-
ized by the Ito equation.  The time evolution of the joint 
density between measurements is the solution to the Fok-
ker-Planck equation (FPE) 
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with initial condition given by )|( ktktp Yx .   

Then given a new observation ky , the updated condi-

tional density )|( ktktp Yx  is obtained from the predicted 

density )|( 1−ktktp Yx  using Bayes’ formula. 

In this version of the challenge problem, we focus on 
the effect of measurement nonlinearity due to low SNR, 
and use a linear motion model, the so-called “constant 

velocity” model with ( )T,,, yyxx &&=x , ( )T0,,0,)( yx &&=xf ,  
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The resulting FPE is  
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2.1 Sensor Model 

An example of how to incorporate the likelihood function 
into NLF is presented by pixelized data such as point-
target image-tracking applications.  Envelope-detected 
radar data takes a similar form.  In this case an image con-
tains M  pixels labeled Mi ,,1 K= .  The measurement 
consists of the pixel output vector 

T
,1, ],,[ Mkkk yy K=y where the iky , can be positive, real 

or complex, depending on the details of the sensor and 
signal processing. For point targets, pixel outputs are con-
ditionally independent and  
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When there is no target in a pixel, its output statistics 
are determined by the background rate )( ,0 ikyp .  Depend-

ing on the nature of the imager, this may be modeled by 
Rayleigh, Poisson, or more complicated distributions. Fur-
ther, it may vary with pixel index and time, depending on 
the clutter statistics. When the target projects into a pixel 
i , its output statistics will be given by )( ,1 ikyp , which, 

again, may be pixel and time dependent and will depend on 
the detailed nature of the sensor and target.   

Using Bayes’ formula directly to update the density is 
cumbersome because it involves M  factors in the product 
for each discretized value of the target state vector ktx . 

This can be simplified so that only the measurement likeli-
hood ratio 

)(/)()( ,0,1, kikkikkik ypypyl xxx =  (8) 



needs to be evaluated for each discretized  value of the 
target state vector kx , a significant saving in computa-

tion.   

To illustrate, for a Rayleigh target with SNR parameter 
λ , the probability distribution for intensity 

kiy x  of the 

target-containing pixel is  
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The distribution for the background pixels is given by 
the same expression with 0=λ .  A little algebra shows 
that up to an irrelevant constant that can be dropped, the 
likelihood is  
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2.2 Effective SNR 

While signal-to-noise ratio (SNR) is often used to gauge 
likely performance for filter processes, it is only rigorously 
related to performance in the case of Gaussian signals.  
The Kullback-Leibler discrimination, a more general quan-
tity that is related to detection and estimation performance, 
is defined by  

( )∫≡ dyyqyqyqqqL )(/)(ln)();( 10010  (11) 
Its symmetrized relative, the divergence, is defined by 
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The divergence is a convenient measure of effective 
SNR. For a Gaussian signal given by  
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it is straightforward to find that  
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Similarly, for Rayleigh distributed measurements,  
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Note that in the large λ  limit, the Rayleigh and Gaus-

sian divergences are the same, while they differ signifi-
cantly for small values of λ .   

2.3 Particle Method 

Particle methods are a collection of Monte Carlo tech-
niques in which the probability density is represented by a 
collection of N  independent and identically distributed 

random samples, ( ){ }Nii
k ,,1; K=x . The samples ( )i

kx , re-

ferred to as particles, are distributed according to 
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where ( )xδ  is the Dirac δ -function in target state space.   

For this effort we implemented the particle filter using 
the technique called Sampling, Importance, Resampling 
(SIR), where we mechanized prediction and measurement 
update using the approximating density above.  For predic-

tion at time k , we propagate each particle ( )i
k 1−x  by pro-

ducing a single draw from ( )( )i
kkp xx |1+ .  The predicted 

particles are denoted ( )i
kx  and the predicted density is ap-

proximated by  
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At measurement update, a new set of particles is gen-
erated from the predicted set by resampling with likelihood 

( ))(| i
kkyp x .  Thus particles with high likelihood are sam-

pled many times while particles with low likelihood are 
unlikely to appear in the resampled set.   

2.4 ADI Finite Difference Method  

For the finite difference filter, we used the Alternating Di-
rection Implicit (ADI) scheme to solve the Fokker-Planck 
Equation.  Although space does not permit a review of the 
ADI algorithms, here are some factors that must be con-
sidered in its implementation: resolution in space and time 
of the grid on which the solution will be computed; accu-
racy of the approximate solution formulas that will be used; 
methods for inverting tridiagonal matrix equations; initial 
conditions within and on the boundaries of the solution 
grid; methods for moving the computation sub-grid to 
keep it centered over the target which moves in a larger 
space. 

See [7] for implementation details on both the particle 
and finite difference filters of the challenge problem. 

 



2.5 Tracking Metrics 

The RMS values of position and velocity error were cho-
sen as metrics to illustrate performance in this paper. Error 
is defined as the difference between estimate and truth, 

ttt xxe −= ˆ , where the estimate tx̂  is computed as the 

mean of the estimated density )|( ttp Yx . Although RMS 

accuracy alone does not provide a thorough characteriza-
tion of performance in a general tracking problem, it would 
seem to be appropriate in this special case where there is 
just one target (the usual multi-track metrics degenerate or 
disappear) and track state initialization is nearly perfect 
(e.g. convergence times would be artificially small).  

As noted previously, it is expensive and unnecessary 
to compute the joint density over the entire range of mo-
tion. Instead, a computational gate is established on which 
to produce a solution, this gate being a small fixed-size 
subset of the motion region. The gate must be translated 
using estimates of target motion as inputs to a translation 
control algorithm. If the filter estimate drifts so far from the 
truth that the target exits the gate, lost lock  occurs. With 
target observations lost, the filter diverges quickly and 
seldom recovers. The gate translation control problem was 
challenging anytime filter estimates were inaccurate, e.g. at 
startup or at the lowest SNRs. Lost lock events were 
logged and their frequency computed. 

3. RESULTS 

Accuracy as measured by RMS error improves for the ADI 
method with finer grid resolution, and improves for the PF 
method with increasing numbers of particles. However, as 
grid resolution becomes finer, the computational burden 
for ADI grows polynomially, but as particle count in-
creases, the computational burden for PF grows only line-
arly. Given such complexities at this fundamental level, it is 
easier and fairer to compare the two filtering methods on 
the basis of equal computational burden, which translates 
to “equal flops” in MATLAB. The results that follow ex-
amine performance at a single constant value of 630 Kflops 
per study. This flop level translates to 5121 particles for 
PF, and a 10x10x10x10 grid of 10,000 cells for ADI. 

3.1 Experiment methodology 

The estimation problem is to track a single dim target mo v-
ing in a 2D space using intensity images of the track area 
for measurements. True target motion is generated using a 
nearly constant velocity (NCV) model of target dynamics, a 
model based on the assumption that acceleration is a white 
noise process, )()( twta = . The white noise in the NCV 

model imposes randomness in the motion so that a differ-

ent true trajectory is produced on every Monte Carlo run. 
Target motion is represented in each filter by the same 
NCV model. This decision to match filter to truth avoids 
most mis -modeling issues. For the results that follow, even 
the noise strength of the filter was matched to the truth.  

The simulated sensor images the entire target motion 
region to produce a scene of 256 x 256 pixels. The intensity 
in each pixel is governed by a Rayleigh distribution with 
noise power one. In the pixel holding the target, the inten-
sity is adjusted for the SNR of the study. Identical simu-
lated sensor images are input to each filter as measure-
ments, but only the portion of the scene in the instantane-
ous gate contributes to the joint density estimate. 

The initial state of each filter is chosen to approxi-
mately match the truth. The initial density of each filter is 
uniform in each of the four dimensions ),,,( yyxx && , and 

extends over the space in  the initial gate. For the results 
that follow, the gate was fixed at 10x10 pixels in ),( yx  

space. 

In the case of a lost lock event, accuracy degrades pre-
cipitously and the run is effectively ruined. When this oc-
curs, data from that run is removed from the study ensem-
ble, and a new run is made to replace the spoiled one. 

Experimental results are based on studies of 50 Monte 
Carlo runs each. Studies were conducted for ADI and PF 
separately, at 2 dB intervals in the range 4-20 dB effective 
SNR, Eq. (16). Altogether, 18 studies (9 each for PF and 
ADI) contributed to the results reported next  

3.2 Discussion 

Figures 1 and 2 show RMS performance in position and 
velocity for the two methods. These figures were built from 
the 18 Monte Carlo studies of 50 runs each. Figure 1 
shows reasonably good estimation of position for both PF 
and ADI. Position RMS error falls as SNR increases for 
both methods, as expected, with PF being roughly twice as 
accurate as ADI, on average.  

Figure 2 shows improving velocity estimation for PF as 
SNR rises. For ADI, however, the RMS curve indicates 
poor estimation performance for all SNRs. Other tests were 
run to assess this situation, and they all confirmed that 
ADI was not estimating velocity. The resolution-induced 
limit on estimation accuracy for ADI is approximately 0.06 
m/sec (2 m/sec spanned by 10 square grid cells) so the 
“flat” performance at roughly 0.45 m/sec is not resolution 
induced. We are not certain why ADI does not estimate 
velocity but we suspect a problem with its code. Unfortu-
nately, this issue surfaced recently and we failed to find a 
correction before this paper was due.  



Over all studies PF was more robust to noise and ma-
neuvers than ADI, e.g. PF lost lock just 4 times per study 
for SNR under 12dB, versus roughly 20 times for ADI.  

 
 

Figure 1 – RMS position error, both methods 

 
 
 

Figure 2 – RMS velocity error, both methods 

4. SUMMARY 

This paper introduces a challenge problem in nonlinear 
filtering that is made available to the research community 
in the form of MATLAB code posted at a public web site. 
This problem consists of modules for scenario generation 
and performance evaluation, as well as modules offering 
baseline solutions for two methods, a particle filter and an 
alternating direction implicit version of a finite difference 
scheme. These baseline solutions demo nstrate in concrete 
terms how nonlinear methods can be applied to image in-
tensity data. We are hopeful that their availability will en-
courage researchers with innovative ideas to apply their 
methods to the same problem data that was used here. 

 This paper also provides technical descriptions of the 
two solution techniques, and illustrates results from each. 

This effort has shown that both particle and finite differ-
ence methods can solve the dim target tracking problem, 
and that particle methods produce greater accuracy for 
equal computational resources. 
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