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ABSTRACT

This paper describes a nonlinear filter for ground target tracking. Hospitability for maneuver derived from terrain, road and
vehicle dynamics constraints is incorporated directly into the filter's motion model. The conditional probability density for
the target state is maintained and updated with sensor measurements as soon as they become available. The conditional
density is time updated between sensor measurements using finite difference methods. In simulations using square-law
detected measurements the filter is able to track maneuvering ground targets when the Signal to Interference + Noise Ratio
(SINR) is between 6 and 9 dB.
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1. INTRODUCTION

There is growing interest in ground target tracking, stimulated in large part by the success of JSTARS [1J and similar Ground
Moving Target Indicator (GMTI) sensors [2]. Ground target Tracking differs from classical airborne and maritime tracking
applications in that roads, terrain and other types of surface constraints are usually much more rigid than in the classical
problems. These constraints constitute an additional information source and by including them in target motion models,
tracking performance can be improved. A number of US Army programs have worked extensively to characterize vehicle
motion preferences in terms of hospitability for maneuver and related factors. These preferences vary with position, weather,
vehicle type (e.g. tracked vs. non-tracked) and mission. The work to date on incorporating such information into tracking
filters has been based on variable structure interacting multiple models Kalman Filters (IMMKF) [7, 9]. These filters have
spatially varying non-isotropic plant noise but do not directly incorporate dynamic vehicle inputs such as preferred heading
or speed. For example, when driving on a road, drivers provide vehicle inputs (steering and accelerator) to align the vehicle
axis with the road and maintain a preferred speed. The goal of the work reported here is to develop models of these control
inputs and incorporate them directly into a nonlinear filter (NLF).

Another factor in GMTI tracking is that many missions require tracking vehicles that are moving beneath a forest canopy. In
this case, the target Signal to Interference + Noise Ratio (SINR) is small. In such applications, NLF methods [3] may be
particularly useful since the potential gain from improved target motion modeling increases as the SINR decreases.
Furthermore, NLF can be used to process pre-thresholded data (i.e. —sensor pixel amplitudes) which does not suffer from any
SINR loss due to thresholding [5,6].

This paper is organized as follows. Section 2 describes briefly how terrain analysis is used to obtain hospitability maps.
Section 3 synopsizes NLF and develops target motion models derived from Hospitability for Maneuver (JiM). The Fokker-
Planck equation (FPE) needed to characterize the time-evolution of the conditional target state probability density in an NLF
is then obtained. The FPE is solved numerically using Alternating Direction Implicit (ADI) finite difference methods
[5,6,8,10,14]. This forms the basis of a nonlinear filter that incorporates both hospitability and envelope detected (pre-
thresholded) sensor measurements. A method for developing the target motion models directly from vehicle motions
themselves is presented in Section 4. Section 5 presents a few preliminary results indicating that with this approach, target
tracking is feasible for maneuvering targets at about 6-9 dB SINR.

2. HOSPITABILITY ANALYSIS

As part of the preparation of battlefield intelligence, terrain analysis is performed to capture the effects that Hospitability for
Maneuver (FIM) and hospitability for emplacement can have on battle outcomes. In maneuver planning existing lines of
communication may be inappropriate, requiring cross-country movement.
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Figure 1 details the data flow for terrain analysis
with the addition of an activity product. Terrain
analysis begins with the raw terrain data extracted
from imagery, maps, literature, or data collected
during on-site inspections. These data are analyzed
and reduced to a set of terrain factor products
capturing important terrain features and
classifications [1 1]. This portion of the analysis is
usually automated and is described in more detail in
publicly available USGS and NIMA products. The
next step in the terrain analysis procedure is to
combine terrain factor products with empirical and
doctrinal evidence to generate complex products
capturing activities of military significance [12]. For
example, cross-country movement incorporates
terrain factors such as slope, landform, surface
roughness, vegetation, and soils. These factors are
combined with analytical models [131 which capture
the capabilities of specific vehicles (usually
empirically derived), to produce a maximum vehicle
speed in a given area.

The generation of activity specific products is an
advance over classical terrain analysis and
intelligence preparation procedures. These products
capture interactions between activity requirements
such as a need for long-term hide site and constraints
or opportunities provided by local terrain. For
maneuver-like activities, hospitability provides a
measure of the support a given local area provides
for a given activity. Hospitability has been
successfully utilized in both DARPA and NIMA
imagery exploitation systems, and has had particular

Figure 1 : Data Flow in a Classic Terrain Analysis Procedure success when applied to the identification of mobile
missiles.

Tuning of the analytical models within this process
is accomplished primarily in two ways: application of physical constraints, and the analysis of vehicle tracks. For example,
the physical limitations of the M1A1 tank (e.g., maximum traversable slope, surface roughness vs. speed effects) aredirectly
incorporated into the analytical models. Vehicle track analysis provides exactly the terrain over which certain vehicles travel.
While not excluding any terrain combination, it can be analyzed to provide preferences and as a test of the physical vehicle
constraint derived model parameters.

An example of hospitability for maneuver obtained from the Terrain Delimitation component of DARPA'S Semi-Automated
IMINT Processing (SAIP) system is shown in Figure 2. The geographic area is the National Training Center (NTC), Ft.
Irwin CA. It's source data included products from the USGS and NIMA.

3. NONLINEAR FILTERING

The structure of NLF is similar to that of a conventional Kalman filter in that it consists of 1) measurement update and2)
time update or prediction. NLF differs from the Kalman filter in that is develops an estimate of the entire target state
conditional density (for a detailed exposition, see [6]). In contrast, the Kalman filter is based on an estimate of the first two
moments of the conditional density. To track a moving ground target from a sequence of measurements Yk made at discrete
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Figure 2— Hospitability for maneuver (HM) (upper left), preferred speed (mis) (upper right). hospitability ridges (lower
left) and preferred heading (lower right) for a 14 km x 14 km region of the National Training Center (NTC) near Ft. Irwin,
CA.

times tk , we must develop a statistical model of the target motion that incorporates hospitability for maneuver (HM(. In

filtering applications, target dynamics are described by the Ito stochastic differential equation for the time-dependent target
state

dx =f(x,,t)dt-f-G(x1,t)d/31, t�t0 (1)

where X and f are n -vectors, G is an n X r matrix function and {8 , t � t0 } is an r -vector Brownian motion process

with E{d/3,d/3T} = Q(t)dt.

The observations up to time t are denoted Y1 = {Yk : tk t} In nonlinear filtering, the target state conditional probabilitY

density function p(x1 Y1) is constructed recursively. Given a new observation y . the updated conditional density

p(x1 I Y1) is obtained from the predicted density p(x1 ) using Bayes' formula:

P(Yk x1 )p(x1
p(x Y )= (2)k

$ dx; p(y ;, )(;, },,)
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where the measurement likelihood P(Yk IX ) is given by a physical sensor model. Then the minimum mean square error

target state estimate tk at time tk

tk f dx X p(x I tk ) (3)

with covariance

= SdX (it, X )tk
—X )T ( f 1k ) (4)

Between observations the evolution of the conditional density is determined by the target dynamics as characterized by the
Ito equation. Between measurements the time evolution of the conditional density is the solution to the Fokker-Planck
equation (FPE)

(x )=L(p(x 1k))' tk �t<tk+l, (5)

where

L(p) d) 1nd2(P((•;QGT))
(6)

with initial condition given by p(x, tk Ik)
3.1 Target Motion Models and Hospitability for Maneuver

To develop a filter incorporating HM into the target motion model, the target state is modeled using the 4-dimensional state

x=(x,y,o,v)T (7)

where x and y are the target's Cartesian location in the topocentric plane (meters) centered on the region of interest, 0 is
the target heading and V is the target speed (mis).

Ito equations that couple the target dynamics to the spatially varying ElM can be constructed using Inhomogenous Integrated

• Ornstein-Uhlenbeck (IIOU) models. HM represents a spatially varying preferred target speed, v0 (x, y), shown in the Figure

2. If the mean time to correct speed variations is (which can vary with location), then the IIOU model is

1
dv=——(v—v0(x,y))dt±d/3 (8)

TV

where dfl1, is a white Brownian motion process with power spectral density E(dfl2) =qdt where 1 = ---cT and T
is the variance of the speed deviation from its preferred value.

To develop a model of heading dynamics we assume that targets prefer to follow regions of high HM. This corresponds to
following the hospitability ridges shown in the lower left portion of Figure 2. The preferred heading tends to be either
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parallel or anti-parallel to the HM ridge axis (x, y) (shown in the lower right portion of Figure 2). This means that the

preferred heading at each location is two-valued. When the current target heading is within 9O of the ridge axis, the target
will maneuver to align its heading with the ridge. If the deviation between the ridge axis and the target heading is greater than

9O . then the preferred target heading will be anti-parallel to the ridge axis. This is captured by the Ito equation

dO=—----(O--O0(x.v,O))c/t+d/3 (9)

where the preferred heading is

ço(x,v), O—ço(x,v)<ir/2
00(x,v,O)= -.

ço(x, v) + it, otherwise,
(1 0

V0

7 8 9 10 11 12

x Ir4

Figure 3 — Several simulated vehicle trajectories (solid white lines). overlain on the preferred speed
V0 (mIs. derived from the HM of Figure 2, obtained as numerical solutions to the target state Eq. (7)

with Ito equations (8) and (9) for the spatially varying preferred heading and speed. The start of each
tralectory is indicated by an asterisk.
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where angle differences are calculated modulo 27r . The power spectral density of the heading process is E(d1392) q9dt2
whereq9 =—o•;

Defining 1: = V cos(O) and ' Vsin(O) , the FPE (Eq. (5)) becomes

ap .ap .ap ia— = —x— — y—+ ——((0 — 00(x, y,O))p)+—((v — v0(x, y))p)at a a 0 ao

1 a2p i a2+—q —+—q2 °O2 2 V2

3.2 The Measurement Model

We model the target measurements as square-law detected return amplitude on a uniform grid of size M N x N (for

simplicity, we ignore the usual Doppler estimate obtained as part of the GMTI measurement). The amplitude in pixel i for
scan k is Yk,j and the entire scan is Yk {Yk,j I

i 1, . . . ' M}. Let i denote the target-containing pixel. For a target

with SINR A (here assumed known), the probability distribution for the amplitude in pixel i is

p1 ) =
2 exp(— yj i(i + i)). (12)

The distribution in the empty cells is p0 (y ) exp(— y, ) . The density for the entire scan is

P(Yk I Xk) = IC P1(Yk, )" Po(Yk,1 ) (13)

where IC is a target-state independent constant that can be discarded in the Bayes' formula update.

4. DERIVING IIOU PARAMETERS FROM TARGET MOTION DATA

This section details an approach to deriving IIOU parameters directly from observed target motion rather than HM. Truth
data based on GPS measurements of the vehicle positions over time has been collected as part of the battle training at NTC.
This data can be used to directly estimate the IIOU parameters for a region of interest. This has the advantage motion model
parameters can be quantitatively inferred. The disadvantage of this approach is that, in wartime, vehicles will often need to
be tracked in areas where they have not previously been observed. In such cases, the methods of terrain analysis described in
Section 2 are required.

The discrete time Ito equation for vehicle speed corresponding to Eq. (8) is

vk+1 = —
&

[vk — v0(x, y)]+q(x, y)& w' (14)
r(x, y)
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where is the speed at time k , v0(x, v) is the preferred speed at x, y , T1, (x, y) is the time constant and q1 (x, v) is

the magnitude of the power spectral density and is unit variance zero mean Gaussian noise. Note that we allow T

and q to vary with position here.

We estimate parameters v0 (x, y) , r (x, v) and q, (x, v) using movement data consisting of vehicle positions (xk

at times tk for a collection of vehicles on training maneuvers at NTC as follows. For each vehicle, the speed at a point

(xk Yk) is computed using forward differencing

k — (x1 _xk)2 +(yk+1 — vk)2
ISV —

(tk+1_tk)
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Figure 4—Vehicle locations (x) overlain on DIED (upper left) for an exercise at NTC. These are used
to compute the preferred speed (upper right), number of times vehicles pass each subregions of the
terrain (lower left) and the preferred heading (lower right). Note the similarity between these plots and
the FIM-derived speed and heading preferences of Figure 2.
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The speed is associated with the point (xk Yk) and the time tk . The preferred vehicle speed at a point, V0 (x, y) , can

be estimated using a simple averaging technique:

,
vO(xk,yk)=

3
(16)

To obtain the time constant (x, y) define the residual difference between the true speed and the preferred speed as

jyk _
v0 . Then the residual obeys the Ito equation for a homogenous Ornstein-Uhlenbeck process,

k+1 k _ At k 1,(x, y)&w (17)
r(x, y)

Evaluating expected values we find,

(k+1k) =(kk) KTV)kk)÷ (q(x, y)Atwk+1) (18)

(k+1k)[l
&

1(k) (19)
L r(x,y)j

where () denotes expectation over the ensemble. Since iYk and are uncorrelated and have mean 0, we may solve for

(x, y) to obtain (x, y) = 2At(v7kiYk) /((k+1
— k)2) This is approximated using a three-term sum

i=k+1

2At_________(x, ) i=k+1 (20)
3

i=k—1

To estimate q (x, y) we note that

q(x,y)(w')2 I[k+1 —Ii—
& k1 (21)

& ft r(xy)) jj

since has unit variance, q (x, ) =I —i— ________ k
12 and

At \[ r(xY)) ] /
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At1kl
V —ii—

t(Xv)
(22)

Similar reasoning can be applied to estimate the heading parameters O.,(x, v) . T0(x, v) and q0(x, v) Once the relevant
parameters have been estimated for all of the vehicles in the area of interest, we create a series of spatial grids to hold the
averages of each parameter.

5. RESULTS

Algorithms to extract preferred speed and heading from HM have been implemented in MatLab. Figure 2 shows HM. the
preferred speed derived from it. HM ridges and the preferred heading. (Here the preferred speed is defined to be an affine
transformation of the HM). Figure 3 shows several simulated target trajectories obtained by solving the Ito equation (8) and
(9) for the target state (7). These trajectories use the HM-derived IIOU parameters with randomly selected starting points on
the I-TM ridges. The time constants and standard deviations are constant with T T0 = 1 s , 1 mIs and O 1°.

Figure 4 shows the result of IIOU parameter estimation obtained directly from the NTC data using the method described in
Section 4. Note the marked similarity between the HM-derived and NTC-derived IIOU parameters. However, the HM-
derived parameters are available over the entire region while the NTC-derived parameters are only available in areas where
vehicles have been observed in the past. Also, the resolution of the NTC-derived parameters is much coarser, due to
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Figure 5 — Tracking results using NLF. The target SINR is 6 dB. The true and estimate tracks are
shown at upper left. The heading and speed are shown at upper right and lower left. The Horizontal
Track Location Error (HTLE) is plotted at lower right. The RMS error is about 15 m.
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limitations in the statistical resolution.

Numerical Fokker-Planck equation solver and measurement models were also implemented in MatLab. A simulated
trajectory and the trajectory estimate are shown in Figure 5. A variant of the Alternating Direction Implicit (ADI) method
detailed in [5,6,8,10] was used to solve FPE between measurement updates. The ADI solver is a finite difference method that

discretizes the FPE on a grid of size N N x N x N x N9 . The grid size was N N 19, N N9 5 so
N = 9025. The resolution of the grid was E.x L\y = 15 m, L\O =30

°
and Liv 3 1/3 rn/s. The SINR is very low,

2 = 4 (i.e. 10 log10 A = 6 dB). Measurements are generated on a 1 s interval. The grid is translated to remain centered on

the estimated target location, heading and speed. The spatial resolution of the sensor (i.e. the pixel size) was 15m X 15m (no
Doppler measurement was assumed). The RMS Horizontal Track Location Error (HTLE) is about 15 m. It is interesting to
note that where the peak error occurs at t = 80 s (presumably due to several low amplitude measurements), the target is
traversing a hospitability neck. Here the constrained hospitability helps the filter recover and regain lock on the target.
Based on very limited Monte Carlo testing, the RMS HTLE is on the order of 10 m at 9 dB SINIR and about 20 mat 6 dB
SINR. The mean track lifetime (i.e. the amount of time the filter can keep the target on the FPE grid) is 10's of minutes at9
dB and a few minutes at 6 dB.
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