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ABSTRACT   Successful navigation for unmanned 
autonomous vehicles (UAVs) depends on the ability of 
the navigation algorithm to fuse data from disparate 
sensor systems into a single direction command in real 
time, taking into account the various and sometimes 
contradictory goals of the UAV.  In this paper, a fuzzy-
based method of sensor data analysis, fusion, and 
navigation is investigated.  The results of its 
implementation on the UAV MOSFET, an off-road 
testbed for testing on-road automotive navigation 
algorithms, are presented. Previous work in the field of 
intelligent navigation including obstacle detection, lane 
finding, and navigation is surveyed and compared to the 
current implementation. 
 
Keywords   Intelligent Transportation, Image 
Processing, Autonomous Navigation, Robotics. 

I. INTRODUCTION 
The Michigan Offroad Sensor Fusing Experimental 

Testbed (MOSFET) is an autonomous vehicle designed to 
navigate an unknown terrain which includes obstacles, 
lanes, and other traditional road-side obstructions.   

 
In order to gather data about the world around it, 

MOSFET is equipped with several heterogeneous sensors.  
These sensors include one forward-looking camera used 
for obstacle detection and lane tracking, two side-looking 
cameras used for lane sensing, and a bank of 8 ultrasonic 
sensors used to detect physical obstacles (see Figure 1).  
Each of these sensors produces data that is most 
conveniently interpreted in a fuzzy framework. 

 
The multiple sensor sets are necessary for two 

reasons: First, each of these three sets of sensors only 
provides information about a portion of the world around 
the vehicle. Second, each of the sensors is able to detect 
only some of the potential hazards in the scene. The fuzzy 
combination of these multiple modalities allows MOSFET  
to robustly find both lanes and obstacles in a large area 
around the vehicle. 

 
 This paper is organized as follows. In the following 
section, an overview of the autonomous navigation 
problem is given, followed by a summary of the solution 
provided by the proposed system. Section III provides a 
review of previous work in intelligent transportation using 
fuzzy logic techniques. Next, Section IV gives a complete 

description of the sensors and algorithms that allow 
MOSFET to navigate autonomously. A detailed set of 
experimental results is given in Section V. Finally, section 
VI concludes with some relevant remarks. 
 

 
Figure 1: MOSFET and its Sensors  

II. PROBLEM STATEMENT 
In order to successfully develop an unmanned 

autonomous vehicle, it is necessary to design an algorithm 
able to take whatever information is known about the 
environment and fuse this into a set of data which can be 
used to navigate the vehicle. 

 
There are several issues in the design of such an 

algorithm.  First, it must be known what information will be 
available a priori, and what information will be available 
from the sensor systems.  Second, the navigation criteria 
and goals must be defined. 

 
In this paper, we consider the problem of outdoor 

autonomous navigation with no a priori knowledge about 
the particulars of the environment.  The only knowledge of 
the terrain that will be assumed are those that exploit the 
existing infrastructure of the road: lane markings are 
typically yellow or white; obstacles are typically a different 
color from the background (e.g. red and orange traffic 
cones), or can be detected by their physical presence via 
ultrasonic sensors. 

 
From this limited knowledge about the terrain, a set of 

navigation criteria can be developed, specifically that the 



 

vehicle must avoid obstacles and follow lane markings 
simultaneously.  Also, since the sensor data must be 
processed on line, the speed of the algorithm is important.  

 
With the sensors employed here, it is clear that the 

problem at hand is particularly amenable to solution via 
fuzzy techniques:  
§ The side-looking cameras determine if lanes are 

“near” or “far” from the vehicle, and if they are 
oriented “towards” or “away from” the vehicle. 

§ The ultrasonic sensors can determine if obstacles are 
“near” or “far”, and an approximate direction. 

§ The main camera can determine which paths contain 
the most obstacles (lanes and physical obstacles) on 
a relative basis. 

III. REVIEW OF RELATED WORK 
There have been many investigations into 

autonomous navigation using fuzzy logic techniques. 
Ishikawa [1] presents an UAV designed to navigate a 
predefined path while simultaneously avoiding obstacles.  
Instead of the path being two lines as would be seen on a 
highway, it simply consists of one stripe that the vehicle 
follows (the vehicle is allowed to be on either side or on 
top of the line).  A fuzzy controller is designed for each of 
the situations (path following and obstacle avoidance) and 
subsequently combined when both a path and an obstacle 
are present at once. Ishikawa’s system is different then 
MOSFET in that it follows a predefined, well-laid path 
instead of arbitrary paths on normal roadways. 
Furthermore, it uses a more limited set of sensors. 

 
Another procedure for fuzzy lateral control is 

described by Blochl and Tsinas [2].  The goal of the work 
is similar to that set forth above and in [1], but the sensing 
equipment and logic decisions are different.  First, instead 
of following a path, the test vehicle traverses a corridor.  
Using just a color CCD camera as a sensing device, 
Blotch and Tsinas are able to calculate the angular 
deviation (θ) from the wall.  Subsequent processing 
allows them to generate ∆θ, the interframe difference in 
orientation (which gives knowledge of the rate of change 
of the angular deviation θ). In this scenario, ‘obstacles’ 
and ‘lanes’ are the same thing – the walls in the corridor. 

 
Sng [3] presents a method of obstacle avoidance and 

wall following using two inputs and two outputs.  The 
wall on the left is followed and obstacles in front of the 
vehicle are avoided.  Sensors which determine the 
distance from the wall on the left to vehicle and the 
distance from an obstacle in front of the vehicle are used 
to generate two sets of input data.  Using this data, 
commands are given to the two steering motors, one of 
which is on the left of the vehicle and one of which is on 

the right.  By giving different commands to the two motors, 
the vehicle is able to turn in a specified direction.  

 
The fuzzy control for the platform MORIA is given in 

[4].  This platform differs from those mentioned above in 
two ways.  First, it relies on ultrasonic sensors as inputs 
instead of cameras.  Second, it is not interested in following 
a path or a wall, but only in avoiding collisions with 
physical obstacles that are identified with the sonar. 
MORIA's control is based on a series of rules, that combine 
results of several homogenous sonar units. 

 
Another system that relies on sonar as sensory input, 

called FLEXL, is examined in [5].  Once again, a set of 
rules are developed to provide the control of the vehicle.  It 
is interesting, however, that the choice of variables is 
changed from some of the systems examined earlier even 
though the sensory equipment and the overall goals are 
identical.  FLEXL uses distance to object (as was used in 
[2] and [3]), but augments this lone requirement with a 
considerations of velocity and a 'collision corridor'.  An 
obstacle detected by the sensor may or may not be in the 
vehicles collision corridor, which is determined by a 
analysis of the kinematics of the system.  Essentially any 
obstacle that is not reachable by the vehicle in its present 
state is given significantly less weight because the chances 
of a collision are slim.  

 
Garcia-Cerezo et al. [6] have designed a path following 

system (RAM-1) that attempts to follow a path made up of 
one lane.  Two inputs are used, the distance from the center 
of the vehicle to the path and the orientation of the vehicle 
with respect to the lane.  This second input is a subtle 
alteration of that used in [2], which calculates the 
orientation with respect to the direction of the lane in a less 
local sense.  An additional feature of the paper is a 
consideration of the kinematics and dynamic constraints of 
the vehicle itself.  The goal is to generate a steering angle to 
accomplish successful navigation.  

 
Some other interesting applications of fuzzy in this 

include using a fuzzy supervisory system.  The papers by 
Kachroo [7] and Ollero [8] describe fuzzy control systems 
that are integrated with other non-fuzzy controls, such as 
the PI and PID.   

 
Yen and Pfluger [9] proposed a navigation algorithm 

which took advantage of heterogeneous sensor fusion using 
fuzzy techniques. In this navigation algorithm, all of the 
sonar sensors are fuzzified onto one set of disallowed 
directions. Next, the goal direction is fuzzified onto a set of 
all allowed directions. These fuzzy relations are then 
combined using the max operator, creating a fuzzy relation 
on the set of desired directions. The fuzzy navigation 
command is defuzzified using the centroid of largest area 
method, which is employed here as well.  



 

 The works surveyed here show that a robust control 
system can be implemented using fuzzy logic techniques. 
Furthermore, it is clear that a system that uses 
heterogeneous sensors to collect information about real 
world road situations and perform real-time control using 
fuzzy logic, such as MOSFET, is a novel extension of 
research previously done. 

IV. SYSTEM DESCRIPTION 
As mentioned previously, MOSFET employs three 

sets of sensors to analyze the surrounding area. All three 
of these sensors are processed independently to produce a 
fuzzy output, which represents the desirability or 
undesirability of all potential steering angles. Finally, the 
results of the three sets of sensors are fused and then 
defuzzified to produce a final steering decision.  

A. Vision Sensors 
MOSFET employs two sets of vision sensors: a main 

(forward-looking) camera that is used to detect obstacles 
whose color distinguishes them and lanes in front of the 
vehicle, and a set of side-looking (lane) cameras that find 
lanes near the vehicle. 

1) Main Camera 
MOSFET processes the main camera image using a 

novel color image segmentation algorithm [10] that is 
able to discriminate between backgrounds, lanes, and 
obstacles using color as is shown in the images below. 
 

   
 

   
 

   
Figure 2: Examples of Main Camera Lane and Obstacle 

Detection. 
 

Using the color segmented images and the standard 
inverse perspective transformation [10], a map of the 

obstacles and lanes in front of the vehicle can be derived as 
shown below. 
 

   
Figure 3: A Lane and Obstacle Map after Projection onto 

the Ground Plane. 
 

The fuzzy set of prohibited directions is generated by 
an accumulation of the obstacle and lane pixels in front of 
the vehicle, weighted by the distance from the vehicle. The 
convention used here is that angles less than 90° are to the 
right of the vehicle, while angles greater than 90° are to the 
left of the vehicle. As is shown in Figure 4, there are two 
heavily prohibited directions for the images of Figure 3 –  
the obstacle and lanes to the left (approximately 100°) and 
the lane to the right (approximately 70°). 
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Figure 4: The relative ‘obstacleness’ of all angular paths 

from 45-135°.  

2) Side-looking Cameras 
MOSFET  employs a modified version of the 

STARLITE [11] algorithm for side-looking camera lane 
detection.  STARLITE utilizes a deformable template model 
to describe the shape of an ideal lane, and is able to robustly 
detect lane markings in presence of noise, shadowing, and 
occlusion. Shown in Figure 5 are a series of examples that 
demonstrate the efficacy of this lane finding procedure. 
 

 
 



 

   
 
 

   
Figure 5: Lane finding using STARLITE.  Lanes are 

found in three scanlines and are marked with a vertical 
bar to indicate their position 

 
Use of STARLITE allows description of the lanes by 

two parameters – their distance from the vehicle (Dl and 
Dr, for the left and right lanes, respectively) and their 
orientation with respect to the vehicle (Ol and Or, for the 
left and right lanes, respectively).  The distances, Dl and 
Dr, are in meters from the front center of the vehicle.  A 
distance of approximately .7 meters indicates that the 
wheel is touching the lane. The orientations, Or and Ol, 
are positive for lanes oriented towards the right, and 
negative for lanes that are orientated towards the left. 

 
The fuzzy steering command using the side-looking 

cameras is developed as follows. A set of fuzzy 
membership functions describe the proximity of the lane: 
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Figure 6 : (Left to Right), The fuzzy membership 
functions for Very Near (VN), Near (N), and Far (F). 
 
Similarly, a set of fuzzy membership functions are 
utilized to describe the orientation of the lane: 
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Figure 7: Membership Functions Very Negative (VN), 

Negative (N), Positive (P), and Very Positive (VP) 
orientations. 

Finally, the output variable (steering angle) has the five 
fuzzy sets defined: Left (L), Right (R), Straight (S), Hard 
Left (HL) and Hard Right (HR).  
 

50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 

50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Figure 8: Membership functions for Hard Right, Hard Left, 

Right, Left, and Straight.  
 

A set of fuzzy rules is used to perform the control 
actions required for the navigation.  Fundamentally, the 
rules follow the following two premises: 

1. The vehicle is to avoid being too near to the lane. 
2. If the vehicle is a suitable distance from the lane, 

proceed straight. 
 
Hence, the final list of 22 rules (11 for each lane) is: 
 
R1: If (Dl=  N) & (Ol= N/A) then (S= R) 
R2: If (Dl=FAR) & (Ol= N/A) then (S= S) 
R3: If (Dl= VN) & (Ol= *1) then (S=HR) 
 
R4: If (Dl=N) & (Ol= VNEG) then (S= S) 
R5: If (Dl=N) & (Ol= NEG ) then (S= S) 
R6: If (Dl=N) & (Ol= POS ) then (S= R) 
R7: If (Dl=N) & (Ol= VPOS) then (S=HR) 
 
R8: If (Dl=FAR) & (Ol= VNEG) then (S=L) 
R9: If (Dl=FAR) & (Ol= NEG) then (S=S) 
R10: If (Dl=FAR) & (Ol= POS) then (S=S) 
R11: If (Dl=FAR) & (Ol= VPOS) then (S=R) 
 
R13: If (Dr=  N) & (Ol=N/A) then (S= L) 
R13: If (Dr=FAR) & (Ol=N/A) then (S= S) 
R14: If (Dr= VN) & (Ol= * ) then (S=HL) 
 
R15: If (Dr=N) & (Ol= VNEG) then (S=HL) 
R16: If (Dr=N) & (Ol= NEG ) then (S= L) 
R17: If (Dr=N) & (Ol= POS ) then (S= L) 
R18: If (Dr=N) & (Ol= VPOS) then (S= S) 
 
R19: If (Dr=FAR) &(Ol= VNEG) then (S=L) 
R20: If (Dr=FAR) &(Ol= NEG ) then (S=S) 
R21: If (Dr=FAR) &(Ol= POS ) then (S=S) 
R22: If (Dr=FAR) &(Ol= VPOS) then (S=R) 
Figure 9:  The rule base. Sometimes orientation data is 

unavailable (n/a) since the lane may be out of the cameras 
field of view or missed. 

 

                                                                 
1 In this case, any orientation will cause the reaction.  
Hence Ol=* implies Ol can be anything. 



 

The rule base may be more clearly illustrated by 
considering the following table. 
 

 VN N F 
VNEG HR S L 
NEG HR S S 
POS HR R S 
VPOS HR HR R 
N/A HR R S 

Table 1:  Rules for the left lane. Labels across the top 
represent distance to the left lane (Dl) and labels on the 

side represent lane orientations (Ol). The rule base for the 
right lane is symmetric. 

 
Use of these rules for both lanes generates a fuzzy set 

of desired directions from the lane camera sensor data. 

B. Ultrasonic Sensors 
The ultrasound sensors are then used to locate 

physical obstacles. Since the ultrasonic sensors return 
only the range of an object as information, the angular 
position of the obstacle is calculated using the trivial 
sonar model shown in Figure 10. In this model, the range 
information is used along with the known sonar detection 
cone to assume an obstacle's angular location as the center 
of the conic region swept out by the sonar. 
 

Obstacle Range

Sonar detection area (20°)

Assumed Obstacle 
Position

 
Figure 10: Trivial Sonar Model 

 
The bank of 8 ultrasonic sensors is grouped into 4 

groups of two. The sonar reading for each group is taken 
as the smallest valid measurement for the group. This has 
the benefit of reducing the number of fuzzy rules needed, 
with the cost of reducing the available information.  

 
The set of prohibited directions is created by first 

fuzzifying the obstacle range reported by each of the 4 
ultrasound sensor groups onto the set prohibited 
directions using only one fuzzy subset, NEAR, via the 
generic rule: 
 
“If sensor reading at x° is NEAR, then prohibited 
direction is y.” 
 
NEAR is defined on the universe of discourse of all 
possible detected obstacle ranges, from 0 meters to 10 

meters.  The membership function NEAR is defined as 1 
for all distances less than 1.5 meters, and is linearly 
decreasing to zero at 2.5 meters (see Figure 11).  The 
prohibited direction membership functions are wide enough 
so that the vehicle can avoid detected obstacles.  Figure 11 
shows membership values for an ultrasound sensor group 
one direction, which is typical. 
 

Note that only four rules are necessary to obtain the 
fused obstacle information.  The rules use max-min 
composition to produce the fuzzy output, which insures that 
close obstacles ‘override’ far obstacles. 
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Figure 11: The near membership function 
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Figure 12: The prohibited directions for around -10°. 

C. Sensor Fusion and Navigation 
At this point, the algorithm fuses the prohibited 

direction sets generated by the main camera and ultrasonic 
sensors with the desired direction set from the lane 
cameras. This is done by taking desired direction and 
combining it with maximum of the prohibited directions to 
obtain the output fused desired direction.  This is done 
using the fuzzy operation: 
 
µfused desired direction =  
 min[µdesired directions, 1-µprohibited directions ]         (1) 
 
where  
µprohibited directions =  
 max(µmain camera,µultrasonic sensors)                 (2) 
 

The final step is the defuzzification of fused desired 
direction into a crisp steering angle which can then be sent 
to the vehicle’s steering controller.  The manner of 
defuzzification chosen is the centroid of largest area (CLA) 
method [9]. 

 
The CLA method finds the set of angles in fused 

desired direction whose area is largest.  A set of angles is 
determined by finding contiguous angles whose 
membership values are above a threshold.  The threshold 
for this algorithm is determined dynamically, set at thirty 



 

percent of the maximum value actual direction .  Once the 
largest set of angles is determined, the algorithm finds the 
centroid of the area (see figure 8). 

 
Using the CLA method has several advantages over 

the more commonly used center of area (COA) and mean 
of maximum (MOM) methods.  In general, the CLA 
method tends to give a smoother response than the MOM 
method.  In practical terms, this means that the steering 
angle oscillations with the CLA method will tend to be 
smaller than those with the MOM method. 

 
The COA method gives a smooth response, but can 

cause the crisp steering angle output to be in an area 
where the value of prohibited direction is high.  This can 
occur when fused desired direction is bimodal, which 
could mean that an obstacle is in front of the vehicle.  
Thus, the vehicle could potentially steer into an obstacle.  
The CLA avoids this pitfall by using only the largest area.  
For a bimodal distribution, the centroid of the largest 
mode would be found.  

V. EXPERIMENTAL RESULTS 
In this section, we present a complete result of the 

fuzzy navigation algorithm. First, the sensor data is 
acquired. Shown below are the original image obtained 
from the main camera, the distances and orientations of 
the left and right lanes found via the side cameras, and the 
8 ultrasonic sensor returns. The ultrasonic sensors are 
identified by the direction in which they point. 

 

 
Figure 13: The Main Camera Data (left) and the Lane 

Camera Data (right) 
 

Sensor 
Direction 

 
Dist. 

Sensor 
Direction 

 
Dist. 

Left 1 0 Right 1 0 
Left 2 0 Right 2 0 

Center Left 1 3.8 m Center Right 1 0 
Center Left 2 4.2 m Center Right 2 0 

Table 2: The Ultrasonic Sensor Data 
 

First, the main camera image is processed in 
accordance with the algorithm outlined in section IV, 
resulting in the set of prohibited directions. The obstacle 

on the left causes the large prohibition seen at 
approximately 105°, while the lanes on the right cause the 
prohibition seen at approximately 75°. 
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Figure 14: Main Camera Prohibited Angle Set. 

 
Second, the ultrasonic sensor data is processed, 

resulting in the following set of prohibited angles. The two 
measurements recorded from the left-center ultrasonic 
sensors cause the prohibited angle set to heavily prohibit 
angles between  90° and 115°. 
 

60708090100110120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Angle (in degrees).

 
Figure 15: The Prohibited Angle Set Generated by the 

Ultrasonic Sensors. 
 

Third, the lane camera data is processed, resulting in 
the following set of allowable angles. In this case, the left 
lane is further away than the right lane, so the desired 
steering direction from the lane cameras favors steering to 
the left. 
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Figure 16: The Desirable Angle Set Generated by the Lane 

Cameras. 

 
Dl = 1.2 meters 
Dr = 1 meter 
Ol = 0 (straight) 
Or = 0 (straight) 



 

 
The three sets of sensor data are fused together to 

create one set of desired angles. In this case, there is 
conflicting information from the three sensors. The lane 
cameras indicate that steering left is more appropriate, as 
they can only image the lanes and not the obstacles. The 
main camera and ultrasonic sensors, however, record this 
obstacle and overcome the lane cameras left bias. 
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Figure 17: The Final Desirable Angle Set Found by 

Fusion of the 3 Sensor Suites. 
 

Using the centroid of largest area method, the 
function in Figure 17 is defuzzified to a crisp steering 
angle of 84°, which represents a slight turn to the right. 
Clearly, the fusion of the three sensors provides more 
reliable steering information then any of the sensors 
alone. The fuzzy technique for sensor data analysis and 
fusion allows the disparate sensor modalities to be 
intelligently fused. 

VI. CONCLUSIONS 
The algorithm presented here shows how fuzzy logic 

can be applied to a problem involving intelligent 
transportation and image processing. It can robustly  fuse 
heterogeneous sensor data to provide reliable navigation 
decisions. 
 

The performance of the fuzzy algorithm is 
comparable to the performance of non-fuzzy algorithms 
implemented on the same vehicle, with the advantages of 
reduced computational complexity, and ease of 
modification that is inherent in with rule based systems. 
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