
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 2, APRIL 1999 343

research. The kinematics of a multi-module vehicle was investigated
using a numerical approach to solve the combined holonomic-
nonholonomic problem. Simulations indicated that significant change
in axle lengths can be present on uneven ground. In the absence
of a variable-length axle (VLA), this translates to increased slipping
which results in motion that is difficult to predict.

VSMC’s with (unactuated or actuated) VLA’s have the potential
to improve navigation based on dead-reckoning in the presence of
bumps and terrain variations. For example, it has been noted in the
literature [8] that unpredictable slipping significantly increases the
burden on sensor-based navigation even on relatively easy uneven
ground. In the presence of decreased wheel-ground slip, along with
the additional information of the axle-length variation, it is expected
that more accurate dead-reckoning can be achieved as compared to
the case of vehicles with fixed length axles.

This article was directed toward kinematics of vehicle systems on
uneven ground. Ongoing and future research involves investigating
enhanced dead-reckoning using VLA’s. The force distribution, dy-
namics and traction capabilities of wheeled vehicles with active or
passive VLA’s are also being studied.
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LANA: A Lane Extraction Algorithm
that Uses Frequency Domain Features

Chris Kreucher and Sridhar Lakshmanan

Abstract—This paper introduces a new algorithm called Lane-finding in
ANother domAin (LANA) for detecting lane markers in images acquired
from a forward-looking vehicle-mounted camera. The method is based on
a novel set of frequency domain features that capture relevant information
concerning the strength and orientation of spatial edges. The frequency
domain features are combined with a deformable template prior, in
order to detect the lane markers of interest. Experimental results that
illustrate the performance of this algorithm on images with varying
lighting and environmental conditions, shadowing, lane occlusion(s), solid
and dashed lines, etc. are presented. LANA seems to detect lane markers
remarkably well under a very large and varied collection of roadway
images. A comparison is drawn between this frequency feature-based
LANA algorithm and the spatial feature-based LOIS lane detection
algorithm. This comparison is made from experimental, computational,
and methodological standpoints.

Index Terms—Bayesian estimation, denoising, discrete cosine trans-
form, global shape model, intelligent vehicles, likelihood ratio, number
of operations.

I. INTRODUCTION

Lane detection, the process of locating lanes in an image with no
prior estimate to aid the search, is an important enabling or enhancing
technology in a number of intelligent vehicle applications, including
lane excursion detection and warning, intelligent cruise control, lateral
control, and autonomous driving. Studies such as [1]–[3] contain a
detailed discussion of these applications and their overall impact on
the economy, environment, and driver safety.

The first generation of lane detection systems were all edge-based.
They relied on thresholding the image intensity to detect potential
lane edges, followed by a perceptual grouping of the edge points to
detect the lane markers of interest. Also, often times the lanes to be
detected were assumed to be straight. See [4]–[6] and the references
therein. The problem with thresholding the intensity is that, in many
road scenes, it isn’t possible to select a threshold which eliminates
the detection of noise edges without also eliminating the detection of
true lane edge points. Therefore, these first generation lane detection
systems suffered when the images contained extraneous edges due
to vehicles, on-off ramps, puddles, cracks, shadows, oil stains, and
other imperfections in the road surface. The same deficiency also
applied when the lanes were of low contrast, broken, occluded, or
totally absent.1

The second generation of systems sought to overcome this problem
by directly working with the image intensity array, as opposed to
separately detected edge points, and using a global model of lane
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Fig. 1. Examples of the true lane shape hypothesis having a likelihood value less than a hypothesis that includes a vehicle.

(a) (b) (c)

Fig. 2. (a) A typical road image. (b) The image’s gradient field. (c) The image’s new feature vector field.

shape. For example, ARCADE [6] uses global road shape constraints
derived from an explicit model of how the features defining a road
appear in the image plane. A simple one-dimensional edge detection
is followed by a least median squares technique for determining the
curvature and orientation of the road. Individual lane markers are then
directly determined by a segmentation of the row-averaged image
intensity values. ARCADE, unlike its predecessors, does not require
any perceptual grouping of the extracted edge points into individual
lane edges. The RALPH system [7] is another example of a second
generation lane detection system. Like ARCADE, it too uses global
road shape constraints. The crux of RALPH is a matching technique
that adaptively adjusts and aligns a template to the averaged scanline
intensity profile in order to determine the lane’s curvature and lateral
offsets. The LOIS lane detector [8], yet another example of a second
generation lane detection system, uses template matching as well.
However, unlike RALPH, LOIS’ match is over the entire image and
not just an averaged scan line. At the heart of LOIS is a likelihood
function that encodes the knowledge that the edges of the lane should
be near intensity gradients whose orientation are perpendicular to the
lane edge. This allows strong magnitude gradients to be discounted
if they are improperly oriented and weak magnitude gradients to
be boosted if they are properly oriented. There are several other
such second generation systems; the reader is referred to [9] for a
description of those. Many of these have been subject to several
hours of testing, which involved the processing of extremely large
and varied data sets, and it suffices to say that the second generation
lane detection systems perform significantly better in comparison to
the first generation ones.

However, not all of the problems associated with the first gen-
eration systems have been overcome. In particular, a number of
second generation lane detection systems still have a tendency to
be “distracted” or “pulled” away from the true lane markers by the
presence of strong and structured edges such as those created by

a vehicle outline.2 In portions of the image whose distance from
the camera is large, vehicle outlines have a much higher contrast
compared to the true lane markers. In such cases, hypothesis that
include the vehicle outline as part of the template are more (or at least
equally) favored than those that do not include them. This “distraction
problem” is illustrated in Fig. 1, which shows example images where
the LOIS lane detection algorithm determines the best hypothesis to
be the one that includes the vehicle outline as part of the template. The
net result is that, although second generation lane detection systems
provide a fairly accurate estimate of the vehicle’s offset and perhaps
even orientation, relative to the true lane markers, their curvature
estimates are not reliable.

One way to overcome this problem, as [10], [11] point out, is to
provide information about obstacles ahead of the vehicle to the lane
sensing system to avoid corrupting the gradient field data used to
estimate the lane shape parameters. A second way to overcome this
problem is by tracking lanes from frame-to-frame given an existing
model of the road geometry [23]–[25]. Prior knowledge of the road
geometry permits lane tracking algorithms (unlike pure detection
algorithms) to impose strong constraints on the likely location and
orientation of the lanes in a new image. Yet another way to overcome
the curvature estimation problem is to find image features that include
the same amount of information about the true lane markers as the
image intensity gradient field, which are not as sensitive to extraneous
edges. The primary intent of this paper is to report the discovery
of such a desirable set of image features (see Fig. 2) and to make
a systematic comparison of those features to the image intensity
gradient field.

2Lane detection algorithms get pulled away only when the distracting edges
are outside of the current lane. When a vehicle is present in the current lane,
the vehicle outline helps reinforce the correct lane hypothesis (see [8], [11],
and [23]).
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The method proceeds as follows: A given image is broken up
into 8 � 8 pixel blocks. For each block, a frequency-domain-
based feature vector is computed. This feature vector reflects the
amount of “diagonally dominant edge energy” that is contained in
that 8 � 8 block. The block feature vectors are then collectively
used in combination with a deformable template shape model of the
desired lane markers. This combination is accomplished in a Bayesian
setting, where the deformable template model plays the role of a prior
probability, and the feature vectors are used to compute a likelihood
probability. The lane detection problem is reduced to finding the
global maximum of a four-dimensional posterior probability density
function, and an exhaustive search is employed to find the global
maximum. Since the algorithm relies on frequency domain features
and not the more familiar spatial domain ones, it has the name
Lane-finding in ANother domAin (LANA).

LANA was applied to a widely varying set of roadway images-
this set includes images obtained under a variety of lighting and
environmental conditions, shadowing, lane occlusion(s), solid and
dashed lines, etc. LANA was also tested on a number of images where
the LOIS lane detector has problems finding the true lane markers.
These results seem to indicate that lane detection in the frequency
domain has some inherent advantages over detection in the spatial
domain, and so LANA has much promise, in terms of being used to
design a real-time lane detection and tracking system.

To gain additional insight into its performance, a systematic
comparison between the frequency feature-based LANA algorithm,
and the spatial feature-based LOIS lane detection algorithm was
undertaken. This comparison was made from three standpoints:
experimental, computational, and methodological. At this juncture,
LANA seems to be better than LOIS.

The rest of this paper is organized as follows: a detailed description
of the new frequency domain lane edge feature is presented in
Section II; the deformable template shape model is described in
Section III; Section IV encompasses the Bayesian combination of
the shape model and the frequency domain features; detailed exper-
imental results using LANA are contained in Section V; Section VI
includes a systematic comparison between LANA and LOIS; and,
finally, Section VII concludes the paper with some relevant remarks.

II. FREQUENCY DOMAIN FEATURES OF LANE EDGES

There are many previously published papers that deal with fre-
quency domain counterparts to spatial domain features [12]–[21].
Some of these papers [12]–[15] deal with the problems of texture
image restoration, segmentation, and classification using frequency
domain features. While others [16]–[20] use frequency domain fea-
tures to extract edges and also to achieve edge-preserving image
coding/compression [16]–[20]. References [16], [20], [21] are the
most relevant to this paper. Especially, [21] deals with a problem
similar to this paper: Curve extraction using a multidimensional
Fourier transform. Curves are represented in a piecewise linear
fashion and linked together via a quad tree. At any given node,
the image’s intensity profile is used to determine whether or not
an edge is present at that node. This is accomplished by using a
multiresolution Fourier transform (MFT). Large regions of the image
are first examined in the MFT domain for the presence/absence of
edge-like features. If an edge-like feature is deemed present in a
certain region, then the region is further subdivided by using the quad
tree, and a similar presence/absence decision is made at the lower
nodes of the tree. This process is repeated until every pixel in the
image has a classification in terms of whether or not it lies on an edge.
The MFT is convenient for detecting edge features at multiresolutions
and has been used to detect globally relevant edges in a variety of
images. The approach in this paper has some commonality with the

one in [21], especially in the use of frequency domain to detect edge-
like features and the interpretation of these features’ significance in
a global context. However, the methods and models employed are
vastly different between this paper and [21].

Lane edges are the objects of interest in this work. Recall that the
features of interest are those that discriminate between lane markings
and extraneous (nonlane) edges. An examination of roadway scenes
obtained from a forward-looking vehicle-mounted camera easily
reveals that lane markers tend to have “diagonally dominant” orienta-
tions in the image plane due to the perspective transformation inherent
in the ground plane imaging process, whereas the extraneous edges
have no such preferred orientations. This paper finds the frequency
domain to be a convenient vehicle to discriminate between edges
that are diagonally dominant and those that are randomly oriented.
Details follow.

A given image is first divided into 8� 8 blocks of pixels. Each
of the 8 � 8 pixel blocks are then orthogonally decomposed in
terms of a set of 64 discrete cosine transform (DCT) basis elements.
Each of these elements, as seen in Fig. 3, correspond to spatial
domain edges of a certain strength and orientation. Out of these 64
elements, “diagonally dominant” edges are best represented by a set
of 12. The matrix in Fig. 3 indicates which 12 of the 64 they are.
Fig. 4 shows several examples of the “value” of these 12 from the
standpoint of lane detection. For each original image in Fig. 4, the
corresponding feature image is obtained by summing the squares of its
12 special DCT decompositions. As one can see, despite the original
image having features/edges of various strengths and orientations, the
corresponding DCT feature images contain only information about
those edges that are diagonally dominant. The rest of this paper
explains how such DCT-based features can be exploited for precisely
locating the lane markers.

Note that the frequency domain features adopted in this paper are
similar to the ones presented in [20] and [22]. In [20], these frequency
features were used for code-book optimization. Whereas in [22], the
objective was to detect faces using these frequency domain features.
The principal contributions of this paper are:

1) identification of specific DCT basis elements that capture lane
features and nothing else;

2) use of these features in a Bayesian paradigm to robustly detect
the lane markers;

3) comparison of the frequency domain and spatial domain fea-
tures for lane detection.

III. D EFORMABLE TEMPLATE SHAPE MODEL

As mentioned in the introduction, the algorithm presented in this
paper (LANA) uses a global shape model to predict the manner in
which lane markers appear in images. As commonly done [8], this
paper also assumes that lane markers are circular arcs on a flat ground
plane. For small-to-moderate curvatures, a circular arc with curvature
k can be closely approximated by a parabola of the form

x = 0:5 � k � y
2
+m � y + b: (1)

The derivation of the class of corresponding curves in the image
plane is given for the case of an untilted camera, but it can be shown
that the same family of curves results when the camera is tilted.
Assuming perspective projection, a pixel (r; c) in the image plane
projects onto the point (x; y) on the ground plane according to

x = c � cf � y (2)

and

y =
H

r � rf
(3)
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(a) (b)

Fig. 3. (a) DCT basis elements. (b) Matrix that represents which 12 of the 64 capture diagonally dominant edges.

Fig. 4. DCT features of typical roadway scenery.

whereH is the camera height,rf is the height of a pixel on the focal
plane divided by the focal length, andcf is the width of a pixel on
the focal plane divided by the focal length. Substituting (2) and (3)
into (1) and performing some simple algebraic manipulation results
in the image plane curve

c =
0:5 � k �H

rf � cf � r
+

b � rf � r

H � cf
+

m

cf
(4)

or, combining the ground plane and camera calibration parameters
together

c = k0=r + b0

� r + vp: (5)

In the case of a tilted camera, the same family of curves results
if the image coordinate system is defined so that row 0 is the
horizon row. For left and right lane edges defined by concentric arcs,
the approximation is made that the arcs have equal curvature and
equal tangential orientation where they intersect theX axis, sok0

and vp will be equal for the left and right lane edges. While the
radius of curvature and tangent orientation of the left and right lane
edges will differ slightly, constraining the left and right lane edges
to have the samek0 and vp parameters closely approximates the
actual lane edge shapes for all but very small radii of curvature.
As a result, the lane shape in an image can be defined by the
four parametersk0; b0

LEFT ; b
0

RIGHT ; and vp. In summary, thek0

parameter is linearly proportional to the curvature of the arc on
the ground plane. Thevp parameter is a function of the tangential
orientation of the arc on the ground plane, with some coupling to

the arc curvature as well (depending on the amount of camera tilt).
The b0

LEFT and b0

RIGHT parameters are functions of the offset of
the arc from the camera on the ground plane, with couplings to arc
curvature and tangential orientation (again, the relative contributions
of these couplings depends on the camera tilt) [6]. The flat ground
plane assumption is occasionally violated due to a vertical curvature
in the road ahead, and also the camera height and tilt changes by small
increments due to the suspension rock of the host vehicle. However,
accounting for these variations is difficult and also their effect on the
accuracy of the detected lanes is not very apparent.

In the next section, this deformable template shape model is used
in conjunction with the DCT-based lane features to detect the precise
location of the lane markers.

IV. BAYESIAN LANE DETECTION

It is assumed that the values of the lane shape parameters
k0; b0

LEFT ; b
0

RIGHT ; and vp are influenced by a prior probability
density function (pdf)

P (k0; b0

LEFT ; b
0

RIGHT ; vp)

/ atan� b0

RIGHT � b0

LEFT � 1

� atan� b0

RIGHT � b0

LEFT � 3 � 1� �
k0

�

2

(6)
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Fig. 5. Example results of processing a varied set of images using LANA.

where� = 10; � = 0.01, and� = 600. This prior pdf embodies two
types of a priori knowledge about roadways: First, roadways tend
to have a certain range of widths, and this is enforced by the term
involving atans; Second, roadways tend to have a certain range of
curvatures, and this is enforced by the parabolic weighting function
on k0.

It is also assumed that given the values ofk0; b0

LEFT ; b
0

RIGHT ;

andvp, the probability of the observed image having the DCT feature
values (the ones described in Section II) is given by the likelihood
pdf3

P (DCT feature valuesjk0

; b
0

LEFT ; b
0

RIGHT ; vp)

/
i;j k;l2C

(dct coeff(k; l))2 (7)

where the sum over (i; j) covers those 8� 8 pixel blocks through
which the left and right lanes (as dictated byk0; b0LEFT ; b

0

RIGHT ;

and vp) pass,Ci;j denotes the set of 12 DCT basis elements that
capture diagonally dominant edge features (see Section II for details),
anddct coeff(k; l) denote the(k; l)th DCT coefficient of the(i; j)th
block of 8� 8 pixels. This likelihood pdf encodes the knowledge
that the true lane markers lie along portions of the image that
uniformly have a high amount of perspective (diagonally-dominant)
edge energy.

3Ideally, the likelihood pdf should contain a normalizing factor that depends
on the lane shape parameters. However, calculating this factor is very difficult,
as it involves an integration of the RHS of (7) over all the DCT feature values.
Omission of such a factor is ubiquitous to Bayesian methods in image analysis.

These two pdfs are combined using Bayes’ rule, and the lane
detection problem is reduced to one of finding a maximuma
posteriori (MAP) estimate

argmax
k ; b ; b ; vp

� P (k0; b0LEFT ; b
0

RIGHT ; vpjDCT feature values)

= argmax
k ; b ; b ; vp

P (k0; b0LEFT ; b
0

RIGHT ; vp)

� P (DCT feature valuesjk0; b0LEFT ; b
0

RIGHT ; vp)

= argmax
k ; b ; b ; vp

(atan�((b0RIGHT � b
0

LEFT )� 1)

� atan�((b0RIGHT � b
0

LEFT )� 3)� 1� �
k0

�

2

�
i; j k; l2C

(dct coeff(k; l))2: (8)

The MAP estimate is eventually found by a straightforward
exhaustive search over the four-dimensional parameter space of
k0; b0LEFT ; b

0

RIGHT ; and vp. The next section contains several
experimental results that illustrate the efficacy of this Bayesian lane
detection procedure. Optimization methods such as the Metropolis
algorithm [8] and constrained local searches based on recent road
geometry [23]–[25] could also be used, instead of exhaustive search.

V. EXPERIMENTAL RESULTS

The lane extraction procedure LANA, described in the previous
sections, was applied to a varied set of images. The images include
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Fig. 6. Experimental comparison between LANA and LOIS. For each row, the LANA results are on top and the LOIS results are on the bottom of
the middle and right columns.

those that were obtained under a variety of lighting and environmental
conditions, shadowing, lane occlusion(s), solid and dashed lines, etc.
(see Fig. 5).

LANA provides a parametric description of the lane on the image
plane via the parametersk0; b0

LEFT ; b
0

RIGHT ; andvp. Following the
discussion in Section III, these parameters can be easily transformed
onto the corresponding ground plane parametersk; bLEFT ; bRIGHT ;

and m.

VI. COMPARISON OF LANA AND LOIS

In this section, we compare two lane detection algorithms that
use two very different features to detect the lane markers. The two
algorithms are:

1) The LOIS lane detection algorithm that uses a spatial domain
image intensity gradient field.

2) The LANA lane detection algorithm that uses frequency do-
main oriented-edge features.

This comparison between LANA and LOIS is undertaken from three
standpoints:

1) experimental;
2) computational;
3) methodological.

The experimental comparison seems to indicate that LANA has
some advantages over LOIS. Especially, LANA does not seem to

be distracted by strong non-lane edges in far range. While this is a
desirable characteristic more often than not (see the first three rows of
images in Fig. 6), sometimes it prevents LANA from detecting lanes
with sharp curvature correctly (see the last row of images in Fig. 6).

A computational comparison of LANA and LOIS follows. Given
a hypothesized lane shape over a 640� 480 image, the number
of operations involved in the computation of the LANA and LOIS
objective functions are tabulated in Table I. Both the LANA and
LOIS lane detection algorithms incur a computational overhead every
time a new image is processed. For LANA this overhead is the DCT
computation, whereas for LOIS it is the gradient field computation.
Table I also provides a comparison of the number of operations
involved in computing the LANA and LOIS overheads.

The size of the images in Fig. 6 were all 640� 480. Both
LANA and LOIS searched over (the same) approximately 400 000
possible lane shapes, comprised of nine different curvature values,
50 different orientations, and 30 different locations each for
the left and right lanes. On a Pentium-266MHz 96MB-RAM
Desktop-PC, for each image, LANA took approximately 30 s
to search over the 400 000 possible lane shapes, in comparison
LOIS took approximately 2 h for the same task. Potential
speedups for the LANA algorithm include improved optimization
techniques such as those mentioned in Section IV, and hardware
implementations that allow direct acquisition of DCT feature
images.
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Fig. 7. Cross sections w.r.t.k0; b0

LEFT ; b
0

RIGHT; andvp. Top—for the LANA objective function. Bottom—for the LOIS objective function.

TABLE I
COMPARISON OF THENUMBER OF OPERATIONS FORLANA AND LOIS. (a)
OBJECTIVE FUNCTION COMPUTATION AND (b) OVERHEAD COMPUTATION

(a)

(b)

Finally, LANA and LOIS were compared from a methodological
standpoint. An assessment was made as to which of them is inherently
more reliable for lane detection. Shown in Fig. 7 are a set of graphs
that represent the cross-sections of the LANA and LOIS objective
functions alongk0; b0

LEFT ; b
0

RIGHT ; and vp axes for the same
image:

The graphs in the top row of Fig. 7 are more relatively peaked,
with respect to the floor, for all four parametersk0; b0

LEFT ; b
0

RIGHT ;

and vp, than the ones in the bottom row. Hence, between LANA
and LOIS, LANA is expected to discriminate better between the
globally “correct” and “incorrect” hypothesis. This was verified by a
comparison of the ratio between the global maxima and the average
(floor) value of the LANA and LOIS objective functions. For LANA,
this ratio was found to average around 15, whereas for LOIS, the
ratio was around 2.5.

VII. CONCLUSION

This paper introduced a new Bayesian algorithm called LANA
(lane-finding in another domain) for detecting lane markers in im-
ages acquired from a forward-looking vehicle-mounted camera. The
method was based on a novel set of frequency domain features,
and it was shown to consistently detect the unknown lane markers
correctly. This was true, even in situations where a more traditional
(spatial domain feature-based) algorithm such as LOIS fails. A
systematic assessment of LANA, and especially a comparison to
LOIS, was undertaken. LANA was shown to have advantages over
LOIS from three different standpoints—experimental, computational,
and methodological. Future work includes a real-time realization of
LANA and more extensive testing aboard an automobile.
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On the Use of Linear Camera-Object
Interaction Models in Visual Servoing

Benedetto Allotta and Carlo Colombo

Abstract—We investigate the exploitation of linear models of camera-
object interaction for an efficient modeling and control of image-based
visual servoing systems. The approach includes a method for coping
with those representation ambiguities typical of linear interaction models
which may affect both planning and control. The implementation of an
eye-in-hand servoing system based on affine camera models and using
image contours as relevant visual features is described and discussed. The
system, including an image planner, a two-dimensional/three-dimensional
(2-D/3-D) controller, and a visual analysis module, allows an intuitive
specification and execution of relative positioning tasks w.r.t. still or
moving rigid objects. Results of real-time experiments with a robotic
platform featuring a PUMA manipulator provide a further insight into
characteristics and performance of affine visual servoing systems.

Index Terms—Affine interaction models, eye-in-hand systems, visual
servoing.

I. INTRODUCTION

The use of visual sensors in the exteroceptive feedback loop
of a robot system, referred to asvisual servoing, appears to be a
natural approach to developing flexible positioning strategies, with
applications including robot grasping, manipulation, and navigation
(conveyor belt management, part-placement, assembly, etc.) [1], [2].

Several approaches to visual servoing were experimented in the re-
cent past. Three-dimensional (3-D)-based approaches rely on closing
the loop in the Cartesian space [3], [4]. These are less robust than
image-based approaches [5], [6], where error signal measurement and
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loop closure are performed directly at the image level, thus bypassing
any inaccuracies in camera calibration and kinematic models [7].

Notwithstanding the improvements of the last few years, much
work remains to be done on both the control and computer vision
aspects of visual servoing. Design issues with a key impact on the
overall characteristics and performance of a visual servoing system
are the models of visual interaction and the type of image features
used for object tracking. The tracking strategies proposed so far
have been based mainly on realistic models of camera projection
(e.g., perspective) but rather simple primitives such as points or
lines [8]–[10]. Yet, on the one hand tracking such primitives can be
infeasible and/or lead to unreliable results for some robotic contexts,
and on the other hand simpler camera models are accurate enough to
carry out visual analysis in a number of real contexts [11], [12].

In this paper, we investigate using linear approximations in the
modeling of an image-based visual servoing system with the purpose
of devising control strategies. In Section II, we show that embedding
an affine camera-object interaction model into the system model,
the linear mapping between appearance evolution and 3-D motion
assumes a form which is particularly suitable for real-time servoing,
since it is independent of the number and type of features being
tracked over time. We also expound a method to cope with the
intrinsic limitations of linear models while keeping the advantages
of the proposed framework.

The implementation of an affine visual servoing system featuring
a manipulator-mounted camera and using active, affine-deformable
contours as image features is described and motivated in Section III.
The system includes a planner which permits unambiguous and safe
task completion, an image-based servo controller, and an estimation
module for on-line system parameter identification. Experimental
results obtained with a setup featuring a PUMA manipulator are
discussed in Section IV, providing an insight into system performance
in terms of robustness and application perspectives.

II. THEORETICAL FRAMEWORK

A. Preliminaries and Notation

Let us constrain the positioning problem to the geometric interac-
tion between a camera and a single rigid object, in motion one w.r.t.
the other. IfPPP is a generic point of the object, its coordinates are
expressed in a generic reference framefwg = fPPPw;

wX; wY; wZg
aswPPP 2 IR3. In the following, we use a camera-centered framefcg
fixed to the camera and withcZ parallel to the optical axis, and a
framefog fixed to the object. Relative motion of camera and object
is described by means of the relative twist screw�VVV = VVV c � VVV o,
whereVVV c = [TTT Tc 


T
c ]
T andVVV o = [TTT To 


T
o ]
T are, respectively,

the camera and object twist screws,TTT and
 indicating translational
and angular velocities.

Let ppp = [x y]T 2 IR2 be the image projection of pointPPP .
The generic camera projection model is expressed byppp = �(oPPP ; 


),
where


 2 IRg is a vector of camera parameters. The image velocity
of ppp can be expressed as

_ppp = B(ppp; �; 


) c�VVV (1)

where matrixB is a function of the image point, its associated depth
�: IR2 � IRg ! IR s.t. �(ppp; 


) = cZ, and camera parameters. By
choosing the2N -vector ppp = [pppT

1
pppT
2

� � � pppTN ]T of image point
coordinates as the visual state, and the relative twistc�VVV as the input
vector, the dynamics of image appearance is driftless, time-varying

1042–296X/99$10.00 1999 IEEE


