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Abstract

This paper introduces a new algorithm for detecting lane
markers in images acquired from a forward-looking
vehicle-mounted camera. The method is based on a novel
set of frequency domain features that capture relevant
information concerning the strength and orientation of
spatial edges. The frequency domain features are
combined with a deformable template prior, in order to
detect the lane markers of interest. Experimental results
that illustrate the performance of this algorithm on
images with varying lighting and environmental
conditions, shadowing, lane occlusion(s), solid and
dashed lines, etc. are presented. The algorithm seems to
detect lane markers remarkably well under a very large
and varied collection of roadway images. An
experimental comparison is drawn between this frequency
feature-based algorithm and the spatial feature-based
LOIS lane detection algorithm.

1. Introduction

Lane detection, the process of locating lanes in an
image with no prior estimate to aid the search, is an
important enabling or enhancing technology in a number
of intelligent vehicle applications, including lane
excursion detection and warning, intelligent cruise
control, lateral control, and autonomous driving. Studies
such as [1][2][3] contain a detailed discussion of these
applications and their overall impact on the economy,
environment, and driver safety.

The first generation of lane detection systems were
all edge-based. They relied on thresholding the image
intensity to detect potential lane edges, followed by a
perceptual grouping of the edge points to detect the lane
markers of interest. Also, often times the lanes to be
detected were assumed to be straight. See [4][5][6] and
the references therein. The problem with thresholding the
intensity is that, in many road scenes, it isn’t possible to
select a threshold which eliminates the detection of noise
edges without also eliminating the detection of true lane
edge points. Therefore, these first generation lane
detection systems suffered when the images contained
extraneous edges due to vehicles, on-off ramps, puddles,
cracks, shadows, oil stains, and other imperfections in the
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road surface. The same deficiency also applied when the
lanes were of low contrast, broken, occluded, or totally
absent (as would be the case when the road has no lane
markers, but only pavement edges).

The second generation of systems sought to
overcome this problem by directly working with the
image intensity array, as opposed to separately detected
edge points, and using a global model of lane shape.
ARCADE [6], RALPH [7], and LOIS [8] are typical
examples of these second generation systems. Of these,
the LOIS lane detector [8] is the most relevant to this
paper. LOIS is a template matching algorithm at the heart
of which is a likelihood function that encodes the
knowledge that the edges of the lane should be near
intensity gradients whose orientation are perpendicular to
the lane edge. This allows strong magnitude gradients to
be discounted if they are improperly oriented and weak
magnitude gradients to be boosted if they are properly
oriented. There are several other such second generation
systems; the reader is referred to [9] for a description of
those.

However, not all of the problems associated with the
first generation systems have been overcome. In
particular, a number of second generation lane detection
systems still have a tendency to be “distracted” or
“pulled” away from the true lane markers by the presence
of strong and structured edges such as those created by a
vehicle outline. In portions of the image whose distance
from the camera is large, vehicle outlines have a much
higher contrast compared to the true lane markers. In such
cases, hypotheses that include the vehicle outline as part
of the template are more (or at least equally) favored than
those that do not include them. The net result is that,
although second generation lane detection systems
provide a fairly accurate estimate of the vehicle’s offset
and perhaps even orientation, relative to the true lane
markers, their curvature estimates are not reliable.

One way to overcome this problem is to find image
features that include the same amount of information
about the true lane markers as the image intensity
gradient field, which are not as sensitive to extraneous
edges. The primary intent of this paper is to report the
discovery of such a desirable set of image features (see
Figure 1) and to make a systematic comparison of those
features to the image intensity gradient field.



Figure 1. Top: A typical road image.
Bottom Left: The image’s gradient field.
Bottom Right: The image’s new feature vector field.

The method proceeds as follows: A given image is
broken up into 8x8 pixel blocks. For each block, a
frequency-domain-based feature vector is computed. This
feature vector reflects the amount of “diagonally
dominant edge energy” that is contained in that 8x8
block. The block feature vectors are then collectively
used in combination with a deformable template shape
model of the desired lane markers. This combination is
accomplished in a Bayesian setting, where the deformable
template model plays the role of a prior probability, and
the feature vectors are used to compute a likelihood
probability. The lane detection problem is reduced to
finding the global maximum of a four-dimensional
posterior probability density function, and an exhaustive
search is employed to find the global maximum.

The algorithm was applied to a widely varying set of
roadway images—this set includes images obtained under
a variety of lighting and environmental conditions,
shadowing, lane occlusion(s), solid and dashed lines, and
also on a number of images where the LOIS lane detector
has problems finding the true lane markers. These results
seem to indicate that lane detection in the frequency
domain has some inherent advantages over detection in
the spatial domain.

2. Frequency Domain Features

There are many previously published papers that deal
with frequency domain counterparts to spatial domain
features [12-21]. Some of these papers [12-15] deal with
the problems of texture image restoration, segmentation,
and classification using frequency domain features.
While others [16-20] use frequency domain features to
extract edges and also to achieve edge-preserving image
coding/compression [16-20]. References [16], [20], and
[21] are the most relevant to this paper. Especially,
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reference [21] deals with a problem similar to this paper:
Curve extraction using a multi-dimensional Fourier
transform. Curves are represented in a piecewise linear
fashion and linked together via a quadtree. At any given
node, the image’s intensity profile is used to determine
whether or not an edge is present at that node. This is
accomplished by using a multi-resolution Fourier
transform (MFT). Large regions of the image are first
examined in the MFT domain for the presence/absence of
edge-like features. If an edge-like feature is deemed
present in a certain region, then the region is further
subdivided by using the quad tree, and a similar
presence/absence decision is made at the lower nodes of
the tree. This process is repeated until every pixel in the
image has a classification in terms of whether or not it lies
on an edge. The MFT is convenient for detecting edge
features at multi-resolutions and has been used to detect
globally relevant edges in a variety of images. The
approach in this paper has some commonality with the
one in [21], especially in the use of frequency domain to
detect edge-like features and the interpretation of these
features’ significance in a global context. However, the
methods and models employed are vastly different
between this paper and [21].

Lane edges are the objects of interest in this work.
Recall that the features of interest are those that
discriminate between lane markings and extraneous (non-
lane) edges. An examination of roadway scenes obtained
from a forward-looking vehicle-mounted camera easily
reveals that lane markers tend to have “diagonally
dominant” orientations in the image plane due to the
perspective transformation inherent in the ground plane
imaging process, whereas the extraneous edges have no
such preferred orientations. This paper finds the
frequency domain to be a convenient vehicle to
discriminate between edges that are diagonally dominant
and those that are randomly oriented. Details follow.

A given image is first divided into 8x8 blocks of
pixels. Each of the 8x8 pixel blocks are then
orthogonally decomposed in terms of a set of 64 discrete
cosine transform (DCT) basis elements. Each of these
elements, as seen in Figure 2, correspond to spatial
domain edges of a certain strength and orientation. Out of
these 64 elements, “diagonally dominant” edges are best
represented by a set of 12 — as shown in Figure 2. Figure
3 shows several examples of the “value” of these 12 from
the standpoint of lane detection. For each original image
in Figure 3, the corresponding feature image is obtained
by summing the squares of its 12 special DCT
decompositions. As one can see, despite the original
image having features/edges of various strengths and
orientations, the corresponding DCT feature images
contain only information about those edges that are
diagonally dominant. The rest of this paper explains how
such DCT-based features can be exploited for precisely
locating the lane markers.
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CT basis elements.
Right: The coefficients used.

Note that the frequency domain features adopted in
this paper are similar to the ones presented in [20][22]. In
[20], these frequency features were used for code-book
optimization. Whereas in [22], the objective was to detect
faces using these frequency domain features.

Figure 3. DCT features of typical roadway scenery.

3. Deformable Template

As mentioned earlier, the algorithm presented in this
paper uses a global shape model to predict the manner in
which lane markers appear in images. As commonly done
(8], this paper also assumes that lane markers are circular
arcs on a flat ground plane. For small-to-moderate
curvatures, a circular arc with curvature k can be closely
approximated by a parabola of the form:

x=05%k*y2 +m*y+b (1)
The derivation of the class of corresponding curves
in the image plane is given for the case of an untilted
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camera, but it can be shown that the same family of
curves results when the camera is tilted. Assuming
perspective projection, a pixel (r, ¢) in the image plane
projects onto the point (x, y) on the ground plane
according to the equations:

x=c*cf*y 2
and
_H
y_r*rf (3)

where H is the camera height, rf is the height of a pixel on
the focal plane divided by the focal length, and cf is the
width of a pixel on the focal plane divided by the focal
length. Substituting eqs. (2) and (3) into eq. (1) and
performing some simple algebraic manipulation results in
the image plane curve:

* I % K of K
C=0.5 kH+brfr m @)
rf*cf*r H*cf cf
or, combining the ground plane and camera calibration
parameters together,
c=k'lr+b'*r+vp 5)
In the case of a tilted camera, the same family of
curves results if the image coordinate system is defined so
that row 0 is the horizon row. For left and right lane edges
defined by concentric arcs, the approximation is made
that the arcs have equal curvature and equal tangential
orientation where they intersect the X axis, so k' and vp
will be equal for the left and right lane edges. While the
radius of curvature and tangent orientation of the left and
right lane edges will differ slightly, constraining the left
and right lane edges to have the same k' and vp
parameters closely approximates the actual lane edge
shapes for all but very small radii of curvature. As a
result, the lane shape in an image can be defined by the
four parameters k',b'rgpr.b'RiguT ;andvp. In

summary, the k' parameter is linearly proportional to the
curvature of the arc on the ground plane. The vp
parameter is a function of the tangential orientation of the
arc on the ground plane, with some coupling to the arc
curvature as well (depending on the amount of camera
tilt). The b' ger and b'gyqyr parameters are functions of the
offset of the arc from the camera on the ground plane,
with couplings to arc curvature and tangential orientation
(again, the relative contributions of these couplings
depends on the camera tilt) [6]. The flat ground plane
assumption is occasionally violated due to a vertical
curvature in the road ahead, and also the camera height
and tilt changes by small increments due to the
suspension rock of the host vehicle. However, accounting
for these variations is difficult and also their effect on the
accuracy of the detected lanes is not very apparent.



4. Bayesian Lane Detection 5. Experimental Results

It is assumed that the values of the lane shape The lane extraction procedure described in the
parameters k',b';prr ,b'rigur »and vp are influenced previous sections was applied to a varied set of images.
by a prior probability density function (pdf): The; images ir}clufie those that were obtained ugd;r a

variety of lighting and environmental conditions,
PK' B i B »VP) < (@120 2 (B oy b serr ) -1) shadowing, lane occlusion(s), solid and dashed lines, etc.

N2 6
- atan a((b'yeur 'b’wﬁr)'3)x(1—ﬂ(%) ) ©

where o=10,/=0.01 and x=600. This prior pdf

embodies two types of a priori knowledge about
roadways: First, roadways tend to have a certain range of
widths, and this is enforced by the term involving atans;
Second, roadways tend to have a certain range of
curvatures, and this is enforced by the parabolic weigting
function on k'.

It is also assumed that given the values of
k.0 1gpr b’ gigur and vp, the probability of the

observed image having the DCT feature values (the ones
described in section 2) is given by the likelihood pdf:

P(DCT feature values | k'b', ;.0 g0, VD)
¥ Z(dct_coeﬁ‘(k, I))2 M
ijkle C,
where the sum over (i,j) covers those 8x8 pixel blocks
through which the left and right lanes (as dictated by
k', b'1gpr . b'RiguT »and vp) pass, C,; denotes the set of
12 DCT basis elements that capture diagonally dominant

edge features (see section 2 for details), and det_coeff(k,])
denote the ()" DCT coefficient of the (i,j)* block of

Figure 4. Exarﬁble results

8x 8 pixels. This likelihood pdf encodes the knowledge The experimental comparison seems to indicate that
that the true lane markers lie along portions of the image this algorithm has some advantages over LOIS.
that uniformly have a high amount of perspective Especially, it does not seem to be distracted by strong
(diagonally-dominant) edge energy. non-lane edges in far range.

These two pdfs are combined using Bayes’ rule,
and the lane detection problem is reduced to one of
finding a maximum a posteriori (MAP) estimate:

argmax  P(k',b’',. ,b' e vP| DCT feature values)

Y '
Kb ger. b'jigur VP

= argmax  P(K',b' by , VD)X
k',8' ger, B'rigur VP (8)
P(DCT feature values| k', b’ , B’y » VD)

The MAP estimate is eventually found by a
straightforward exhaustive search over the 4-dimensional
parameter space of &',b';grr ,b'rigur and vp .

Figure 5. Experimental comparison.
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6. Conclusion

This paper introduced a new Bayesian algorithm for
detecting lane markers in images acquired from a
forward-looking vehicle-mounted camera. The method
was based on a novel set of frequency domain features,
and it was shown to consistently detect the unknown lane
markers correctly. This was true, even in situations where
a more traditional (spatial domain feature-based)
algorithm such as LOIS fails. An experimental
comparison of the algorithm to LOIS, was undertaken.
Future work includes a real-time realization of the
algorithm and more extensive testing aboard an
automobile.
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